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ABSTRACT

In this thesis, I am investigating the optical variability of Green Pea galaxies (GPs).

GPs are good analogs to high-redshift galaxies, enabling us to learn more about the

first galaxies in the universe. One of their key properties is their strong emission

lines, some of which indicate the presence of an active galactic nucleus (AGN). An

effective way to identify AGN is to look for stochastic variability in the optical light

from the galaxy. Finding AGN in these galaxies would help us learn more about the

formation and evolution of the supermassive black holes that power AGN. In this

thesis, I analyzed 317 observations of 216 GPs taken with the Transiting Exoplanet

Survey Satellite (TESS). These data are comprised of nearly continuous observations

of the GP on a 27-day timescale. I used these data to create light curves and used

the inverse von Neumann ratio (1/η) to quantify the variability. Considering sectors

with a value of 1/η > 0.588 as having a high confidence of variability, 11 sectors

showed indications of variability and 3 of those sectors had significant variability

when compared to other nearby TESS pixels. Since those 3 sectors correspond to

2 GPs, we conclude that 2 GPs (GP# 41 and GP# 219) show significant optical

variability on 30-day time scales, therefore likely containing AGN. This is supported

by other independent methods for finding AGN such as mid-infrared colors and X-

ray luminosity for one of these two GPs (GP# 219).
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CHAPTER 1

Introduction

Green Pea galaxies (GPs) are a unique class of galaxies in our local universe. They

are characterized by their compact physical size and their very strong [O III] emission

lines. One of the most important aspects of these galaxies is that they have been

shown to be good analogs to high-redshift (z ) Lyman-alpha (Lyα) galaxies (Yang

et al. 2016; Yang et al. 2017; Kim et al. 2021), which are some of the first galaxies

in the universe. The ability of GPs to be good analogs for high-z galaxies is very

beneficial. Since GPs are relatively local galaxies with low redshifts, they are easier

to study than high-z galaxies. This allows us to use what we learn about GPs to

try to have a better understanding of high-z galaxies and galaxy evolution.

In this thesis, I will be investigating the optical variability of GPs in order to look

for Active Galactic Nuclei (AGN) in these galaxies. Most AGN have been found

in galaxies with large masses (> 1010 M�), powered by supermassive black holes

(SMBH) with masses on the order of > 106 M�. The origin of these SMBH is

not yet well understood. Finding AGN in lower mass galaxies can help us better

understand the evolution of SMBH and their potential seeds. Since GPs are low

mass galaxies, with masses between 108 − 1010 M� (Cardamone et al. 2009; Yang

et al. 2017), we can use them to try to find intermediate mass black holes (IMBH),

which would have masses < 106 M�. GPs are also useful in finding the progenitors

of SMBHs since they are analogs to high-z galaxies. So, they can give us a better

understanding of what the first IMBHs looked like and maybe even what early

SMBHs looked like. This can also help us better understand the formation and

evolution of SMBHs and the galaxies around them.
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In the rest of this chapter, I will provide background information on GPs and AGN.

In Section 1.1, I will provide more info on GPs and elaborate on some of their

key properties, including why they are considered as analogs to high-z galaxies. In

Section 1.2, I will give some background specific to AGN and briefly talk about the

methods used to find AGN. In Section 1.3, I will discuss why we believe there might

be AGN in GPs. Finally in Section 1.4, I will discuss the goals of this thesis. Then,

in Chapter 2, I will talk about the observations used in this thesis and the data

reduction process. The results will be presented in Chapter 3. The results will be

analyzed and discussed in Chapter 4. Finally, I will discuss the conclusions we can

gather and the future work in Chapter 5.

1.1 Green Pea Galaxies (GPs)

GPs are a class of galaxies with very distinct properties. They were first discovered

by participants of Galaxy Zoo (Cardamone et al. 2009). Galaxy Zoo is a citizen

science project, where hundreds of thousands of volunteers helped classify over 106

images of galaxies observed with the Sloan Digital Sky Survey (SDSS). As part

of the project, there were forums where users could discuss interesting objects. It

was in one of these forums that these compact, round, and green objects were first

discussed and given the name Green Peas. GPs got their distinct green color in the

images because these galaxies have very strong emission lines, which were redshifted

into the SDSS r band, which is colored green in the SDSS images. Cardamone et

al. (2009) followed up on these objects, helping summarize their unique properties

and marking the beginning of the research into these galaxies.

1.1.1 Properties of GPs

There are several properties that make GPs unique galaxies to study. One defin-

ing characteristic is that they are compact galaxies, meaning that they have very
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small physical sizes. In general, the upper limit to their physical radius is < 5 kpc

(Cardamone et al. 2009); however, these galaxies can appear even more compact

when observed with different instruments. For example, recent images taken with

the Hubble Space Telescope, which has sharper imaging than SDSS, have found

that these galaxies have an upper limit of radii < 1.5 kpc (Yang et al. 2017; Kim et

al. 2021). For comparison, the Milky Way Galaxy has a radius of roughly 15 kpc.

Figure 1.1 shows some examples of GPs, taken in the UV with the Hubble Space

Telescope. The figure demonstrates their compact nature.

Figure 1.1: This figure shows three examples of GPs, observed in the UV with
the Hubble Space Telescope. The color bar at the bottom of the image shows the
count rate on a log scale. The count rate refers to the rate at which UV photons
were collected from the source by the CCD pixels; so, the higher the rate the more
photons were collected. The GPs are labeled with IDs, and the green bar in each
panel is scaled to 1 kpc. Figure taken from Yang et al. (2017).

GPs are also low redshift galaxies. Redshift refers to the doppler shift of light

towards the red part of the spectrum when the light originates from a source that

is moving away from us. Since the universe is expanding, much of the light that

arrives at the Earth is redshifted to some extent, especially from sources that are

farther away. Since we know the rest wavelength, we can calculate how much the

light has been redshifted. This is then used an indicator of distance or time. The

more the light has been redshifted, the further away an object is, both physically

and backwards in time. Galaxies located at redshift of z ∼ 3 − 6 are considered
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high-redshift galaxies. By comparison, GPs are very close. They are typically found

at red shifts of z ∼ 0.1− 0.4.

GPs also have low masses, on the order of 108 − 1010 M� (Cardamone et al. 2009;

Yang et al. 2017). By comparison, the Milky Way has a mass on the order of

1012 M�. Interestingly, GPs also have high star formation rates (SFR). SFR is the

rate of how many new stars are formed per year; it is given in terms of the total new

stellar mass produced per year. GPs have a SFR on the order of 10 M� yr−1, but

some can have rates as high as 30 M� yr−1 (Cardamone et al. 2009). This is 10−100

times higher than in typical compact galaxies at similar redshifts (Izotov et al. 2011).

Because of their low mass and high star formation rate, this means that GPs also

have very high specific star formation rates (sSFR), which is the star formation rate

per total mass. For GPs, the sSFR can range from ∼ 10−9 − 10−7 yr−1, which is

very high. Merging galaxies, which typically have large outbursts of star formation

have sSFR within ∼ 10−10 − 10−9 yr−1 (Izotov et al. 2011).

GPs are also extreme emission line galaxies. Emission lines are emitted by hot gas

that have excited atoms. As the electrons in the atoms in the gas fall back down

to lower energy states, they release photons of specific wavelengths, which we see

as emission lines when we take the spectra of a galaxy. The particular wavelengths

that are emitted are dependent on the element which was excited, as well as the

particular transition states. Extreme emission line galaxies are galaxies that show

very strong emission lines with large equivalent widths. The equivalent width refers

to the width of the actual spectral feature, if the area under the curve were modeled

as a rectangle; it is a way to measure the strength of the spectral feature. GPs

have an especially strong [O III] λ5007 line with very large equivalent widths (up

to ∼ 1000 Å); this strong emission line is one of the main characteristics of a

GP (Cardamone et al. 2009). In fact, the [O III] line is the emission line that is

responsible for their green color in the Sloan Digital Sky Survey images that were

used in the Galaxy Zoo project.
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GPs also have low metallicities. The metallicity (Z) of a galaxy refers to the amount

of ‘metals’ present in the galaxy. Metals in this case refer to all the elements other

than hydrogen and helium. Typically, the metallicity of an object is determined by

looking at the ratio of the emission lines from its spectra. While the abundance of

each element can be calculated separately based on the spectra, a general indication

of the metallicity of a galaxy is usually presented as the oxygen abundance, given as

12 + log(O/H). Galaxies with 12 + log(O/H) < 8.5 are considered low metallicity

galaxies (Jiang et al. 2019). GPs typically have 12 + log (O/H) ∼ 8.1 and have

been found to have metallicities ranging from 7.2 ≤ 12 + log (O/H) ≤ 8.6 (Izotov et

al. 2011; Jiang et al. 2019). A metallicity of 12 + log (O/H) ∼ 8.1 is equivalent to

0.2 Z�, where Z� represents the metallicity of the Sun. This means that GPs have

a metal abundance equal to roughly 20% of the metal abundances in our own Sun.

So, these galaxies have very low metallicities.

1.1.2 GPs as analogs of High-Redshift Galaxies

While the properties of GPs discussed above are themselves interesting, a very

important aspect of GPs is that they share many of these properties with high-

redshift galaxies located at z ∼ 3 − 6. These high-z galaxies are some of the first

galaxies in the universe. In particular, GPs share many properties with high-z Lyα

emitters. Lyα photons are produced in regions with lots of star formation. Usually, it

is difficult for Lyα photons to escape galaxies, since dust can be a major inhibitor in

their escape. There are still many questions regarding these Lyα emitters, especially

the mechanism for the Lyα escape. However, it has been shown that the compact

size of the high-z Lyα emitters is a key component to the Lyα escape (Malhotra et

al. 2012; Kim et al. 2021). It has also been suggested that Lyα emitters might be

responsible for the reionization of the universe, which is when much of the neutral

opaque gas in the universe was ionized and the universe became transparent. Thus,

studying Lyα emitters is crucial to our understanding of the universe.
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There are several important properties GPs and Lyα emitters share. Both GPs and

Lyα emitters are very compact, with Lyα emitters having a radius . 1.5 kpc (Kim

et al. 2021). Like GPs, Lyα emitters have high sSFR ( & 10−8 yr−1) and low masses

(5× 108 − 1011 M�; Kim et al. 2021). Most importantly, both galaxies show strong

Lyα lines and very large Lyα equivalent widths (Yang et al. 2016; Yang et al. 2017).

This is significant because even though there are other classes of local objects that

share some properties with Lyα emitters, none have similar Lyα equivalent widths,

which is an important property for the high-z Lyα emitters (Izotov et al. 2011).

These shared properties allow us to use GPs as good analogs for these galaxies.

This is a great advantage since they are significantly closer than the high-z Lyα

emitters, thus they are much easier to observe. So, we can use GPs to try to learn

more about these high-z Lyα galaxies.

1.2 Active Galactic Nuclei (AGN)

As mentioned earlier, one particular aspect of GPs I am interested in investigating

is the presence of AGN in GPs. It is widely accepted that most galaxies have black

holes at their center. For galaxies with masses & 1010 M�, these black holes are

known to be SMBH (Baldassare et al. 2018). SMBH, or supermassive black holes,

have masses ≥ 106 M� (Padovani et al. 2017). For some galaxies, these SMBH are

actively accreting material onto the black hole. This causes these galaxies to emit

large amounts of energy across the entire electromagnetic spectrum (Padovani et al.

2017). Some even have jets of material or lobes visible in the radio that extend far

beyond the host galaxy. These galaxies are considered active, and their nuclei are

called AGN.

AGN are thought to be comprised of several different components. The different

wavelengths of light, as well as their subsequent variability which will be discussed in

Section 1.2.1, come from different regions in the AGN. While AGN emit across the

entire spectrum of electromagnetic radiation, I will focus my description on X-ray,
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optical, and infrared (IR) wavelengths. The driving component of an AGN is the

SMBH, which is located at the center. It is surrounded by an accretion disk. The

accretion disk is comprised of material that is actively falling into the central black

hole. Some of the X-rays that are emitted come from the inner most regions of the

disk, possibly even from the corona around the black hole (Padovani et al. 2017).

There is also contribution to the X-ray luminosity from the jets of those AGN that

have such jets. Optical and UV radiation are also emitted from the accretion disk,

also powered by the accretion onto the SMBH. Around the accretion disk is a dusty

torus, which is where the IR light radiation is emitted. This light is the result of

light from the accretion disk heating the dust particles in the dusty torus, which

then emit in the infrared. In addition to the optical continuum emission from the

accretion disk, there are also optical emission lines that can be detected for AGN.

Broad emission lines are thought to be emitted from within the boundary of the

inner wall of the dusty torus, from photoionized gas around the accretion disk; this

gas is being ionized by the radiation emitted from the accretion disk (Padovani

et al. 2017). Narrow emission lines come from the large regions above and below

the plane of the dusty torus and accretion disk (Padovani et al. 2017). Figure 1.2

shows an image depicting the structure of an AGN, labeled with the different regions

discussed.

1.2.1 Finding AGN

Even though all AGN generally have the same structure, they are selected by a wide

variety of different techniques, such that there are several different ‘types’ of AGN.

(Padovani et al. 2017). There are many theories as to explain why there are many

different types of AGN that look so different. One of the most prevalent theories to

explain the different ‘appearances’ is that they are just oriented differently in our

line of sight. For example, if the orientation of the AGN is such that the dusty

torus is directly in the line of sight between the observer and the SMBH, much of
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Figure 1.2: Labeled diagram of an AGN. Optical and X-ray light are thought to come
from the accretion disk surrounding the SMBH. X-rays are also thought to come
from the jets. IR radiation is thought to come from the dusty torus. Optical emission
lines are believed to come from several regions. Broad emission lines are thought to
be emitted from the region between the inside of the torus and the accretion disk,
while the narrow emission lines are thought to be emitted from above and below the
plane of the accretion disk. Modified from Figure 1 of Urry & Padovani (1995).
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the optical light will be obscured, and the broad emission lines will be much weaker,

so many of the optical selection techniques might not work. As such, there are

several different methods that can be used to detect and verify AGN. One of the

most effective ones is by looking at the emission lines of the galaxy. AGN typically

have strong emission lines, and the emission line ratios can be used to identify AGN.

For example, comparing [O III] λ5007/Hβ to [N II] λ6584/Hβ is one of the most

common ways to select for AGN (Baldwin et al. 1981). In addition to being used

to find AGN, emission lines are helpful as they can be used to figure out properties

like the mass of the central black hole. However, as mentioned earlier, these can

sometimes be at risk of being obscured by the dusty torus. In addition to emission

lines, looking at the X-ray luminosity is another very effective way to find AGN. A

low luminosity AGN can produce X-ray luminosities on the order of ∼ 1042 erg/s

and higher luminosity AGN can produce X-rays > 1044 erg/s (Padovani et al. 2017).

AGN are the only sources that produce such high X-ray luminosities. Galaxies rarely

produce X-ray luminosities above 1042 erg/s. Thus, using the X-ray luminosity is a

great way to distinguish an AGN from a quiet, non-active galaxy.

Another widely used method of detecting AGN is by looking at the variability of

the light (Padovani et al. 2017; Baldassare et al. 2018; Harish et al. 2023). There

are several wavelengths where variability might indicate an AGN. The variable light

from AGN is stochastic and can vary on a wide range of time scales, from hours to

years (Padovani et al. 2017). The stochastic nature of the variability is due to the

fact that the matter is accreting onto the SMBH in a stochastic, aperiodic matter.

Since this accretion is taking place in the innermost regions of the accretion disk,

where most of the X-ray light originates, this means that over time variability will

be observed in the X-ray. In addition to this X-ray variability, AGN also display

optical and UV variability that also originates from the accretion disk. Some of this

variability is from reprocessing the X-ray variability, but it is not the only source

of the optical variability, and the exact mechanisms are not yet known (Padovani

et al. 2017). The time scale of this optical variability can be from days to months,
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and sometimes there can be variability on longer timescales, on the scale of months

to years. Like the optical emission lines, this optical variability can be obscured

by the dusty torus. Finally, AGN also exhibit variability in the MIR. This light

originates in the dusty torus, and its variability is believed to be powered by the

optical variability from the accretion disk.

Any one of these methods alone can provide evidence to be able to classify an object

as an AGN. There are advantages and limitations to each of the detection methods.

And they can each pick out different types of AGN. However, different methods can

be combined to help verify that a galaxy is an AGN.

1.3 AGN in GPs

Even though AGN are typically found in brighter, larger galaxies, there is some

indication that AGN might be present in GPs. The strong emission lines that are

characteristic of GPs can indicate hard ionizing sources like AGN. For example, GPs

show hard ionizing lines like He II λ4686 and [Ne III] λ3869. They also have high

line ratios, like [O III]/[O II], that also might indicate an AGN. Additionally, AGN

candidates have been identified in GPs in the mid-IR (MIR). Harish et al. (2023)

looked at a sample of GPs in the MIR and were able to identify AGN candidates.

They were able to find 31 AGN candidates using the MIR colors, 2 of which also

displayed stochastic MIR variability.

1.4 Using Optical Variability to Find AGN in GPs

For this thesis, I will be using the optical variability to try to find AGN in a sample

of GPs. For GPs, using optical variability is more likely to yield results than trying

to use the optical emission line selection rules. For example, [O III] is a common

line used in AGN selection, but it is challenging to try to use that line to find AGN
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in GPs. This is because GPs are characterized by their strong [O III] lines and large

equivalent widths; the [O III] line in GPs is saturated with star formation and is

therefore not a good discriminant to find AGN. Moreover, it has been shown that in

general emission line selection rules, like those described by Baldwin et al. (1981),

are less effective in galaxies with low metallicities and high star formation rates

(Trump et al. 2015). Using variability of the light is a method that is better suited

for low mass galaxies (Baldassare et al. 2018; Baldassare et al. 2020). Therefore,

looking for stochastic optical variability would be a good way to try to identify

AGN in GPs, since it is a common phenomenon in AGN and is not at risk of being

contaminated by any stellar processes. Observing in the optical will allow us to

look at shorter time scales, on the scale of days to months. Optical variability has

proven successful in identifying AGN on both short timescales (Treiber et al. 2022)

and long timescales (Baldassare et al. 2018); and it has been shown to be effective

in identifying AGN in low mass galaxies (Baldassare et al. 2020). Thus, the goal of

this thesis is to try to identify AGN candidates by observing the optical variability

of GPs.
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CHAPTER 2

Observations and Data Reduction

I am investigating the optical variability of GPs in order to find AGN. In this

chapter, I will describe the observations of the GPs used in this thesis and describe

reducing the data. In Section 2.1, I will describe the telescope from which the data

comes from and why it can be used to find AGN. In Section 2.2, I will discuss how

the sample of GPs was selected. In Section 2.3, I will discuss how I reduced the

data, describing the main data processing package I used and the process I used to

reduce the data.

2.1 Transiting Exoplanet Survey Satellite (TESS)

The data examined in this thesis were taken with the Transiting Exoplanet Survey

Satellite (TESS). TESS is a space telescope in a highly elliptical orbit, coming as

close as ∼17 Earth radii and reaching as far away as ∼59 Earth radii. It is an

optical telescope; the detectors have a bandpass of roughly 600 − 1000 nm. It was

launched in 2018 with the goal of finding transiting exoplanets through a near all-

sky survey. Its primary 2-year mission was to observe the majority of the north and

south ecliptic hemispheres, excluding the area of the sky closest to the ecliptic, which

is the plane of the Earth’s orbit around the Sun. Its primary mission commenced

on July 25th, 2018, and ran until July 4th, 2020. TESS is continuing to observe in

its extended mission which involves re-observing the ecliptic hemispheres and parts

of the ecliptic.

TESS observes a large patch of sky continuously for 27 days. Each 27-day observing

cycle is called a sector. TESS has a ∼14-day orbit, and it completes its orbit twice
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during each sector, downlinking data to the Earth when it reaches its closest point.

The term sector is also used to refer to the specific patch of sky that TESS observed

during that particular observing cycle. Therefore, a TESS sector can refer to both

the actual observing cycle and the part of sky that was observed at that time. Each

sector is assigned a number in the order in which it was observed. TESS has a very

large rectangular field of view, 24◦ × 96◦, which is achieved by four 24◦ × 24◦ CCD

cameras in a horizontally stacked orientation. The pixels on the TESS CCDs are very

large, with a width of 21′′. By comparison, SDSS has 0.396′′ pixels. However, the

tradeoff is that TESS has very high precision photometry. Because of the geometric

constraints of mapping a rectangle onto a sphere, there are several portions of the sky

that are observed in multiple observing cycles. In other words, the sectors overlap.

Additionally, the areas around the south and north ecliptic poles were continuously

observed during years 1 and 2, respectively, by having one camera during each sector

in their respective years centered on the pole.

TESS provides two main data products from its pipeline. One data product is 2-

minute cadence target pixel files, which are low cadence data that were taken for

exoplanet candidate targets. The other data product, which is what I used in this

thesis, is full frame images, which have a 30-minute cadence during TESS’s primary

mission. The full frame images are images of the entire 24◦ × 96◦ field of view,

allowing the user to gather data for any point in the sky that was observed during

that sector. Both data products are processed through the TESS pipeline, which

returns calibrated data. The calibrated data is simply the raw data that has had

various systematic effects and cosmic rays removed (Vanderspek et al. 2016).

2.1.1 Using TESS for AGN

TESS has made great advancements in identifying transiting exoplanets. But al-

though the primary role and design of TESS is to search for exoplanets, TESS has

been used to observe other objects (Vallely et al. 2019; Burke et al. 2020; Treiber et
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al. 2022). Not only does TESS have very high precision photometry, but it is also

continuously observing a large section of the sky. This makes it an excellent tele-

scope to use to observe different types of objects over a period of time. In fact, there

have been studies that have shown that TESS can detect the optical variability of

AGN. Burke et al. (2020) used TESS to observe the AGN in NGC 4395. While the

AGN in the dwarf galaxy NGC 4395 had already been discovered and studied for

many years, Burke et al. (2020) were able to demonstrate the ability of TESS to find

AGN. They were able to demonstrate the optical variability of the AGN on a 27-day

timescale. Treiber et al. (2022), however, used TESS to try to find AGN in a very

large sample of galaxies. They were able to find 29 AGN candidates through their

optical variability, 18 of which had not been identified before. Therefore, despite

its name, I aim to use TESS to try to find optical variability in GPs on a 27-day

timescale.

2.2 Sample Selection

The sample I used in this thesis comes from a larger sample of 1004 GPs. This

sample was selected from SDSS Data Release 13. These GPs were selected because

they were classified as ‘star-forming’ or ‘starburst’ galaxies in SDSS, have strong

[O III] λ5007 and Hβ lines with signal-to-noise (S/N) > 5 and large equivalent

widths, and are compact (r < 3′′; Jiang et al. 2019). From this larger sample, we

selected GPs that were isolated, meaning that they did not have an object as bright

or brighter than the GP within 21′′. We chose the value of 21′′ since that is the

size of a single TESS pixel; this will help reduce contamination from other sources

that would be in the same pixel. This left us with 345 GPs. Then, we eliminated

GPs that had an object brighter than 14th magnitude within 90′′. This was done

to further reduce contamination from bright sources. This left us with a sample of

321 GPs.
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2.3 Data Reduction Process

2.3.1 The Data Processing Package Lightkurve

In order to gather and process the data from TESS, I used the python package

Lightkurve (Lightkurve Collaboration et al. 2018). Lightkurve features several built-

in python functions and classes that help create light curves from data and process

them. A light curve is a standard representation of data used in astronomy in which

the intensity of a source is plotted as a function of time. While the features of the

Lightkurve package can be used with any user-input data, it was specifically built

for gathering and analyzing data from the Kepler and TESS missions in order to

find exoplanets. However, its features can still be used for a wide variety of science,

including trying to find AGN.

2.3.2 Photometry and Scattered Light Subtraction

I used the search tesscut function in the python package Lightkurve to search

through all the available TESS data for the 321 GPs. This function uses the Mikulski

Archive for Space Telescopes (MAST) service TESScut (Brasseur et al. 2019). At

the time, most of the data available through the TESScut service were only from the

primary mission of TESS. Even though some GPs had data that had been observed

during the extended mission of TESS, I did not include that data since the cadences

were different in the extended mission and only some GPs had the new data. So,

for consistency, my thesis will be limited to data observed during the TESS primary

mission, which corresponds to the first 26 sectors and took place over 2 years. From

the list of 321 GPs, only 217 GPs were observed in at least one TESS sector in the

primary mission. This is the final sample of GPs I will be studying in this thesis.

Several GPs were observed in multiple sectors, so in total, I analyzed 369 sectors.
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With this list of 217 GPs observed with TESS, I used the Lightkurve functions to

gather and process the data. I used the search tesscut function in Lightkurve

again to search for all the sectors a single GP was observed in, and then downloaded

the data for all the sectors that GP was observed in. For the data download,

Lightkurve allows users to select a quality data mask that will ignore cadences with

certain quality flags which were assigned in the data pipeline. I chose a ‘hard’

quality mask; such a mask would exclude data that were flagged for things like

scattered light or cosmic rays in collateral pixels. This mask is slightly stricter than

the recommended mask in the Lightkurve documentation, as it can throw out good

data. However, with the default mask, some bad data still slips through, and it was

causing some errors in the rest of the data analysis. Most of these bad data were

a result of scattered light from the earth, which is very noticeable the closer TESS

gets to the earth. While there is still a lot of scattered light present in the data, the

‘hard’ data mask gets rid of the worst.

The data were downloaded as 5-pixel × 5-pixel cutouts from the full frame image,

following which I used the interact sky function to display the cutout and the

location of the provided coordinate. I used this interactive image to visually deter-

mine the location of the GP in the cutout in order to determine where to place an

aperture. This aperture tells the program where the object of interest is located.

This is an important step that will be used in the aperture photometry step later

on in the data reduction process. Once I determined which pixel in the cutout con-

tained the GP, I custom-placed the aperture on that pixel. For all of the GPs and

in every sector, I used a one-pixel aperture. If a GP was located near the boundary

between two pixels, the aperture was placed on the pixel that contained most of

the GP. In many cases, the GP was located in the center pixel; however, there were

several instances where the GP was actually located in an adjacent pixel. If a GP

was observed in multiple sectors, an interactive image was created for each sector

and the aperture was placed in the optimal location for that sector. In other words,

the apertures were custom-placed by hand for each sector of data I looked at.
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After the aperture was created, I then created a light curve for each GP and each

sector using the to lightcurve function in Lightkurve. This function takes the

downloaded data, automatically performs simple aperture photometry on the data,

and returns a light curve. It uses the aperture I had created earlier for each specific

sector. Aperture photometry is a method used to try to get the ‘true’ flux values

from a source by subtracting the background flux, which could have contamination

from nearby objects as well. When performing aperture photometry, the background

flux calculated from the pixels outside the aperture is subtracted from the flux of

the object within the aperture. Thus, the to lightcurve function generates a light

curve that is already background subtracted.

Even after the photometry was performed, there was still a lot of scattered light, so

the next step was to correct for that scattered light. The method I used is detailed

in the Lightkurve documentation but is repeated here. I used a linear regression

method to get rid of the scattered light. The linear regression aims to get an idea

of the general trends in the entire cutout and subtract that light from the light

curve of our object. Lightkurve has several functions that allows users to do this.

First, I created an array of the flux of all the pixels outside of the aperture over

the entire time period. Then I converted that array into a design matrix, which

is a python class in Lightkurve that makes it easier to use several of its correction

methods. Then I used a principal component analysis function to reduce the matrix

to 5 principal components. I then appended a column of ones to this design matrix,

which is necessary for the regressor corrector to be able to fit the light curve properly.

The next step is to do the actual linear regression. First, the light curve that

was created earlier is turned into a regressor corrector class, another python class

in Lightkurve. Converting the light curve to this class will allow me to use the

Lightkurve methods on it to get rid of the scattered light. Then that light curve

is corrected with the design matrix; this is done automatically by a Lightkurve

method that finds the best-fit correction for the light curve using the design matrix

I provided. This method returns a corrected light curve. However, because the
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original light curve had a lot of scattered light, this “corrected” light curve that

was generated by setting to the mean level of the original light curve still contains

scattered light in it. So, I needed to perform a few additional steps to get rid of that

remaining scattered light. I used the model of the background that was created in

the previous steps to get a model of the scattered light. However, the background

model might have negative values of flux, which would not be possible since that

would imply that the scattered light lowered the flux of the source, rather than

added to it. These negative values are probably because the model was being set

to the mean level of the original light curve, which will have a higher flux than the

lowest flux value in the cutout. So, I calculated the 5th percentile of the model

background and added it back to the model background, which would get rid of

any negative fluxes. Then I subtracted this model background from the uncorrected

light curve to get our final corrected light curve. This gives us our final, corrected

light curve.
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CHAPTER 3

Results

In this thesis, I am investigating the 27-day optical variability of Green Pea galaxies

using TESS. In Chapter 2, I described the observations that were used in this thesis,

and I described the processing of the data to create the light curves. In this chapter,

I will go into more detail about creating the light curves for the GPs. In Section 3.1,

I will describe how I created the light curves and the additional measures I took to

get rid of bad data. I will also describe our limitations with GPs found in multiple

sectors. In Section 3.2, I will walk through some sample light curves, presenting

examples of light curves both with and without obvious optical variability.

3.1 Creating the Light Curves

Using the process described in Section 2.3.2, I created light curves for the 217 GPs.

Since several GPs were observed in multiple sectors, this meant that I had a total of

368 light curves, one for each sector a GP was observed in. Unfortunately, even after

the data cleaning described in Section 2.3.2, there were some sectors with bad flux

measurements: they had many negative fluxes or fluxes very close to zero. Typically,

sectors had flux measurements on the order of ∼ 100 electrons/second. Sectors with

many negative fluxes are due to bad data. Sectors with median fluxes close to 0 are

also due to bad data since they would have many negative fluxes for the median to

be near zero. To avoid using data from these bad sectors, I eliminated any sector

where the median flux was less than 1. This also meant that I had to eliminate one

GP whose only sector had these bad values. This left me with light curves for 317

sectors, which represented 216 GPs.
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Another step I took was to remove specific sections of bad data from the final light

curves. It was not until the actual light curves were inspected that it was clear that

this step needed to be done for several GPs. As can be seen in the light curve figures

below (Figures 3.1 - 3.4), all of the light curves, with the exception of light curves

using data taken during Sector 03, have a gap in the middle. This gap represents

the time during which TESS was near the earth to downlink the data. Because this

is when the scattered light is the worst, the ‘hard’ data mask I used usually masks

most of the data taken during this time. However, there were some instances where

a GP sector had data in this gap. These data were usually very noisy and had a lot

of outliers. Since these data were observed when TESS was closest to the earth, they

were mainly comprised of scattered light and were considered as bad data, likely not

from the source. Therefore, I decided to remove any data that were present in the

data gap referenced above. I removed the days of data corresponding to that gap,

including a few shoulder days, since that is when TESS was closest to the earth. In

order to ensure consistency among my data, I removed the same dates of data from

all the GPs observed during those dates. In other words, the same dates of data

were removed across all GPs that had data taken during those dates.

3.1.1 Multi-sector GPs

Another important aspect to consider is the fact that several GPs were observed

in multiple sectors. Therefore, we could theoretically observe the optical light of

some of the GP across two or more months. However, it is only possible to analyze

each sector on its own. There is a known issue with TESS where the relative flux

between sectors changes significantly. Therefore, it is not possible to compare the

flux of the same object in different sectors, since there will be a large artificial change

in flux. So, I will be analyzing each sector on its own, even if the GP was observed

in multiple sectors. This also means that I will only be able to look at the variability

of these GPs on a 27-day timescale.
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3.2 Light Curves

With these considerations in mind, I can create the finalized light curves for the 317

sectors. I created a simple, corrected light curve, with just the flux measurements

versus the date. With this simple light curve, I then created normalized light curves.

I normalized all the flux values in each sector to the median flux value in the entire

sector. Then I plotted a running median. To do this I binned the data in 6-hour

time bins, to smooth out the data. Then I selected the median data point in the

6-hour bin and plotted that point, creating a binned light curve. In addition to the

running median, I also plotted an error shadow. I generated the error shadow by

using the error from creating the binned light curve to plot a blue shadow extending

from (median − error) to (median + error). Examples of these light curves are

shown and described in Section 3.2.1 and Section 3.2.2 below.

3.2.1 Examples of Sectors Displaying Optical Variability

Of the 216 GPs examined for this thesis, 2 were determined to be variable using the

von Neumann ratio described in Section 4.1.1. Figures 3.1 and 3.2 shown below are

examples of light curves that were determined to display variability.
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Figure 3.1: Light Curve for the GP with SDSS designation J083350.24+454933.6
referred to as GP# 41 in this data set. On the vertical axis is the normalized flux
value, normalized to the median. On the horizontal axis is the time in Modified
TESS Julian date, which is the current modified Julian date minus 245700. The
black dots are each individual TESS observation. The solid red curve is the running
median, binned with 6-hour bins. The blue shadow is the error shadow.

Figure 3.1 shows the light curve for GP# 41. This is one of the GPs that have a

high von Neumann ratio that is interpreted to be an indication of variability (as

discussed in Section 4.1.1). As can be seen, the overall light curve is fairly smooth,

with a gradual general increase in flux before slowly decreasing again. There appears

to be slow change in the flux of the GP over this time period. Even ignoring the

large upward spike at the end of the time gap that is seen near Julian Day 1858 on

the graph, there is a gradual increase, then decrease in flux over the course of this

sector.
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Figure 3.2: Light Curve for the GP with SDSS designation J173501.25+570308.6
referred to as GP# 219 in this data set. On the vertical axis is the normalized flux
value, normalized to the median. On the horizontal axis is the time in Modified
TESS Julian date, which is the current modified Julian date minus 245700. The
black dots are each individual TESS observation. The solid red curve is the running
median, binned with 6-hour bins. The blue shadow is the error shadow.

Figure 3.2 shows the light curve for GP# 219 taken during one sector. This is also

one of the GPs that have a high von Neumann ratio (discussed in section 4.1.1).

Even visually, one can see that there is some stochastic variability in the light curve.

There is clearly a slight upward trend in the light curve before there is a large dip

that increases again before the data gap. There is a large spike in flux right before

the data gap, at around Julian Date 1940, but that can be ignored, since TESS

was approaching the Earth by that point. After the data gap there is a very slight

upward trend to the data, with a very brief dip.
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3.2.2 Examples of Sectors without Obvious Optical Variability

Of the 216 GPs examined for this thesis, 214 were determined to exhibit no sub-

stantial variability. Figures 3.3 and 3.4 are light curves that did not display any

variability.

Figure 3.3: Light Curve for the GP with SDSS designation J022037.66-092907.1
referred to as GP# 18 in this data set. On the vertical axis is the normalized flux
value, normalized to the median. On the horizontal axis is the time in Modified
TESS Julian date, which is the current modified Julian date minus 245700. The
black dots are each individual TESS observation. The solid red curve is the running
median, binned with 6-hour bins. The blue shadow is the error shadow.

Figure 3.3 shows the light curve for GP# 18. This GP did not show variability,

which can be seen in the light curve. Even though the running median looks very

jagged, it is a result of the general noise and spread of the data and not because of

any actual variability in the flux from the source. The overall trend of the data is

very smooth, centered around the normalized value of 1. So, this GP does not show

much, if any, variability in this sector.
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Figure 3.4: Light Curve for the GP with SDSS designation J113247.68+510215.2
referred to as GP# 96 in this data set. On the vertical axis is the normalized flux
value, normalized to the median. On the horizontal axis is the time in Modified
TESS Julian date, which is the current modified Julian date minus 245700. The
black dots are each individual TESS observation. The solid red curve is the running
median, binned with 6-hour bins. The blue shadow is the error shadow.

Figure 3.4 shows the light curve for GP# 96. This GP also did not show much

variability. The running median is very jagged, with a fairly large error shadow,

but still the overall trend over the course of the light curve is fairly steady and is

centered around 1.
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CHAPTER 4

Discussion

In this thesis, I am investigating the optical variability of Green Pea galaxies. In

Chapter 2, I discussed the methods and techniques used in the inspection and pro-

cessing of the data. I discussed and presented the resultant light curves in Chapter 3.

In this chapter, I will discuss the quantitative analysis that I used to identify vari-

ability in the light curves of these galaxies. In Section 4.1, I will discuss the optical

variability of these light curves. I will describe the variability index I chose (the

inverse von Neumann ratio), why I chose it, and then demonstrate how I calculated

it for this sample. I will compare the variability index to the brightness of the GP.

Then I will compare the variability index of the GP to the variability index of the

other pixels in the TESS cutout, and discuss my interpretations. Then in Section

4.2, I will go over other ways of looking for AGN and how they relate to this sample.

4.1 Optical Variability

The goal of this thesis is to find if the sample of GPs observed with TESS and selected

as described in Chapter 2 have optical variability. There are several different ways

to quantify such optical variability, and several different variability indices one could

use. For example, one could look at the standard deviation, look at the covariance,

or look at χ2. One of the challenges with trying to quantify the optical variability

is trying to figure out the best method for a specific dataset. Some methods are

better suited for observations with only a few data points, and some are better

suited for observations with a large number of data points. One also needs to take

into consideration if the expected variability occurs on scales longer or shorter than

the sampling time.
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Sokolovsky et al. (2017) compared different variability detection techniques to try

to find a good general-purpose technique. They looked at 18 different techniques to

detect variability and compared their performance on 7 different data sets with a

wide range of properties. Their test data sets contained both observed and simulated

data and included not only a wide assortment of variable objects but also non-

varying objects. They used two indices to quantify the accuracy of the detection

technique, Completeness (C) and Purity (P ):

C =
Number of selected variable objects

Total number of confirmed variable objects
(4.1)

P =
Number of confirmed variable objects selected

Total number of objects selected
(4.2)

They were able to use these indices since they knew beforehand which sources in

their dataset were variable. The Completeness C measures if the technique is able

to select all of the objects that are confirmed to be variable in the sample. The

numerator is the number of objects that the technique selected as variable, and the

denominator is the total number of confirmed variable objects in that dataset. If all

of the confirmed variable objects were selected by the technique, then the numerator

and denominator of 4.1 would be the same and then C would have a value of 1.

Conversely, if no variable objects were selected by the technique, C would have a

value of 0. The Purity P measures if the objects the technique selects are indeed

variable; it can be thought of a measure of the amount of false positives selected.

The numerator is the number of objects that were selected by the technique that

were confirmed variable objects. The denominator is the total number of objects

the technique selected. If the technique only selected confirmed variable objects,

then P would have a value of 1. But if the technique only selected false positives,

P would have a value of 0.
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Sokolovsky et al. (2017) used these two indices to calculate a fidelity score (F ),

which is the harmonic mean of C and P , given by:

F =
2(C × P )

(C + P )
(4.3)

The fidelity score F has a value of 1 when all confirmed variables were selected by

the variability detection technique and there were no false positives. Conversely, F

has a value of 0 when none of the confirmed variables are selected. Thus, variability

indices with higher values of F were better at selecting variable objects. They

found that two indices, the von Neumann ratio, η (von Neumann 1942), and the

interquartile range (IQR), had consistently high F values across all the test data

sets. They used the inverse of the von Neumann, 1/η, instead of η. Using the inverse

of the ratio does not affect the statistic in any way, it just makes it a bit easier for

humans to pick out variability: the larger value of 1/η is, the more variable the

object. Since they suggested that correlation-based indices, such as 1/η, were more

efficient for data sets with hundreds of data points, I decided to use 1/η for my

analysis. Thus, for this thesis, I will be using the inverse of the von Neumann ratio

to quantitatively analyze the light curves.

Sokolovsky et al. (2017) did note two things, however. First, they noted that 1/η

can only detect variability on timescales longer than the time between observations.

This is not a problem for my dataset since the sampling time is 30 minutes and we

expect variability to be on timescales of days or longer. They also noted that using

any variability index alone is not enough to justify variability, and that this was

best followed up with visual inspection.
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4.1.1 von Neumann Ratio

The von Neumann ratio can be thought of as the ‘smoothness’ of the light curve,

so its inverse indicates the presence of variability in the light curve by telling us its

departure from smoothness. The (inverse) von Neuman ratio can be calculated as:

1

η
=
σ2

δ2
=

1
N−1

N∑
i

(mi − 〈m〉)2

1
N−1

N−1∑
i

(mi+1 −mi)2
(4.4)

where N is the total number of observed points, mi and mi+1 correspond to the

magnitudes of the ith and (i + 1)th observed points, respectively, and 〈m〉 is the

average magnitude of the entire light curve. Even though the von Neumann ratio

does not take into account the errors of the measurements it is still accurate for

picking out variability.

As described in Sokolovsky et al. (2017), there isn’t a specific pre-determined value

of the ratio that would indicate that the source was definitively variable. Instead,

this ratio can pick out which sources are more variable relative to the other sources,

which we can then investigate further. The ‘cutoff’ point to distinguish between not

variable and potentially variable sources will depend on the dataset itself.

4.1.2 von Neumann Ratio of the GPs

To calculate the 1/η value for each of the light curves, I first took the flux measure-

ments for each sector and converted the fluxes into magnitudes. I used the standard

flux to magnitude (m) conversion equation:

m = −2.5 log10(f) + ZP (4.5)

where f is the flux, and ZP is the zero point. The zero point will vary depending
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on the instrument with which the data is taken. It helps ensure that the flux is

properly scaled. It is calculated such that an object with known zero magnitude

will have a magnitude of zero when observed with that instrument. For TESS, the

zero point is 20.44 (Vallely et al. 2019). Using Equation (4.5) and the TESS zero

point, I calculated the magnitude of each data point in a sector. Then I used these

magnitudes in Equation (4.4) to calculate the 1/η of each of the 317 sectors.

Most of the light curves in our sample had values of roughly 1/η ≈ 0.5. In order to

find a ‘cutoff’ value for 1/η, above which we can select GPs as potentially varying, I

used a method similar to the one used in Sokolovsky et al. (2017). I got the median

value of 1/η for all 317 sectors, which is the expected value (1/η) of the 1/η for

our sample. This value was 1/η = 0.511 . Then, following Sokolovsky et al. (2017),

I calculated the expected dispersion, σ, as the median absolute deviation (MAD)

scaled to a Gaussian distribution, which is:

σ = 1.4826×MAD = 1.4826×median(
∑

i |(1/η)i − 1/η|) (4.6)

where (1/η)i refers to each ith inverse von Neumann ratio and the MAD is multiplied

by 1.4826 in order to scale it to a Gaussian distribution. Sokolovsky et al. (2017)

prefer using MAD instead of the standard deviation from the mean because the

standard deviation is relatively sensitive to outlier points, whereas MAD is mostly

insensitive to outliers. The value of the dispersion σ obtained from equation (4.6) is

then multiplied by a factor a; the value of aσ determines the threshold of variability.

Sokolovsky et al. (2017) computed C,P , and F from equations (4.1)-(4.3) as func-

tions of a, then adopted the value of a for which F reaches its maximum value as

the optimal value. From their graphs, it is clear that the optimal value of a depends

not only on the index used to measure the variability but also on the dataset itself.

I could not use this method to select a since F is an index that requires already

knowing how many variable objects are in a dataset. Instead, I used a different
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method suggested by Sokolovsky et al. (2017); they suggested starting at a = 3 and

adjusting the value of a to reach a manageable set of false positives. Since I do not

know how many of these sectors are variable, I will have to adjust the value of a

until I get a cutoff value that selects a reasonable sample of sectors.

I started with a = 3, which gave me a cutoff value of 1/η of 0.569. There were

19 sectors that fell above this value. With a value of a = 4, I got a cutoff value

of 0.588 and 13 sectors were selected. At a value of a = 5, I got a cutoff value of

0.607 and 10 sectors were selected. At a value of a = 14.5 no sectors were selected.

For this thesis, I decided to use a value of a = 4. I chose this value by comparing

the sectors that were selected at a = 4 to the sectors that were selected at a = 3

and a = 5. At a = 3 there were ∼ 3 − 4 sectors that did not appear to have much

variability. These sectors were a bit scattered and there was not much change in the

overall light curve, or there was only a very subtle trend. These sectors appeared a

little bit ‘flat’ overall, but not as flat as other sectors with 1/η ratios close to the

median value. When I increased the value of a to 4, these ‘flat’ sectors were among

the 6 sectors that were eliminated. When I increased the value of a to 5, there were

sectors eliminated that displayed just enough variability when examined visually

that I could not justify eliminating them. Therefore, I will use a cutoff value of

0.588, corresponding to a = 4 to select for potentially varying sectors. These sectors

will be the ‘high confidence’ sectors, where there is a high confidence of variability.

The sectors with 1/η between 0.569 and 0.588 will be considered the low confidence

sectors, since they did display some variability above 3σ, but not enough to be

among the high confidence sectors. For this thesis, I will be mainly looking at the

high confidence sectors to try to find optical variability.

Figure 4.1 shows a histogram with the distribution of the 1/η values for all of the

sectors in our sample. The horizontal axis is the value of the 1/η ratio, and the

high confidence cutoff value of 1/η = 0.588 is marked in the figure by a dashed

vertical line. It can be seen from Figure 4.1 that most of the observations had a

1/η ratio around 0.5, and there are very few sectors with a value above 0.588. Even
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Figure 4.1: Histogram showing the different values of the inverse von Neumann
ratio, 1/η for all sectors. The horizontal axis shows the value of the ratio. The
dashed vertical line is placed at 1/η = 0.588, the adopted high confidence cutoff
value to select for potentially varying sectors.

though higher values of 1/η correspond to greater variability in a light curve, we

cannot say that the sectors above the cutoff value definitely have optical variability.

Instead, the sectors with values of 1/η above the cutoff have light curves that were

less smooth when compared to the majority of the other light curves, so we have

a high confidence that they are varying. So, we are using this as a way to narrow

down which sectors we should inspect closer. Therefore, we will look at these 13

sectors in greater detail.

4.1.3 Brightness vs. von Neumann Ratio

Before continuing my analysis, I wanted to ensure that the high 1/η wasn’t just

because of noisy, faint GPs. I compared the brightness of all of the GPs to their

inverse von Neuman ratios for the sectors they were observed in. Figure 4.2 shows

the comparison of each sector’s 1/η versus the SDSS z magnitude of the GP. The
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dashed vertical line shows the high confidence cutoff value of 0.588. GPs that were

observed in multiple sectors have the 1/η value plotted for each sector, with the

same value of the z magnitude. The graph shows that the GPs with the high 1/η

are not restricted to just the faintest GPs but are distributed throughout the range

of the GP magnitudes. Thus, we can move forward knowing the high 1/η for these

13 high confidence sectors was not because of the low brightness of GPs.

Figure 4.2: Plot showing the inverse von Neumann ratio versus the magnitude of
the GP. The magnitude of the GP is given in the SDSS z filter. The dashed vertical
line is placed at 1/η = 0.588. GPs that are observed in multiple sectors have the von
Neumann ratio for each sector plotted, against the same z filter magnitude. The
GPs with the high 1/η ratios are distributed along the graph, not just concentrated
on the faintest magnitudes.
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4.1.4 Visual Inspection

After ensuring the high 1/η values were not because of faint GPs, I visually inspected

the 13 high confidence sectors. Of the 13, I eliminated 2 sectors where it was very

obvious the high ratio was caused by a few large outliers. Both of these sectors

were generally smooth but had a few very large outliers in portions of their light

curves where TESS was generally farther from the earth. Figures 4.3 and 4.4 show

the light curves for those two sectors, where the large outliers can be seen in the in

the middle of the ‘good’ data portions. Since the observations in these sectors were

not taken during those intervals for which the data had been determined to be bad,

there was no way I could choose segments of time for which to eliminate bad data.

Instead, I chose to exclude both sectors from further analysis. This leaves me with

11 high confidence sectors that show either obvious variability, like the example in

Figure 3.2, or very slight variability, comparable to the example in Figure 3.1.
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Figure 4.3: Light curve of the GP with SDSS designation J014721.68-091646.3, also
referred to as GP# 13 in this data set. The vertical axis has the normalized flux
value, normalized to the median. On the horizontal axis is the time in Modified
TESS Julian date. The black dots are each individual TESS observation. The solid
red curve is the running median, binned with 6-hour bins. The blue shadow is the
error shadow. This sector had a generally smooth light curve except for 3 very large
outliers. These outliers are not during the time when TESS is close to the earth
(during the beginning and middle of the sector), thus this was not taken during a
time of known bad data, and the whole sector was eliminated from the high 1/η
analysis.
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Figure 4.4: Light curve of the GP with SDSS designation J020125.56+240916.6,
also referred to as GP# 16 in this data set. The vertical axis has the normalized
flux value, normalized to the median. On the horizontal axis is the time in Modified
TESS Julian date. The black dots are each individual TESS observation. The solid
red curve is the running median, binned with 6-hour bins. The blue shadow is the
error shadow. This sector had an overall smooth light curve but had several very
large outliers. These outliers are not during the time when TESS is close to the earth
(during the beginning and middle of the sector), thus this was not taken during a
time of known bad data, and the whole sector was eliminated from the high 1/η
analysis.
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4.1.5 Pixel Comparisons

In order to further inspect these 11 high confidence observations, I looked at the

whole TESS cutout that was created for each of these sectors. When I created the

light curves for these sectors, I got a 5 x 5 cutout of the TESS full frame image, as

described in Section 2.3.2. I wanted to check that the higher value of 1/η for these

sectors was not just due to a particularly noisy section of the cutout or contamination

from another source within the TESS cutout. So, I compared the 1/η of each of the

other 24 pixels in the cutout to the 1/η value in the pixel containing the GP. To do

so, I first created a light curve for every pixel in the cutout for each of the 11 sectors

I wanted to further inspect. I did this using the same methods I used to create the

light curve of the GP described in Section 2.3.2, but I moved the aperture to every

pixel in the cutout.

I then used the same methods described in Section 3.2 to normalize the light curve

to the median and create a binned light curve with an error shadow. For these pixel

comparisons I only plotted the binned running median and the error shadow, not

the full light curve which has all the individual observations, to reduce crowding in

the final pixel comparison image. I plotted the light curves and error shadows in

each of the 25 pixels in the cutout in its corresponding location, creating a grid of

5 x 5 light curves. I then calculated 1/η for every pixel in the cutout. Figure 4.5

shows an example of one of these light curve graph grids, with the 1/η value placed

in its corresponding light curve. The red and green curves represent the normalized

binned light curves, and the error shadow is shown in blue. The light curve shown

in green and labeled ‘GP’ in the graph is the light curve of the Green Pea galaxy.

The GP shown in Figure 4.5 is from the same sector shown in Figure 3.2.

Once I had the pixel comparison plot, I compared the 1/η values for all the other

pixels with 1/η value for the pixel with the GP. I got the median value and standard

deviation of the 1/η values for the 25 pixels within each cutout. I then compared

these to the 1/η of the pixel with the GP. These results are presented in Table 4.1,
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Figure 4.5: Example of a Light Curve grid. This grid is for GP# 219, observation
9. On the vertical axis is the normalized flux value, which has been normalized to
the median. On the horizontal axis is the time in Modified TESS Julian Date. The
curves on each graph in red/green represent the normalized and binned light curves.
The blue shadow is the error shadow. The green curve, in the panel marked GP
with labels in bold face, is from the pixel in which the GP is located and, therefore,
is the light curve of the GP.
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1/η Statistics for Entire Cutout Light Curve Grid
GP
Number

Obs. Median
1/η

Median +
3σ

Max 1/η GP 1/η

12 0 0.5684 1.0567 0.9272 0.7541
17 0 0.5225 0.8998 0.9600 0.7043
41 0 0.5069 0.6047 0.6175 0.6175
84 0 0.5127 0.6895 0.6821 0.6002
102 0 0.5143 0.6358 0.6735 0.6007
147 0 0.5673 1.1706 1.1258 0.6389
150 0 0.5120 0.9427 1.1559 0.5923
171 3 0.5236 0.6247 0.6110 0.6110
219 3 0.5444 0.7000 0.6821 0.6427
219 9 0.5405 0.7323 0.7478 0.7478
219 10 0.5224 0.6539 0.6698 0.6698

Table 4.1: Table with statistics on the whole cutout 1/η values for the 11 high
confidence sectors values of 1/η > 0.588. “GP Number” refers to the number
assigned to that GP. “Obs.” refers to the observation number of the sector, for
example obs. 0 is the first sector the GP was observed. “Median 1/η” is the median
value of the 1/η values of the 25 pixels in the cutout. “Median + 3σ” is the median
value plus 3σ. “Max 1/η” is the maximum value of 1/η in the cutout for that sector.
“GP 1/η” is the value for 1/η calculated for that GP. Sectors that are boldface have
the GP 1/η greater than the median + 3σ and have the highest value for 1/η in the
cutout.

which shows the median, 3σ value, the GP ratio, and the highest ratio for each of

the 11 high confidence sectors that I was analyzing. I found that 3 sectors had a

GP with a von Neumann ratio at least 3σ above the median value. Those 3 sectors

also had the pixel with the GP as the pixel with the highest von Neumann ratio.

The 3 sectors with the von Neumann ratio above 3σ and the highest von Neumann

ratio in the cutout are in bold face in Table 4.1. These 3 sectors, corresponding to 2

GPs, are the sectors that display the most optical variability in our sample on this

27-day timescale.
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4.1.6 Upper Limit on the Number of AGN in our Sample

Based on the analysis in the previous section, I conclude that 3 sectors, representing

2 GPs, display optical variability on the 27-day timescale investigated for this thesis.

As discussed in Section 1.2.1, the presence of this variability tells us that these GPs

might contain AGN. This is promising; this tentative detection of 2 AGN also implies

that there could be more AGN present in our sample, but that I haven’t detected

them because they vary on timescales longer than 27 days. AGN can vary in the

optical on time scales of days to months. So, it is possible that any AGN present in

our sample vary on time scales longer than 27 days. In fact, MacLeod et al. (2012)

has shown that only about 10% of AGN vary up to 10% on 30-day timescales. So,

this means that we would only find up to 10% of AGN present in our sample on

this short time scale. It also means that any AGN we do find would only display

low (subtle) variability, no more than 10%, on this short time scale.

Thus, we can place upper limits on the amount of AGN we can expect to find in this

sample. If the 2 GPs in our sample that display some optical variability represent

10% of the AGN present in our sample, that means there might be up to 20 AGN

present in our sample, with 90% of the AGN present varying on longer timescales.

Of course, the short time scale is a limitation in this thesis. Since only a small

number of AGN vary on such short time scales, we can only find the 10% of AGN

that vary on such short time scales. Another limitation is that even though we

have data for some GPs for more than 30 days, we cannot compare the GPs across

sectors, as mentioned in Section 3.1.1. So even though trying to find the variability

on longer timescales would be ideal, it is not possible at this time.
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4.2 Other methods of detecting AGN

Based on the analysis in the preceding section, we have reason to believe that there

are 2 GPs in our sample that vary on 27-day time scales and that might, therefore,

contain AGN. The next steps to help confirm the presence of AGN in these GPs

would be to look at other data. While any one of these methods alone can help

identify potential AGN candidates, it is important to note that the lack of detection

using one method does not completely rule out the possibility of an AGN in that

galaxy. Because different AGN can display vastly different properties, it is impor-

tant to instead look at several different methods for AGN detection to confirm the

presence of AGN.

4.2.1 Optical Spectra

One of the most common ways of finding AGN in galaxies is by looking at the spectra

of the galaxies. Since AGN are very strong ionizing sources, they can produce

distinct spectra from star forming galaxies, as discussed in Section 1.2.1. However,

despite the issues surrounding using the spectra to identify AGN in GPs (discussed

in Section 1.4), we can still look at the spectra of these galaxies to try to find

evidence of AGN in them. One emission line that can be used to try to find AGN

is the He II λ4686 line (Bär et al. 2017). Since SDSS has spectroscopy for all of

the GPs, I can check if this line was detected in their spectra. Table 4.2 shows the

spectroscopic data for the 11 high confidence sectors. Table 4.2 shows the flux of the

He II emission line for the GPs and the Signal-to-Noise (S/N) ratio. The S/N ratio

measures the ratio of how much of the flux is actually from the signal we are trying

to measure compared to how much of the flux is coming from noise. A higher S/N

can mean a higher quality measurement and can be used to help determine if the

signal was actually detected. In this case, we can say that GPs with a S/N > 5 can

be considered to have a He II detection. The 2 GPs that show significant variability

are in bold face.



49

He II Emission Line Fluxes
for High Confidence GPs

GP
Number

He II Flux He II S/N

12 1.4906 1.7163
17 -1.4865 -0.7664
41 1.1454 1.5033
84 1.7911 0.8861
102 1.6778 1.404
147 2.8596 1.2562
150 9.4039 3.3892
171 35.249 6.3468
219 26.9697 8.2667

Table 4.2: Table with the He II λ4685 emission line flux and S/N for the 11 high
confidence GPs. “GP Number” refers to the number assigned to that GP. “He II
Flux” is the flux that was detected from that GP at a wavelength of 4685 Å. “He II
S/N” is the S/N ratio for that GP. GPs that are in boldface are the two GPs that
showed significant optical variability. Only 2 GPs listed in this table have a S/N > 5,
which indicates the detection of the He II emission line. One of those, GP# 219,
also showed significant optical variability.

Table 4.2 shows that one of the GPs that has demonstrated optical variability,

GP# 219, has a S/N > 5. Therefore, the He II emission line was detected in this GP.

This means it is likely there might be an AGN in this galaxy. Additionally, we see

that only one other GP in our high confidence group had S/N > 5, GP# 171. Even

though this GP did not have significant variability, the presence of this detection

line means it is possible that it might contain an AGN as well.

4.2.2 Mid-Infrared Light

We can also look at these galaxies in MIR. Harish et al. (2023) searched for AGN

in these galaxies using MIR light from the WISE telescope, as discussed in Section

1.3. They were able to find 31 AGN candidates by looking at the MIR colors and

using color-color plots to select GPs as AGN candidates. They also found 2 AGN

candidates by looking at the MIR variability of these galaxies.
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If we compare the 2 groups of variable GPs in optical and MIR, we find that neither

of the 2 GPs that displayed some optical variability were variable in MIR. In fact,

the 2 GPs that were variable in the MIR were not among the high confidence nor low

confidence optical variability sectors. Thus, the two GPs selected as potential AGN

based on their MIR variability displayed no optical variability on a 27-day timescale,

since they both had 1/η < 0.568. This is an interesting result, and there are two

possible reasons. Since the MIR light is caused by dust, it is possible that any

optical variability in these GPs is obscured by the dust. The dust could completely

absorb the optical light in the line of sight, thus obscuring any optical variability and

reemitting it as MIR variability. Another reason is that the variation is on different

time scales. Harish et al. (2023) looked at the sample of GPs over the course of

more than 5 years, looking for long term variability. I was looking at the GPs over

a period of ∼ 30 days. This very large difference in time scale could be a major

factor as to why different GPs show different variability in the two wavelengths.

In addition to the MIR variability, we can also look at the MIR colors to select for

AGN. Like the MIR variability, none of the 31 MIR color selected AGN candidates

were among the sectors with high confidence of variability nor the low confidence

group. This means that none of the GPs that Harish et al. (2023) indicated as

potential AGN candidates display optical variability. As discussed above, this could

be due to the fact that the MIR light is caused by the torus which can obscure the

optical light. Another reason that these AGN candidates don’t overlap is because

Harish et al. (2023) looked at a smaller sample. In fact, one of the 2 GPs that

displayed some optical variability does have MIR colors that select it as a potential

AGN, even though it was not among the sample of MIR color selected AGN candi-

dates in Harish et al. (2023). This GP is GP# 219. At this time, it is not known

if the other GP that displayed optical variability has MIR colors that select it as a

potential AGN.
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4.2.3 X-Ray Luminosity

Finally, another way we can look at these GPs in more detail to find AGN is to look

at the X-ray luminosities. As described in Section 1.2.1, X-rays are a good way to

try to find AGN. AGN are one of the only sources that can produce the high X-ray

luminosities that are used to identify them. So, I looked for these GPs in data taken

with the Chandra X-ray Observatory. I looked through archival data from Data

Release 2 (DR2). From the full sample of 216 GPs, only 4 GPs were detected with

Chandra. The X-ray luminosities from this data appear to indicate that the X-rays

might be coming from an AGN, not from X-ray binaries. This will be discussed in

more detail in Singha et al. (2023; in preparation). One of these four GPs selected

based on Chandra data is GP# 219, one of the two GPs that I found displays the

highest optical variability in my sample.

The presence of the He II emission line, the MIR color selection, and the detection

at X-ray wavelengths reinforces my conclusion that at least one of the GPs that dis-

played optical variability, GP# 219, contains an AGN. The other GP that displayed

significant optical variability, GP# 41, likely also contains an AGN but will need to

be confirmed.
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CHAPTER 5

Conclusions and Future Work

In this thesis I have investigated the 27-day optical variability of GPs using TESS

with the goal of finding AGN in these galaxies. In Chapter 1, I provided background

on some of our current knowledge and my motivations for the project. In Chapter 2,

I described the observations that these data come from as well as the photometry

and light subtraction process. In Chapter 3, I presented the light curves that were

created. Finally, in Chapter 4, I introduced the 1/η ratio and discussed my process

of analyzing the light curves using this ratio. I then discussed some other methods

that can be used to find AGN and how the GPs that showed the most promise for

variability looked in those data. In the following chapter, I will present my final

conclusions in Section 5.1 and describe potential future work in Section 5.2.

5.1 The Presence of AGN in GPs

In this thesis, I used observations from TESS to look at the light curves of 219 GPs,

using 317 separate observations. After creating and cleaning the light curves, I ana-

lyzed all of the sectors using the inverse von Neumann ratio 1/η, which was shown to

be a fairly reliable index to quantify variability. After an iterative process, I adopted

1/η = 0.588 as the cutoff value for variability with high confidence. I found that a

total of 11 sectors had a high confidence for variability, with 1/η > 0.588. There were

6 additional sectors that exhibited variability above 3σ, with 0.569 > 1/η > 0.588;

I consider these to have a low confidence of variability. Three of the high confidence

sectors showed demonstrable variability. Since those 3 sectors correspond to 2 GPs,

I conclude that those two GPs, GP# 41 (J083350.24+454933.6) and GP# 219

(J173501.25+570308.6), are reasonable candidates for AGN.
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Not only do both these GPs show optical variability, but one of them, GP# 219,

shows considerable evidence for AGN in several different AGN-detection techniques.

The He II emission line is detected in its spectra. It has MIR colors that classify

it as an AGN and it was detected with X-ray luminosities that are likely from an

AGN (Singha et al. 2023, in preparation). Because one of the two GPs with optical

variability has strong evidence for an AGN, I conclude that it is also likely that the

other GP also contains an AGN.

Finally, since I found only two AGN candidates in the sample of 216 GPs, we can

place an upper limit to the number of AGN in this sample. As discussed in Section

4.1.6, since only 10% of AGN show any variability on a 30-day timescale, I conclude

that the upper limit of AGN in this sample is roughly 20 AGN.

5.2 Future Work

In a sample of 216 GPs, I have discovered optical variability in two GPs. One of

these, GP# 219, has signatures of AGN in other tracers, like MIR colors, He II emis-

sion, and X-ray luminosity, and is therefore confirmed as an AGN with reasonably

high confidence. Future work would include searching for these tracers in the second

of these two candidates, GP# 41, to confirm the presence of an AGN in this source.

In particular, it would be interesting to observe GP# 41 at X-ray wavelengths. It

would also be beneficial to observe both the high and low confidence groups in the

X-ray. Another next step would be to look at the optical spectra in more detail,

to try to find other emission lines that could indicate the presence of an AGN for

both the high and low confidence GPs. We could also observe the optical variability

of these galaxies on longer time scales. This could involve either solving the issue

with TESS or using another telescope. If we can observe some of these GPs in the

optical for a longer amount of time, we would be able to check if there are any GPs

in our sample that demonstrate optical variability on a longer time scale. This is

very likely to yield results since 90% of AGN do vary on timescales longer than 30

days in the optical.
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