Technical Reports

Document Type


Publication Date



Network devices such as routers, firewalls, IPSec gateways, and NAT are configured using access control lists. However, recent studies and ISP surveys show that the management of access control configurations is a highly complex and error prone task. Without automated global configuration management tools, unreachablility and insecurity problems due to the misconfiguration of network devices become an ever more likely.

In this report, we present a novel approach that models the global end-to-end behavior of access control devices in the network including routers, firewalls, NAT, IPSec gateways for unicast and multicast packets. Our model represents the network as a state machine where the packet header and location determine the state. The transitions in this model are determined by packet header information, packet location, and policy semantics for the devices being modeled. We encode the semantics of access control policies with Boolean functions using binary decision diagrams (BDDs).

We extended computation tree logic (CTL) to provide more useful operators and then we use CTL and symbolic model checking to investigate all future and past states of this packet in the network and verify network reachability and security requirements. The model is implemented in a tool called ConfigChecker. We gave special consideration to ensure an efficient and scalable implementation. Our extensive evaluation study with various network and policy sizes shows that ConfigChecker has acceptable computation and space requirements with large number of nodes and configuration rules.



Technical Report Number