Faculty Advisor

T. Kyle Petersen


The efforts of this research project are best understood in the context of the subfield of dynamical combinatorics, in which one enumerates a set of combinatorial objects by defining some action to guide the search for underlying structures. While there are many examples with varying degrees of complexity, the necklace problem, which concerns the possible unique configurations of beads in a ring up to rotational symmetry, is a well-known example. Though this sort of approach to enumeration has been around for a century or more, activity in this area has intensified in the last couple of decades. Perhaps the most startling development was the discovery of the cyclic sieving phenomenon, in which polynomial generating functions produce information about the sizes of rotational symmetry classes of objects. This technique is an extension of the “q = -1” phenomenon which classifies objects on the basis of being a fixed point or an element of a “mirrored” pair. In this study, we are on the hunt for rotational symmetries in plane partitions, with the ultimate goal of recovering the “magic” polynomial that will allows us to count the symmetry classes of these objects. The unique characteristics of plane partitions under our devised operation portend that attaining such a goal is feasible.