Title

Dynamic weather effects induced from the 2017 total solar eclipse

Start Date

28-10-2017 9:45 AM

End Date

28-10-2017 10:00 AM

Abstract

This research project was part of a nationwide effort organized by Montana Space Grant consortium to study and film the 2017 total solar eclipse with high altitude balloons. Our mission is to measure the changes in light from the total solar eclipse and its effects on the local weather conditions in the air and on the ground. Our results showed that the effects of totality on the ambient light levels were not gradual, like we had expected from our observations of sunsets, but rather the light levels decreased sharply at totality. We measured a 5.61% decrease in light before full totality, followed by a 94.4% decrease, over 90 seconds, into totality. The dramatic decreases in light levels are the root cause for the measured weather phenomena, including a short-term pressure increase associated with totality.

EBP.conference.pdf (3242 kB)

This document is currently not available here.

Share

COinS
 
Oct 28th, 9:45 AM Oct 28th, 10:00 AM

Dynamic weather effects induced from the 2017 total solar eclipse

This research project was part of a nationwide effort organized by Montana Space Grant consortium to study and film the 2017 total solar eclipse with high altitude balloons. Our mission is to measure the changes in light from the total solar eclipse and its effects on the local weather conditions in the air and on the ground. Our results showed that the effects of totality on the ambient light levels were not gradual, like we had expected from our observations of sunsets, but rather the light levels decreased sharply at totality. We measured a 5.61% decrease in light before full totality, followed by a 94.4% decrease, over 90 seconds, into totality. The dramatic decreases in light levels are the root cause for the measured weather phenomena, including a short-term pressure increase associated with totality.