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Abstract 

Studying team processes is critical to understanding how teams work to achieve team 

outcomes. To effectively study team processes, behavioral activities team members enact 

must be measured with sufficient granularity and intensity. Analyzing the detailed 

mechanics of team processes requires employing analytical methods sensitive to 

modeling the series of actions and interactions of team members as they execute 

taskwork and teamwork over time. Current empirical investigation of team processes lags 

with respect to intricately measuring and assessing team processes over time. Using 

dynamic network models, this dissertation sought to understand the behaviors responsible 

for interaction patterns amongst team members, how those interaction patterns and 

structures relate to team member behavior, and how interactive team processes relate to 

team outcomes. Specifically, this dissertation utilized interaction-level data from the 

National Basketball Association (NBA) and applied three dynamic network models to the 

data: Separable Temporal Exponential Random Graph Modeling (STERGM), Stochastic 

Actor-Oriented Modeling (SAOM), and Relational Event Modeling (REM). The purpose 

of this dissertation is to provide a descriptive foundation for future studies using theories 

of time to study team phenomena and to demonstrate the utility of dynamic network 

models. This dissertation details the theoretical foundations of team processes and 

network analysis, the temporal extensions of traditional network analyses, the utility and 

applicability of dynamic network models (STERGM, SAOM and REM) using NBA data, 

and shows insights these methods provide for studying team processes. Results of this 

dissertation showed reciprocity to be the strongest passing pattern amongst NBA teams, 

followed by transitive passing patterns. Specifically, NBA players in the 2016-2017 
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season frequently formed mutual (between two players) and transitive (between three 

players) passing relations. Player position and scoring behavior were not found to 

influence passing patterns, nor was home versus away status. Forming mutual and 

transitive ties related to team wins based on STERGM analyses but similar passing 

patterns were not found to predict wins with REM analyses, reinforcing methodological 

and analytical differences in these dynamic network methods. This dissertation discusses 

the applicability, utility, and implications of applying these dynamic network models to 

studying team processes and provides practical information about how these methods can 

be used to inform future research and practice on team dynamics. 

Keywords: teams, team process, network analysis, dynamic, process theory 
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Understanding Teamwork Using Dynamic Network Models 

Team processes, or the interdependent actions team members take that convert 

inputs to outputs for the sake of accomplishing tasks and shared goals, are integral for 

studying teams (Mathieu, Hollenbeck, van Knippenberg, & Ilgen, 2017). Team processes 

include coordinating work, communicating with team members, and assessing progress 

towards team goals. Team processes explain how teams complete their work, making 

intervening on team processes critical for increasing the effectiveness of teamwork 

(McGrath, 1987; Braun, Kuljanin, Grand, Kozlowski & Chao, 2022). Organizational 

researchers typically study team processes within Hackman's (1987) Input-Process-

Outcome (I-P-O) model of team effectiveness, which assesses how inputs (factors that 

enable or inhibit team member interactions) produce team outcomes via mediating 

processes. However, many of these examinations confine team processes to aggregate, 

coarse-grained and static mediating mechanisms which fail to capture how processes 

change over time (Ilgen, Hollenbeck, Johnson, & Jundt, 2005). 

Studying team processes is critical to understanding how teams operate to achieve 

effective team outcomes. The study of team processes requires identifying what team 

members do to complete tasks (i.e., taskwork) and how team members collaborate with 

one another (i.e., teamwork) to execute taskwork. Thus, the interaction of taskwork and 

teamwork is what enables teams to convert inputs to outcomes through cognitive, verbal, 

and behavioral activities (Marks, Mathieu, & Zaccaro, 2001). Research to date links 

numerous team processes, such as information sharing (Hinsz, Tindale, & Vollrath, 1997; 

Mesmer-Magnus & DeChurch, 2009), intragroup conflict (De Wit, Greer, & Jehn, 2012), 

trust formation (Costa, Roe, & Taillieu, 2001; Jarvenpaa, Knoll, & Leidner, 1998), and 
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the development of psychological safety (Edmondson, 1999) to team outcomes (e.g., 

team performance, team member satisfaction, team cohesion, team potency; LePine, 

Piccolo, Jackson, Mathieu, & Saul, 2008). Despite the importance of studying team 

processes, the teams literature is limited with respect to evaluating team processes in the 

two central empirical phases of research: measurement and analysis.  

To understand the mechanics of team processes, researchers and practitioners 

should seek to measure behavior with sufficient granularity and intensity of the 

behavioral activities team members enact with respect to taskwork and teamwork within 

performance episodes. A traditional approach to studying team processes involves using 

surveys taken by team members or observations of team member activities to cross-

sectionally measure the perceived effectiveness of aggregate team behavior, such as 

communication, coordination, collaboration, leadership, or interpersonal support. This 

research approach misses two key aspects of team processes. First, this approach misses 

the actual behavioral granularity of taskwork and teamwork that team members execute 

to accomplish team objectives. Second, this approach misses what team members do 

during performance episodes. Instead, measurement should focus on intensively 

recording the behavioral actions and interactions of team members as they work to 

accomplish team objectives. This approach more directly speaks to what leads to the 

emergence of team outcomes, such as team cohesion, satisfaction, and performance. 

To analyze the mechanics of team processes, researchers must employ analytical 

methods sensitive to modeling the stream of actions and interactions enacted by team 

members as they execute taskwork and teamwork during performance episodes. The 

commonly applied analytical approaches employed in psychology to study behavior over 
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time generally capture trends and differences in trends (Dishop, Braun, Kuljanin, & 

DeShon, 2020). However, these methods cannot capture the patterns and sequences of 

team member actions and interactions during performance episodes. Instead, dynamic 

network models offer the possibility of modeling the patterns and sequencing of actions 

and interactions inherent in taskwork and teamwork. Dynamic network models allow for 

an examination of how networks change over time by considering how a network of 

interest can be explained by the interdependencies of individuals in a network (Liefeld & 

Crammer, 2015; Snijders, van de Bunt, & Steglich, 2010). These models consider the 

evolution of behavioral patterns rather than focusing on higher-order phenomena 

(Schecter, Pilny, Leung, Poole, & Contractor, 2017). 

The purpose of this dissertation is to provide a descriptive foundation for future 

studies using theories of time to study team phenomena and to demonstrate the utility of 

dynamic network models. To show how these dynamic network models can be applied to 

studying team processes, this dissertation first describes the study of team processes in 

the literature and limitations of the current stream of research. It then details three key 

dynamic network models (Temporal Exponential Random Graph Modeling, Stochastic 

Actor-Oriented Modeling, and Relational Event Modeling) that can address current 

limitations. Throughout this dissertation, these dynamic network models are used to 

address one overarching question regarding teams: how do team members collaborate to 

actually perform their work? 

Team Processes 

A team is defined as a group of interdependent individuals working to achieve 

shared goals (Humphrey & Aime, 2014). The key feature of this definition that 
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distinguishes teams from groups is interdependence (Humphrey & Aime, 2014). 

Interdependence within teams requires a focus on how team members work together and 

interact with one another to enhance team outcomes over time. These interactions 

constitute a key aspect of team processes (Burke, Stagl, Salas, Pierce, & Kendall, 2006), 

yet current investigations of team processes still rely on factor theories (i.e., focusing on a 

narrow set of factors) rather than process theories (i.e., focusing on actors and their 

actions) for studying team process (Braun et al., 2022). 

Traditional Frameworks for Studying Teams 

Team processes are defined as team members' interdependent actions aimed at 

achieving shared goals that convert team member inputs to relevant team outcomes via 

cognitive, verbal, affective, behavioral, and social activities (Marks et al., 2001). Team 

processes are traditionally studied using Hackman's (1987) model of interaction 

processes, which is based on McGrath's (1964) Input-Process-Output (I-P-O) model. 

Team inputs are antecedents that enable or constrain how team members interact and 

include individual team member characteristics, team-level factors, and organizational 

and contextual factors (Mathieu, Maynard, Rapp, & Gilson 2008; McGrath, 1964). Team 

outcomes are less specified as they are context specific and include both team behaviors 

(e.g., performance) and team member affective variables (Hackman, 1987). Team 

processes, such as collaboration, communication, and learning, result from interactive 

cognitive, affective and behavioral activities by team members and serve to link team 

inputs to team outcomes (Marks et al., 2001). While the I-P-O model is a useful starting 

point for studying team processes, its conceptualization has resulted in a primary focus on 

aggregated causal mechanisms between inputs and outcomes rather than studying the 
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finer-grained components of processes underlying those causal mechanisms (Leenders, 

Contractor, & DeChurch, 2016). 

To advance research on team processes, Marks and colleagues (2001) introduced 

a taxonomy of team processes. This taxonomy highlights the need to incorporate the 

notion of time into models of team processes and highlights how teamwork processes 

(i.e., how teams do their work) enable the necessary taskwork (i.e., what teams do) to 

achieve shared goals (Marks et al., 2001). The taxonomy is a recurring-phase model such 

that there is a sequential, temporal aspect of coordinating inputs, processes, and outcomes 

in which outcomes from one I-P-O episode become the inputs to a subsequent I-P-O 

episode. Thus, the taxonomy defines processes as how teams interact throughout 

multiepisodic goal attainment (Marks et al., 2001).  

This framework posits teams enact a series of processes throughout their lifecycle, 

including transition processes, action processes and interpersonal processes (Marks et al., 

2001). Transition processes are those in which team members focus on evaluation and 

planning activities of team behaviors to monitor progress towards team goals (e.g., 

formulating team strategy, specifying desired goals). Action processes are those in which 

team members are engaged in behaviors that directly contribute to the accomplishment of 

goals (e.g., monitoring progress towards goals, coordinating interdependent actions; 

Marks et al., 2001). Interpersonal processes serve to manage issues that may inhibit goal 

accomplishment in teams (e.g., conflict, motivation, affect; Marks et al., 2001). This 

framework highlights the need to identify critical performance episodes over time to 

understand what and when certain team processes become imperative for goal 
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accomplishment, serving as a call to action for researchers studying team processes to 

consider how inputs lead to outcomes over time. 

The taxonomy of team processes led researchers to reevaluate the utility of 

traditional I-P-O models in characterizing teams. Ilgen and colleagues (2005) point to 

three key limitations in using I-P-O models: (1) the “processes” conceptualized in the I-

P-O model are actually a composite of both process and cognitive or affective states; (2) 

the single-cycle linear nature of the I-P-O model fails to capture potential feedback loops 

in team processes; (3) the I-P-O model suggests a linear trajectory from inputs to outputs, 

failing to account for the interactions between multiple processes, inputs and processes, 

and inputs, processes, and emergent states (or the dynamic properties of teams that 

change as a function of team context, inputs, processes and outcomes; Ilgen et al., 2005). 

To account for these limitations, Ilgen and colleagues (2005) proposed the Input 

Mediator Output Input framework (IMOI), which (1) replaced the original "P" 

(processes) with an "M" (mediators) to encompass a broader range of mechanisms that 

may convert inputs to outcomes, (2) added a second "I" (inputs) at the end of the model 

to represent the cyclical nature of team processes, and (3) removed the hyphen between 

letters to signify non-linear causal linkages across inputs, mediators, and outputs. This 

framework further highlighted the need to examine how and what teams do as they 

perform their work.  

When examining teamwork, it is important to distinguish team processes from 

team emergent states. Team processes consist of team member independent and 

interdependent behavioral, affective, cognitive, and social activities that produce various 

emergent states (Marks et al., 2001). Team processes provide insight into how team 
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members plan their work, the actions they take to complete their work, and how they 

manage interpersonal phenomena that arise within teams (Marks et al., 2001). Emergent 

states are dynamic properties of teams that change based on team context, inputs, 

processes, and outcomes (Mathieu et al., 2017). Examples of emergent states include 

team cohesion (Gully, Devine, & Whitney, 1995), efficacy (Gully, Devine, Incalcaterra, 

Joshi & Beaubien, 2002), and cognition (Grand, Braun, Kuljanin, Kozlowski, & Chao, 

2016; Mathieu et al., 2008). While emergent states focus on the dynamic characteristics 

of a team that change over time, they do not actually describe the actions team members 

take that result in these emergent states. Distinguishing team processes from emergent 

states suggests a need for more nuanced study of the underlying mechanisms of observed 

psychological phenomena.  

Limitations of Current Empirical Investigations of Teamwork 

While the I-P-O and IMOI frameworks facilitate consideration of how to study 

teamwork, empirical research continues to lag with respect to intricately measuring and 

assessing team processes over time. Leenders and colleagues (2016) highlight four key 

limitations to current empirical investigations of teamwork. A first limitation is 

measuring team processes as an aggregated summary index. For example, research finds 

information sharing enhances team outcomes (Mesmer-Magnus & DeChurch, 2009). 

However, the statement of this relationship minimally does not inform (1) how team 

members actually share information (e.g., do team members share information only 

during meetings or intermittently throughout their project work? Do team members share 

information to the same degree?) nor (2) the effective boundaries of information sharing 
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to impact team outcomes (e.g., is information sharing endlessly positive for team 

outcomes?). 

 A second limitation of current empirical investigations of teamwork is assuming 

homogeneity of interactions between all team members (Leenders et al., 2016). 

Interactions are typically aggregated across the team and assume local interactions (e.g., 

dyadic) are equivalent to global interactions (e.g., team; Leenders et al., 2016). 

Aggregating interactions loses critical information, such as identifying how each team 

member contributes to ongoing teamwork. Together, aggregating team processes and 

interactions does not provide a detailed examination of teamwork. Instead, data collection 

focused on granular activities and interactions offers such an examination. 

A third limitation of current empirical investigations of teamwork is relying on 

underdeveloped theories of teamwork with respect to time scales (Leenders et al., 2016; 

Mitchell & James, 2001). Teams may change how they enact their team processes over 

numerous performance episodes. Empirical studies measuring teamwork only for a few, 

poorly specified performance episodes more than likely miss important insights into how 

team members may alter how they perform their work. This requires measuring what 

team members do over several performance episodes, or, at the very least, identifying 

what performance episodes to measure to sufficiently capture team process dynamics.   

 A fourth limitation of current empirical investigations of teamwork is assuming 

repeated measurements capture team processes more granularly. Repeated measurements 

of aggregated team processes and interactions may provide some insights into aggregated 

contemporaneous and lagged effects, but it still does not provide granular information on 

how team members accomplish their work. Gathering several measurements of 
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aggregated team information sharing does not detail how team members share 

information with one another. This points to a need for data collection focused on 

measuring what happens within performance episodes and not just measuring 

aggregations of team processes and interactions over several performance episodes. 

Overcoming Limitations: A Focus on Emergence 

Emergence of team states occurs as a process by which individual characteristics 

at a lower level create higher-level properties of a team through individual characteristics 

and dynamic decisions, thoughts, feelings, actions, and interactions (Kozlowski, Chao, 

Grand, Braun, & Kuljanin, 2013). Emergent phenomena are multilevel, process-oriented, 

and take time to manifest at a higher level (Kozlowski et al., 2013; Kozlowski & Klein, 

2000). Due to the multilevel, process-oriented nature of taskwork and teamwork, 

researchers and practitioners benefit from considering emergence when studying teams. 

Indeed, past research has generally studied team phenomena in a static, aggregated form. 

Researchers typically use factor theories when studying teams, which assess a narrow set 

of factors to test specific hypotheses (Braun et al., 2022). Factor theories tend to overlook 

broader organizational context as they seek to explain covariance relationships amongst a 

set of factors. Specifically, they assess how changes in one variable correlate with 

changes in another variable, which does not consider the underlying processes that 

contribute to the observed relationship over time (Braun et al., 2022). As a result, this 

limits team process interventions to broad, simplistic advice such as an increase in 

information sharing improves team outcomes. Alternatively, focusing on the emergence 

of team phenomena (e.g., team performance) provides an opportunity for team process 
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interventions focused on what team members can more specifically do and how they 

should do it to improve team outcomes (see Grand et al., 2016).   

 Ideally, to capture an emergence process, researchers would assess teams at 

preformation, study a team's context, and examine the team long enough to observe the 

dynamic nature of a phenomenon of interest (Kozlowski et al., 2013). The goal would be 

to capture both team processes (i.e., what teams are doing and how they are doing it) and 

team structures (i.e., who does what) that enable or constrain those processes (Kozlowski 

et al., 2013). While organizational systems theorists have noted the need to study both 

process and context collectively (Kozlowski et al., 2016), this approach in teams research 

is often neglected. To do this well requires intensive, longitudinal examinations that 

capture granular team interactions (Kozlowski et al., 2013).  

 When studying team phenomena, empirical researchers have typically taken an 

attribute-based approach in which they examine the influence of aggregated team 

member attributes on aggregated team processes and outcomes (Bell, Villado, Lukasik, 

Belau, & Briggs, 2011; Borgatti & Ofem, 2010). However, this lens alone does not 

sufficiently capture intrateam relational dynamics between team members, such as how 

team members sharing a similar attribute might differentially interact with one another 

relative to the team, and how this impacts team outcomes over time. To understand 

intrateam relational dynamics, teams researchers can use a network analysis approach to 

study how team members collectively accomplish team tasks by adopting an 

interactionist perspective (Brass, 2011). This perspective incorporates the intersection of 

individual attributes and their context in creating a network structure for a team (Brass, 

2011), which researchers consider as a key pillar of studying emergence in teams 



DYNAMIC NETWORK MODELS  13 

 

(Kozlowski et al., 2016). While most research on team networks has been conducted on 

static networks (i.e., using a single time point), there are methods for studying relational 

networks over time that better unveil team processes (Leenders et al., 2016). 

A Network Approach to Studying Team Processes 

 Network analyses study relations among actors to examine underlying social 

structures that inhibit or foster team interactions (Lusher, Robins, & Kremer, 2010). 

While traditional network analyses begin to capture complex interrelations within teams, 

they remain limited due to their static nature. Alternatively, researchers can use dynamic 

network models which treat time as integral in modeling team phenomena. These 

approaches move researchers closer to analyzing finer-grained team data to better test 

theories of teams and advance teams research beyond static examinations. 

Social Network Analysis 

 Social science research traditionally adopts an attribute-based approach in which 

individuals are the primary focus. An alternative approach is to study networks in which 

the primary focus is on the relationships between actors and how the intersection of 

relationships enables or constrains behavior within the context of their environment 

(Borgatti & Ofem, 2010). There are two key realms of inquiry for studying networks: 

theory of networks and network theory. A theory of networks approach focuses on 

examining the antecedents of network variables (i.e., studying network evolution 

whereby network processes result in network structures). A network theory approach 

focuses on examining the consequences of network variables (i.e., how a system comes 

together determines the behavior and outcomes of a system; Borgatti & Halgin, 2011; 
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Borgatti & Ofem, 2010). Naturally, studying networks through both theoretical lenses 

better provides a complete picture of network phenomena (Borgatti & Halgin, 2011). 

 The basic analytical approach for networks composed of individuals is known as 

social network analysis (SNA) in which the relationships among actors and social entities 

are analyzed to examine the social structures that these relations produce (Lusher et al., 

2010). Viewing organizations as networks conceptualizes network structures as patterns 

of member relationships (Warner, Bowers, & Dixon, 2012). This perspective also views a 

network’s environment as either constraining or enabling individual behavior (Warner et 

al., 2012). Figure 1 shows the basic network terminology used in network analysis. The 

network itself consists of a set of actors, or nodes, which can be individuals, teams, 

organizations, or any entity that is linked to another entity (Borgatti & Ofem, 2010). 

Additionally, the network includes edges (ties), or the set of relations between entities in 

the network (Borgatti & Ofem, 2010). An edge connecting two actors is called a dyad 

and represents a relationship or some other type of connection between two actors. SNA 

facilitates an understanding of who comprises a network (i.e., who are the actors), what 

actors are connected, network sub-structures (e.g., reciprocity – reciprocating a 

connection; triads – a grouping of three actors; clusters – groups of actors within a 

network; cores – a central group of actors within a network), and the boundary conditions 

of a network (Lusher et al., 2010). SNA may account for the structural nature of teams 

while also considering attributes of team members, making it a viable method for 

exploring complex relations within teams (Lusher et al., 2010). It complements 

traditional multilevel psychological research by focusing on relations beyond individual 
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and aggregated team attributes to examine multilevel interdependencies of individuals 

within teams. 

Figure 1 

Basic Network Terminology 

 

Figure 1. Example network which includes actors (i.e., individuals), edges (i.e., the linkages between two 
actors), and dyads (i.e., a pairing of two actors).  
 

 

 A traditional SNA approach, however, is limited to a static examination of a 

single network snapshot. While network scholars agree structural relations within 

networks continually change amongst social entities (Knoke & Yang, 2008), a traditional 

SNA approach does little to capture these processes in action. The inability of SNA to 

capture the sequences of network changes or actions by actors limits the ability of 

researchers to understand ongoing processes and identify areas of intervention for process 

improvement (Ployhart & Vandenberg, 2010). Although SNA enables an examination of 

complex relations between individuals rather than simply aggregating individual relations 

to represent the whole team, capturing team processes requires the collection of 

longitudinal data to assess how patterns of relations form and change over time. 
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Dynamic Network Models 

 Researchers have utilized different analytical approaches to model networks 

observed over multiple time periods. One approach uses multilevel regression (Lubbers, 

Molina, Lerner, Brandes, Ávila, & McCarty, 2010). While traditional regression analysis 

on network data violates assumptions of observational independence based on the 

relational dependence within networks (Snijders, 1996), nesting network observations 

controls for this violation (Lubbers et al., 2010). Specifically, the relationships of actors 

in a network are nested within the actors themselves which allows researchers to 

decompose the variance of the criterion variable at different levels (Lubbers et al., 2010). 

However, there are additional network analysis methods designed specifically to handle 

violations of independent observations and capture the dynamic nature of networks over 

time. 

 The methods designed to capture longitudinal network data will be referred to as 

dynamic network models. Three primary dynamic network models are used in this 

dissertation: Separable Temporal Exponential Random Graph Modeling (STERGM; 

Morris, Krivitsky, Handcock, Butts, Hunter, Goodreau, & Bender-deMoll, 2019), 

Stochastic Actor-Oriented Modeling (SAOM; Snijders, 1996; Snijders, Van de Bunt, & 

Steglich, 2010; Snijders, 2016), and Relational Event Modeling (REM; Leenders et al., 

2016; Schector & Contractor, 2017). These three models extend static network analyses 

by requiring specification of time-based network dependencies, facilitating the study of 

team processes.   

Figure 2 shows a tree diagram summarizing the theoretical origin for each model 

used in this dissertation. The original random graph models are the Erdös-Rényi-Gilbert 
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random graph models, which sparked the field of random graph theory (Erdös & Rényi, 

1959; Gilbert, 1959; Goldenberg, Zheng, Fienberg, & Airoldi, 2010). Erdös & Rényi 

(1959) posited a one-parameter model in which all graphs on a fixed set of actors with a 

fixed number of edges are equally likely to occur and assessed the properties of the 

model as the number of edges increases. Gilbert (1959) posited a two-parameter model in 

which all edges have a fixed probability of being present or absent, independently of 

other edges (Goldenberg et al., 2010). Although initial descriptions are defined in static 

terms, both models provide a path towards examining dynamic network patterns. Holland 

& Leinhardt (1981) extended the Erdös-Rényi-Gilbert random graph models to an 

expanded p1 model which includes differential attraction for actors (i.e., measuring 

popularity) and reciprocity of interactions. The p1 model takes a log-linear form, 

enabling efficient computation of maximum likelihood estimates (MLE) and allowing for 

various generalizations to multidimensional network structures (Goldenberg et al., 2010). 

ERGM, originated by Frank and Strauss (1986) soon followed p1 models, which 

distinguishes between random and predictable patterns present in a network. ERGM uses 

a single time point to assess the inclusion of network features within a regression-like 

framework (Fritz, Lebacher, & Kauermann, 2019).  

To move beyond static examinations, Markov-chain based models were 

introduced. A Markov-chain model is a stochastic model that describes the sequence of 

possible events in which the probability of an event depends on the state attained in the 

previous event (Frank & Strauss, 1986). To utilize discrete longitudinal data, STERGM 

and SAOM were introduced. STERGM is a temporal extension of ERGM that separately 

models relation formation and dissolution (Krivitsky & Handcock, 2014). STERGM   
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Figure 2 

Theoretical Origin of Dynamic Network Models  

  

Figure 2. Adapted from Fritz et al., (2019). Tree diagram of theoretical origin for dynamic network models 
used in this paper. ERGM = Exponential Random Graph Model; STERGM = Separable Temporal 
Exponential Random Graph Model; SAOM = Stochastic Actor-Oriented Model; REM = Relational Event 
Model. 
 

distinguishes between random and predictable patterns present in a network based on all 

observed networks up to a given time point. SAOM asserts that change stems from 

individual decisions, making SAOM an actor-oriented model that assesses the propensity 

for actors to alter relations based on their surrounding network structure from an 

individual perspective (Block, Koskinen, Hollway, Steglich, & Stadtfeld, 2018). To 

utilize longitudinal continuous data, REM was introduced. REM assesses individually 

time-stamped interactions between any two entities, making it the most fine-grained 
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examination of interaction processes (Schecter et al., 2018). Each network analysis 

method provides a unique examination of how group phenomena occur. 

 Before discussing the dynamic network models used in this dissertation in detail, 

Figure 3 presents a conceptual map to highlight terminology used in these models and 

illustrate differences and similarities between these models. The figure includes the 

following concepts: 

(A) sending actors, representing senders of an action, 

(B) receiving actors, representing recipients of an action, 

(C) actor attributes, representing individual attributes such as gender, personality, job 

role, etc., 

(D) network structure, representing connections between actors, 

(E) external factors, representing changes in the network environment,  

(F) time, representing a network observed over multiple time periods, and 

(G)  event history, representing a sequence of actions. 

Figure 3 shows the exchange pattern of a single team. Team members take one of two 

values on an individual characteristic attribute, represented by triangular or circular 

shapes. The actors are presented with a time-bound deadline for their work, representing 

an external factor that serves to impact how actors interact. At Time 1, Actor 1 and Actor 

7 decide to send outgoing edges to Actor 3 and Actor 10, respectively; Actor 8 decides to 

maintain its edge with Actor 6; Actor 4 decides to dissolve its edge with Actor 2. Time 2 

presents actors with similar decisions. To represent the formation of an event history, 

Actor 4 chooses one of a set of options between Time 1 and Time 2. In particular, Actor 4 

has three options: (1) to create a new edge to another actor, denoted by a solid black line; 
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(2) to maintain its edge to Actor 2, denoted by a solid gray line; (3) or to dissolve its edge 

to Actor 2, denoted by a dashed black line. Time 2 shows Actor 4’s decision to send a 

new edge to Actor 3. The concepts presented in Figure 3 serve as a foundation for 

describing and comparing these models to each other.  

Exponential Random Graph Models 

To better understand dynamic network models, one must first understand the 

static network analytic method that serves as a basis for STERGM. Exponential Random 

Graph Models (ERGM) predict the occurrence of network relations, or connections 

between individuals (Lusher et al., 2014). ERGM enables analysts to simultaneously 

model individual variables (e.g., actor attributes) and network structure variables (e.g., 

reciprocal relations between two individuals; Lusher et al., 2014). These models are 

designed to distinguish between predictable versus random patterns present in a network 

(Chrobot-Mason, Gerbasi, & Cullen-Lester, 2016; Lusher et al., 2014). As ERGM 

enables hypothesis testing of various explanations for the occurrence of structural 

network patterns, it is used for examining interdependent psychological phenomena 

(Lusher et al., 2014).  

ERGM Theoretical Foundation. Relational data are inherently interdependent 

as a relation that occurs between two individuals relies on both entities. Traditional 

psychological research methods assume independence of observations, thus resulting in 

disconnection between theory and research method for relational data (Lusher et al., 

2014). ERGM was originally introduced by Frank and Strauss (1986) to address the 

inherent dependence of relational phenomena. ERGM treats each network connection as 

a random variable, modeling network edges explicitly to assess the collection of local  
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Figure 3 

Conceptual Map for Dynamic Network Models 

 
 Figure 3. Figure 3 represents the communication between two teams over three time points and includes seven key concepts for dynamic network 

models (sending actors, receiving actors, actor attributes, network structure, external factors, time, and event history). 
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relational patterns to form global network structures (Lusher et al., 2014). ERGM 

addresses the disconnection between theory and method by assessing complex, 

interdependent social structures through an explicit assumption of interdependent 

observations (Lusher et al., 2010).  

The methodological core of ERGM is an edge embedded within social structures, 

making the edge level its unit of analysis (Block et al., 2018). The social structures that 

dictate edge formation can be both endogenous network processes and processes related 

to actor attributes (Lusher et al., 2014). Endogenous network processes are purely 

structural network effects that suggest how ties form is due to the presence or absence of 

other ties. Ties may also form due to actor attributes, underscoring the cross-section of 

relations and individual attributes (Lusher et al., 2014). Focusing purely on structure or 

attributes is likely insufficient in explaining phenomena of interest, making ERGM 

suitable for examining the intersection of network structure and individual attributes in 

studying psychological phenomena. 

ERGM specification assesses higher-order social phenomena by including both 

social structures and individual attributes to examine network properties. By assessing the 

structural properties that underly network configurations, ERGM works as a pattern-

recognition device to predict why social relations occur, thus, assessing the consequences 

of dynamic processes (Lusher et al., 2014). Moreover, ERGM allows for modeling tie 

variables as both a criterion and a predictor, enabling assessment of feedback loops 

between network phenomena that are critical in modeling complex interdependencies 

among network tie variables (Lusher et al., 2010). ERGM requires researchers to 

consider the multiple, intersecting explanations for phenomena of interest, enabling a 
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broader range of theoretical consideration for constructs, making ERGM a viable method 

for assessing the social mechanisms responsible for relations within a network (Lusher et 

al., 2014). 

 ERGM Mathematical Foundation. The primary goal of ERGM is to model the 

probability of an edge forming between two actors in a network as a function of network 

effects and actor attributes. Table 1 shows example network effects that can be modeled 

using ERGM, organized by whether the effects are structural or actor-related (derived 

from Lusher et al., 2014). More specifically, structural effects suggest social processes 

contribute to edge formation whereas actor-related effects suggest actor attributes 

contribute to edge formation. For example, ERGM can model the likelihood of an edge 

forming (a) generally in a given network (arc), (b) if an actor will reciprocate an edge 

(mutual), (c) based on an actor’s popularity (popularity spread), (d) based on an attribute 

of a sender, (e) based on an attribute of a recipient, or (e) based on a shared attribute 

between two actors (homophily; Lusher et al, 2014). 

Table 1 

Sample Network Effects Modeled in ERGM 

Effect 
Type Parameter Visual Explanation 

Structural Arc (outgoing 
edge) 

 
 

Actor sending information 
determines edge formation 

 
Mutual 
(reciprocity) 

 
 

Reciprocity of actors determines 
edge formation  

 Popularity spread 
 Popularity of an actor 

determines edge formation  
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Actor-
Related 

Sender 
 
 

Sender attribute determines 
outgoing edge 

 Recipient 
 
 

Recipient attribute determines 
incoming edge 

 Homophily 
 
 

Shared sender and recipient 
attribute determine outgoing 
edge 

Note. Adapted from Lusher at al. (2014). 
 

Using the foundational conceptual map for dynamic network models, Figure 4 

describes the key terms modeled in ERGM. ERGM examines static networks and does 

not include (F) time or (G) event history. For simplicity of this foundational example, 

Figure 4 does not include (C) actor attributes or (E) external factors. This conceptual 

foundation includes (A) a sending actor, (B) a receiving actor, and (D) an action taken by 

the actors that produce the network structure, with solid lines representing existing edges 

in the network. 

Figure 4 

Conceptual Foundation for ERGM 

 

 
 
 
Figure 4. Figure 4 presents a conceptual foundation for ERGM, including a sending actor (A), a receiving 
actor (B) and network structure (D), indicated by a solid line. 
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General ERGMs take the following form 

!(#	 = 	&) = 	 !"#{%!&((,")}
∑ !"#{%!&((-,")}	#$∈#

      (1) 

 

where y ∈ y represents a random graph, X is a vector of attributes, ). represents the 

transpose (t) of the vector of model parameters ()), and g(y, x) represents a function 

which returns a vector of sufficient statistics. The numerator represents any network y as 

a function of statistics provided by g(y, x) in the network y on parameters provided by )., 

and the denominator sums all ).*(+, &) over all permutated network configurations with 

the same number of actors to assess the probability of any network y occurring based on 

these parameters (Leifeld, Cranmer, & Desmarais, 2018; Robins, Snijders, Wang, 

Handcock, & Pattison, 2007). Maximum Likelihood Estimation (MLE) uses observed 

data to estimate ERGM model coefficients. Once the model is estimated, then networks 

can be simulated to represent the probability distribution of networks of the same size. 

Figure 5 shows an example observed network and six simulated networks. The simulated 

networks may be compared to the observed network to assess how well the proposed 

model fits the data. 

The ERGM model equation can be reformulated to calculate the conditional log-

odds of a single tie between two actors. This reformulation results in the following 

expression: 

!"#$%('(()!" = 1	|	)#)) = 	/′∆	(#(2))!"    (2) 

where Yij represents a random variable indicating a possible tie between a pair of actors 

(i, j); YC represents the network of ties excluding actors i and j; ) represents model  
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Figure 5 

Example of ERGM Simulated Networks 

 

 

parameter values estimated using MLE; and ∆	(*(+))/0 represents the change in g(y) 

when the relationship between i and j is toggled on or off. 

For simplicity, suppose a researcher wishes to assess how edge formation and 

potential triangles in a network (shared connections between three actors) impact the 

probability of the observed network. Figure 6 shows an example of how adding a single 

tie impacts the number of triangles in a network, with dashed red lines representing the 

addition of a single edge and solid red lines denoting the triangles formed as a result. To 

model this phenomenon, Equation 2 takes the following form: 

!"#$%('(()!" = 1	|	)#)) = 	/$ ∗ 	∆	45#46	 +	/% ∗ ∆	%($89#!46 

Figure 5. ERGM simulates a series of networks to approximate an observed network.   
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where !"#$%('(()!" = 1	|	)#)) represents the natural logarithm of the odds ratio of the 

probability of an edge existing versus the probability of an edge not existing; )1 

represents the parameter coefficient for edge formation; ∆	./*.0 represents the change in 

total number of edges in the network when a single edge is added to the network (this 

value is always one as an addition of any edge to a network increases the total number of 

edges by one); )2 represents the parameter coefficient for triangle formation; and 

∆	12345*6.0 represents the change in total number of triangles in the network when a 

single edge is added to the network.  

Figure 6 

Edge and Triangle Formation using ERGM  

 

Figure 6. Mathematical visual of the impact that adding a single edge to a network has on triangle 
formation.  
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 As an example of ERGM, a network can be simulated in R using the statnet 

package to (Handcock, Hunter, Butts, Goodreau, Krivitsky & Morris, 2018). After 

running a simple ERGM specifying the edges and triangle term, )1 (edge formation) is 

equal to 1.78 and )2 (triangle formation) is equal to -0.64. To show how the observed 

network probabilities change when assessing how additional edges impact the number of 

triangles in a network, the following equation is used, with mathematical results shown in 

Table 2: 

!"#$%('(()!" = 1	|	)#)) 	= 		4:;(1.78 ∗ 	∆	45#46	 +	−0.64	 ∗ ∆	%($89#!46) 

 Table 2 

Example of ERGM Triangle Formation Mathematics 

Triangles 
Formed Equation Logit Probability 

0 !"#$%('(()!" = 1	|	)#)) = 	1.78 ∗ 1	 +	−0.64 ∗ 0 1.78 0.86 
1 !"#$%('(()!" = 1	|	)#)) = 	1.78 ∗ 1	 +	−0.64 ∗ 1 1.14 0.76 
2 !"#$%('(()!" = 1	|	)#)) = 	1.78 ∗ 1	 +	−0.64 ∗ 2 0.50 0.62 
3 !"#$%('(()!" = 1	|	)#)) = 	1.78 ∗ 1	 +	−0.64 ∗ 3 -0.14 0.47 

 

Thus, the probabilities that the addition of a single edge in network Y will add zero, 

one, two or three triangles to the observed network are 0.86, 0.76, 0.62, and 0.47, 

respectively. A researcher could then statistically conclude that if an edge does not make 

a triangle in network Y, then its probability is 86%; if an edge adds one triangle to 

network Y, then its probability is 76%; if an edge adds two triangles to network Y, then 

its probability is 62%; if an edge adds three triangles to network Y, then its probability is 

47%. This suggests that for the observed network, adding a single edge to the network is 

not likely to create more than two triadic relations.  

 Researchers and practitioners may use ERGM to begin to postulate about what 

social processes result in connections in a team. A negative effect for the change in the 
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number of triangles suggests actors in a team connect with one another without forming 

triangular exchange patterns. Yet, with one observation of a team’s network, ERGM 

cannot speak to how connections between actors in a team may change as actors 

collaborate with each other to perform their work. Observing team networks over time 

offers additional insights into how teams operate. To take advantage of observing 

networks over time requires dynamic network models. 

Separable Temporal Exponential Random Graph Models 

A useful extension of traditional ERGM that addresses the static limitations of 

ERGM is Separable Temporal Exponential Random Graph Modeling (STERGM). Rather 

than aggregating data collected over time to obtain a snapshot of a network, STERGM 

considers changes actors experience between time points that result in various network 

patterns (Leifeld & Cranmer, 2015). The goal of STERGM is to capture the dynamic 

properties of network evolution by specifying the ways in which edge formation and 

dissolution occur separately (Hanneke, Fu, & Xing, 2016; Morris et al., 2019). This 

approach facilitates the study of individual and structural processes that form networks 

over time (Liefeld & Cranmer, 2015).  

STERGM Theoretical Foundation. While ERGMs provide a general framework 

for modeling a static network descriptively, they are unable to assess the evolution of a 

network over time (Guo, Hanneke, Fu, & Xing, 2007). To address this limitation 

Temporal Exponential Random Graph Modeling (TERGM) was introduced. The 

foundation of TERGM is built on panel regression such that, using a sequence of 

observations, prior network observations are used as predictors of subsequent network 

phenomena (Robins & Pattison, 2001; Block et al., 2018). TERGM models the temporal 
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evolution of a network by modeling a given network based on all previously observed 

networks to capture dynamic properties that govern network change over time (Guo et 

al., 2007). Using TERGM, researchers can assess the network patterns that explain 

relationship formation over time (i.e., formation) and the network patters that explain 

relationship maintenance over time (i.e., persistence/dissolution; Krivitsky & Handcock, 

2014).  

 Using TERGM as a foundation, STERGM provides a temporal extension to 

ERGM with the ability to separate parameters for relation formation and dissolution. 

STERGM combines two intermediate processes: the formation and dissolution of local 

network structures (Zhou et al., 2020). As with ERGM, the methodological core of 

STERGM is an edge embedded within a social structure, making the unit of analysis at 

the edge level (Block et al., 2018). STERGM assumes edge formation and edge 

dissolution are “separable” over time in the sense that edge formation is independent of 

edge dissolution within time points (Morris et al., 2019). The social mechanisms that 

contribute to relation formation are presumably different than the social mechanisms that 

contribute to relation termination. For example, friendship relations may form due to 

similarity in age, but relations may dissolve over time due to differences in hobbies and 

values (Krivitsky & Handcock, 2014). This differential specification of mechanisms that 

produce and terminate relations allows for the study of edge prevalence, incidence, and 

duration simultaneously, providing a basis for examining network dynamics (Krivitsky & 

Handcock, 2014).  

 STERGM jointly models the formation and dissolution of edges. It is assumed 

that edge formation and dissolution are conditionally independent within timesteps but 



DYNAMIC NETWORK MODELS  31 
 

are modeled dependently over time (Krivitsky & Handcock, 2014). STERGM models the 

phenomenon of actors entering and leaving a network by conducting separate TERGMs 

for formation and dissolution. In modeling network structures, the primary utility of 

STERGM is to show that structures exist more than expected by chance, controlling for 

the past where the past carries some dependencies (Block et al., 2018). STERGM can be 

used to explain the structure of an observed network, especially when previous network 

states are considered (Block et al., 2018).  

STERGM Mathematical Foundation. Using the foundational conceptual map 

for dynamic network models, Figure 7 describes the key terms modeled in STERGM. As 

STERGM allows for examining networks over time, it includes (F) time. (C) represents 

individual characteristic attributes, represented by triangular or circular shapes. (A) and 

(B) denote example sending and receiving actors, respectively. For simplicity, the (D) 

network structure focuses on the formation and removal of edges in which (1) a solid 

black line represents existing edges, (2) a solid red line represents edges formed and (3) a 

dashed red line represents edges removed. Figure 7 models the propensity for edges to 

occur based on attribute homophily (sharing the same value on an attribute) and time. 

In addition to modeling all ERGM terms, STERGM includes temporally dependent 

terms.  

Table 3 provides examples of temporally sensitive STERGM terms (Leifeld et al., 

2018). Positive autoregression models the likelihood that edges will persist between time 

periods. Dyadic stability models the likelihood of present (non-present) edges at one time 

to remain present (not present) at a subsequent time. Edge innovation and loss model the  
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Figure 7 

Conceptual Foundation for STERGM 

 

 
 
tendency for new edges to form (innovation) or old edges to dissolve (loss). A time 

covariate checks which type of time trends, if any, exist in the network (e.g., linear or 

quadratic trends). A time by covariate interaction term models the interaction between a 

time trend and a given model covariate (e.g., an actor attribute).  

Table 3 

Sample of Temporally Dependent STERGM Terms 

Model Term Description General Example 
Positive 
autoregression 
(lagged outcome 
network) 

Models the persistence of edges 
between time periods 

How many edges persist 
between time periods? 

Figure 7. This figure represents a simple example of STERGM, including sending actors, receiving 
actors, an actor attribute, and the network structure/actions of forming and removing edges over time.  
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Dyadic Stability Models the likelihood of present 
(non-present) edges at one time to 
remain present (non-present) at a 
subsequent time; like positive 
autoregression except this model 
term includes persistence of non-
existing relationships 

How stable are the 
connections in this 
network over time? 

Edge innovation 
and loss 

Models the tendency for new edges 
to form (innovation) or old edges to 
dissolve (loss) between time periods 

How likely is it for new 
relations to form or for 
old relations to dissolve? 

Time Covariate Checks the type of time trend in the 
network, if one exists (e.g., linear, 
quadratic, geometric decay) 

Is there a time trend for 
the number of edges that 
form over time? 

Time by 
Covariate 
Interaction 

Models the interaction between a 
linear time effect and a given model 
covariate 

Does an effect of an actor 
attribute on edge 
formation change over 
time? 

 

To show these effects, STERGMs take the following form for its formation and 

dissolution networks, respectively: 

!2 (7.; 	)3) 	= .&9{)3*3(+3, #)}
∑ .&9{)3*3(+3, #)}	
(-∈(

																						 																				(3) 
     

!2 (7.; 	)6) 	= .&9{)6*6(+6, #)}
∑ .&9{)6*6(+6, #)}	
(-∈(

																																												(4) 
 

where y ∈ y represents a random graph, X is a vector of attributes, )3(6) represents the 

model parameters ()) for the formation (+) model (dissolution (-) model), and g+(-)(y+(-), 

X) represents a function which returns a vector of sufficient statistics. The denominator 

represents a summation over the space of possible networks, y, on n nodes. Coefficients 

are modeled using MLE, identical to ERGM processes. This equation multiplies 

individual network probabilities to create a probability of the list of consecutive  
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networks, allowing, but not requiring, each individual network probability to depend on 

the previous network observations (Czarna, Leifel, Śmieja, Dunfer, & Salovey, 2016). 

 For simplicity, suppose we are interested in modeling the behavioral patterns of 

relationship mutuality and transitivity (the clustering of three actors) over three time 

points for a hypothetical friendship network. To show an example, we can use a sample 

data set presented by Morris et al. (2019). The parameters to be specified are an edges 

parameter (edges), a reciprocity parameter (mutual), and a transitivity parameter 

(transitivity). Like ERGM, STERGM uses MLE to estimate model parameters. A 

STERGM specifying these parameters results in model output for both the formation 

model and the dissolution model (Handcock et al., 2018). Parameters for the two models 

are shown in Table 4. For the formation model, indicated by the terms “Form~model 

term,” the mutual parameter emerges as a significant indicator of edge formation. For the 

dissolution model, indicated by the terms “Persist~model term,” the transitivity parameter 

emerges as a significant indicator of edge dissolution.  

Table 4 

STERGM Example Model Parameters 

Model term ) 

Form~Edges -3.50* 

Form~Mutual Ties 2.00* 

Form~Transitive Ties 0.29 

Persist~Edges 0.20 

Persist~Mutual Ties 0.70 

Persist~Transitive Ties 0.41* 

Note. * = significant at p <.10 
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Probabilities for the formation and dissolution models are shown in Table 5. 

Given mutual ties emerged as a significant indicator of edge formation and transitivity 

emerged as a significant indicator of edge dissolution, the focus will be on these two 

parameters. Edge dissolution can be thought of as edge persistence such that model 

coefficients demonstrate the probability that a given parameter has edges persisting 

between time periods (Morris et al., 2019). Results indicate that all else being equal, there 

is an 88% chance a relationship will form if it closes a mutual pair (a reciprocal 

relationship) based on the model log odds of 2.00, and there is a 60% chance a 

relationship will persist if it closes a triadic relationship based on the model log odds of 

0.41 (Morris et al., 2019). Essentially, for the hypothetical network observed, friendships 

tend to form when the friendship is mutual (i.e., both individuals want to form a 

relationship), but for relationships to be maintained, it is helpful to have a mutual friend 

(creating a friendship triad).  

Table 5 

Example STERGM Corresponding Probabilities  

Model Parameter Log Odds Probability 

Formation Model Mutual Ties 2.00 0.88 

Persistence Model Transitive Ties 0.41 0.60 

 
STERGM facilitates the study of dynamic network phenomena. With respect to 

teamwork, researchers and practitioners may use STERGM to study the dynamics of 

team interactions. STERGM may represent how team member attributes affect team 

interactions and how team interactions form and persist over time. Separately considering 
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the formation and dissolution of relations provides clearer insight into team functioning 

by allowing an examination of differential behaviors responsible for team interactions.  

Stochastic Actor-Oriented Models 

Stochastic Actor-Oriented Models (SAOM) represent network evolution using an 

actor-based simulation consisting of mini-steps (Ripley, Snijders, Boda, Vörös, & 

Preciado, 2021). Whereas STERGM utilizes simulation to identify the likelihood of given 

events occurring based on the observed network, SAOM models the evolution of a 

network that occurs between observed time points (Leifeld & Cranmer, 2015). SAOM is 

primarily used to model the statistical influences that determine the creation or 

termination of edges in a network based on individual behaviors (Snijders, 2016). The 

actor-orientation of this modeling framework implies all changes in relational edges are 

determined by actors within the network (Snijders, 2016).  

SAOM Theoretical Foundation. SAOM is based on the notion that change 

stems from individual actors, making SAOM an actor-oriented model rather than an 

edge-oriented model, like STERGM (Block et al., 2018). Specifically, SAOM models the 

propensity for actors to form or maintain relations based on their surrounding network 

structures from an individual actor’s perspective. Thus, SAOM is a micro-level analysis 

that allows for modeling change from an actor’s point of view (Block et al., 2018). 

At its core, SAOM focuses on the social structures and relations that are selected 

from the perspective of a given actor, making the unit of analysis at the individual level 

(Block et al., 2018). This positions SAOM as unique to other dynamic network models as 

it assumes every actor has agency to make individual choices that impact the rest of the 

network. SAOM implies that an actor’s decision to create an edge is concurrently a 
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decision against doing something else, like removing another edge, at a given time. The 

decisions actors make can also be expressed as the evaluation of edges in reference to 

how they are embedded within an actor’s local network. This brings model specification 

closer to psychological theory as edges within the same network can be guided by 

different model parameters (Block et al., 2018). 

SAOM analyzes change and network evolution. This positions SAOM to explore 

the bottom-up process of individual behavior driving network structures. SAOM is 

valuable in answering questions about the evolution or change in a network between two 

time points given that SAOM directly models a process that allows for direct inference of 

underlying social mechanisms for micro-level phenomena (Block et al., 2018). SAOM is 

widely used in a variety of social science disciplines to examine how individual 

behaviors lead to collective phenomena, such as international relations, policy, and other 

areas of political science (Snijders, 2016). As SAOM represents network evolution, it is 

well-suited for seeing how relations are maintained, enhanced, or eliminated over time. 

SAOM Mathematical Foundation. Using the foundational conceptual map for 

dynamic network models, Figure 8 describes the key terms modeled in SAOM. SAOM 

includes time (F) as it allows for examining networks over time; an actor attribute (C) 

differentiated on two values, a triangular and a circular shape, with sending (A) and 

receiving (B) actors; the network structure (D) which includes the creation, maintenance, 

or dissolution of edges where (1) a solid black line represents edge creation, (2) a solid 

gray line represents edge maintenance, and (3) a black dashed line represents edge 

dissolution. Figure 8 models the propensity for edges to occur based on attribute 
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homophily and time. For example, at Time 2, Actor 4 elects to create a new edge to Actor 

3 with whom Actor 4 shares an attribute (i.e., both are circles). 

SAOM posits that changes in actor attributes and/or network edges transpire in 

continuous time even though data are analyzed at discrete time points (Kalish, 2020). 

SAOM estimates what occurs between these discrete time points by breaking them into a 

series of mini-steps. A mini-step is an opportunity for a randomly selected actor to 

change either his outgoing edges or his level on a given attribute. SAOM posits an 

infinite number of mini-steps can occur between time points, and the number is 

determined by the amount of change that occurs in the observed networks between those 

time points (Leifeld & Cranmer, 2015).  

Figure 8 

Conceptual Foundation for SAOM 

 

Figure 8. This figure represents a simple example of SAOM, including sending actors, receiving actors, 
actor attributes, and the network structure/actions of forming, maintaining, and removing edges over time.  
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There are two components that govern decisions made between time points: 

decision timing and decision rules (Schaefer, 2016). Decision timing models if change 

occurs, and decision rules model what change occurs. These two components are further 

broken into decision types – specifically, network versus behavioral evolution. Actors 

can control their outgoing edges and their behavior, and these decisions are dictated by 

the functions shown in Table 6. Decision timing is determined by the rate function, which 

determines (a) if there will be an opportunity for actors to make a change between given 

time points, and (b) who will make a change. Decision rules are determined by the 

objective function, which assesses the probability of a given change happening once an 

actor is selected to make a change. There are two decision types that actors can make in 

relation to decision timing and rules. An actor can decide to change either (a) his 

outgoing edges or (b) the level of a given attribute. Changing an outgoing edge leads to 

network evolution and is modeled through a network mini-step; changing the level of an 

attribute leads to behavior evolution and is modeled through a behavioral mini-step.  

Table 6 

Components of SAOM 

 Decision Timing Decision Rules 

Network Evolution Network rate function Network objective function 

Behavior Evolution Behavior rate function Behavior objective function 

 

 If an actor chooses to change his network, he has three options for change via 

network functions: (1) to create a new edge, (2) to maintain an existing (or non-existing) 

edge, (3) or to dissolve an existing edge, as shown in Table 7. These network functions 

refer to any endogenous network or selection effects that relate to the network itself, such 

Note. Adapted from Schaefer (2019). 
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as reciprocity, transitivity or homophily (Schaefer, 2019). Alternatively, an actor may 

decide to change his level on a given attribute, including any attitude or belief, via 

behavior functions. Behavior functions refer to a set of behavioral tendencies (Burke et 

al., 2007). Ultimately, an actor evaluates the outcome of each potential change based on 

how it impacts his objective function (Kalish, 2020). 

Table 7 

SAOM Network Mini-Step Decision Possibilities 

Option Time 1 Time 2 Definition 
1 i      j i à j Edge creation 
2 i à j i à j Edge maintenance 
 i      j i      j No-edge maintenance 
3 i à j i      j Edge dissolution 

 

SAOM follows a six-step algorithm. Figure 9 shows what occurs between two 

discrete, observed time points, specifically the iterative mini-step process (Schaefer, 

2019):   

(1) If the simulation is modeling what occurs between the first and second time 

point, the model initializes starting parameters. 

(2) Actors draw selection propensities (or waiting times) for network and 

behavior options. Selection propensities are determined by the rate function. 

The rate functions will depend on attributes and network positions of the 

actors and will determine if there will be an opportunity for change to occur 

between two time periods. Each actor, i, has a rate of change for both network 

and behavioral change (?), denoted ?/(&; @) where & represents the current 

state of the network and @ represents a statistical parameter that depends on a 
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Figure 9 

Conceptual Representation of SAOM Algorithm  

 
Figure 9. This figure represents a conceptual representation of the SAOM algorithm, including sending actors, receiving actors, actor attributes, and the 
network structure/actions of forming, maintaining, and removing edges over time. The algorithmic simulation occurs between any two given time points 
and includes six steps: (1) initializing the simulation, (2) decision timing, (3) identifying decision propensities, (4) checking simulation time clock, (5) 
change network or edge or (7) storing statistics, (6) updating time and moving onto the next mini step or (8) assessing number of remaining iterations. 
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(3) given time point (Snijders, 2016). Waiting times are drawn from an 

exponential distribution, 

1 −#$% (−'∆))	,     (5) 

where ' = 	'!($; .), representing the sum of the change rates for all actors. 

Smaller rates represent lower selection propensities for an action, and higher 

rates represent higher selection propensities. Selection propensities are drawn 

for both network change ('"#$) and behavior change ('%#&). If a change is 

determined by the exponential distribution, the probability that the next 

opportunity for change for actor i is given by  

''($; .)
'!($; .)

 

 

which represents the rate of change for actor i divided by the sum of change 

rates for all actors in the network. 

(4) The actor with the highest selection propensity, which can be for network or 

behavior change, is identified. These rates can differ based on both network 

and actor attributes (Schaefer, 2019).  

(5) The simulation checks that enough time remains between tm and tm+1 (the time 

point in question) for another action to occur using the selection propensities.  

(6) If enough time remains within tm and tm+1, the objective function is calculated 

to determine the probability of a given change happening. This calculation 

will depend on whether the waiting time selected is for network or behavior 

change. The network objective function takes the following form: 

/'($, 1) 	= 	23(4'(($, 1)

	

(
																																																(7) 
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where /'($, 1) represents the value of the objective function for actor i for a 

given network state x with attributes z; 3 represents parameter estimates for k 

parameters; parameter values 3 are coupled to an effect, such as reciprocity, 

denoted as sik. The behavior objective function takes the following form: 

/'($, 1) 	= 	23(4'(($, 1)

	

(
																																														(8) 

where /'($, 1) represents the value of the objective function for actor i for a 

given network state x with attributes z; 3 represents parameter estimates for k 

parameters; parameter values 3 are coupled to an effect, such as behavioral 

similarity, denoted as sik.  

(6) Following step 5 (the completion of calculating an objective function that 

maximizes the probability of a given network or behavior change to occur), 

the simulation moves to the next mini-step such that the algorithm loops back 

to step 2 (drawing decision timing from an exponential distribution).  

(7) The simulation continues until no time remains for additional action. At this 

point, the simulation stores the ending network and behavioral statistics 

calculated during the entire period across actors and their respective mini-

steps.  

(8) The simulation checks it has reached a maximum number of iterations 

(predefined in the algorithmic process). If the simulation has not reached its 

maximum iterations, the simulation starts back at the first step by updating 

simulation parameters for the next iteration in an attempt to minimize the 

deviation of the final network within time t from the true observed data at 
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tm+1. If the simulation has reached its maximum iterations, the simulation for 

timepoint t ends.  

Data from the simulation are assessed for convergence such that the model can 

reproduce the observed network and behavior at time tm+1.  If convergence is not reached, 

the model is to be rerun with new starting values to attempt to better represent reality. 

Once convergence is reached, goodness of fit is calculated to compare networks 

generated by the model to statistics that are not explicated within the model (Schaefer, 

2019).  

To show an example of SAOM, Table 8 represents a basic matrix of edges in a 

small network, including edges at Time 1, edges at Time 2, and levels for an attribute at 

Time 1 and Time 2. A 0 represents no edge and a 1 represents an edge nomination from 

actors in the rows to actors in the columns. We observed that at Time 1, Actor C, an actor 

with a low value on an attribute, nominates Actor A, an actor who also has a low value on 

an attribute, and that this relationship is maintained at Time 2. Actor A, an actor with a 

low value on an attribute, nominates Actor B, an actor with a high value on an attribute, 

and this relationship is not maintained at Time 2. By Time 2, Actor A and Actor C, both 

with low values on an attribute, nominate each other, and Actor B does not give nor 

receive any nominations. Actor B’s attribute value also increases at Time 2. 

To assess the mechanisms that likely produced the network observed at Time 2, 

we follow the logic presented in Figure 9: 

(1) Initialize parameters for the first observation. 

(2) Actors A, B, and C draw waiting times for network and behavior options. 

These values are assessed using the rate function for both network and  
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Table 8 

Example Data Structure Used in SAOM 

 

behavioral change ('). Assuming '"#$ is estimated to be 0.3 for each actor, 

'%#& is estimated to be 0.08 for each actor, and that ∆t equals 1, we use 

Equation 5 to assess if there will be an opportunity for change: 

1 −#$% (−'	∆))	 
 

Network change: 1 −#$% (−0.3	 ∗ 	1) = 1 −#$% (−0.3) = 0.25 

Behavioral change: 1 −#$% (−0.08	 ∗ 	1) 	= 1 −#$% (−0.08) 	= 0.08 

The resulting probabilities are 0.25 and 0.08, meaning there is a 25% chance 

that there will be an opportunity for a network change to occur and an 8% 

chance for a behavioral change to occur in this model iteration. Drawing from 

a uniform distribution with this parameter, the next step determines who will 

have an opportunity to make a change, which is accomplished using Equation 

6: 

''($; .)
'!($; .)

 

 

																				=#)>?@A:	
0.3

0.3 + 0.3 + 0.3
= 	
0.3
0.9

	= 	0.33 

 

E#ℎGHI?@:	
0.08

0.08 + 0.08 + 0.08
= 	
0.08
0.24

	= 	0.33 
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The result is that each actor has a 33% chance of being selected to make a 

both a network and behavior change. These values represent the actors’ 

propensity for change. 

(3 – Network Effect) To model a network change, assume Actor A is selected to 

make a network change. 

(4 – Network Effect) Assume that enough time remains for Actor A to make a 

change before Time 2. 

(5 – Network Effect) Calculate the objective function for network effects. For 

simplicity, using Equation 6, the model assesses the objective function for two 

network changes: reciprocity and outdegree (number of connections sent to 

other actors). Assume parameter values for the reciprocity and outdegree 

effects are estimated to be -.08 and 1.2, respectively. Actor A can do one of 

the following: (1) create a new edge to Actor C, (2) drop his existing edge to 

Actor B, or (3) do nothing (maintain an existing edge to Actor B). The 

objective equation based on these parameters is as follows: 

/'($, 1) 	= 	23(4'(($, 1)

	

(
 

 
/'($, 1) 	= 	K1 ∗ 	#$%&'()%&*+	 + 	-2 ∗ 	./*0)&10	230$	 

 
where K* represents the reciprocity coefficient, K+ represents the outgoing 

edge coefficient, and the terms Reciprocity and Outgoing Edge will be 

replaced by a value representing whether the action adds an edge (+1), 

subtracts an edge (-1), or does not change the number of edges in the network 

(0). Table 9 illustrates the objective function for each potential decision, and 

the value of the objective function based on those decisions.  
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Table 9 

Example Network Objective Functions for Three Actor Decisions 

Option Reciprocal 
Edges 

Outgoing 
Edges 

Objective 
Function 

Value of Objective 
Function 

Create a new 
edge to Actor C 

+1 +1 -.08*1 + 1.2*1 0.4 

Drop existing 
edge to Actor B 

0 -1 -.08*0 + 1.2*-1 -1.2 

Maintain existing 
edge to Actor B 

0 0 -.08*0 + 1.2*0 0 

Note. +1 adds an edge; -1 removes an edge; 0 does not impact the number of edges. 
 

Since Actor A is seeking to optimize his network objective function, he will 

most likely decide to create a new edge to Actor C (network objective 

function = 0.4). 

(3 – Behavior Effect) To model a behavioral change, again assume Actor A is 

selected to make a behavior change. 

(4 – Behavior Effect) Assume that enough time remains for Actor A to make a 

change before Time 2. 

(5 – Behavior Effect) Calculate the objective function for behavioral effects. For 

simplicity, using Equation 6, the model assesses the attribute similarity effect, 

which captures the tendency of actors become more similar on a given 

attribute over time (Kalish, 2020). Using Equation 8, we model this effect as 

follows: 

/'($, 1) 	= 	23(4'(($, 1)

	

(
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The linear effect is included by default to control for the distribution, as is a 

baseline quadratic effect for an actor’s own behavior if a behavior has more 

than two levels. The similarity effect assesses the similarity between behavior 

(z) for actor i and the actors that are connected to i. Assume parameters are 

estimated for the linear, quadratic, and similarity effects to be -0.25, 0.50, and 

1.5, respectively. Actor A has three options for behavioral change: (1) to 

decrease his attribute value by one, (2) to not change his attribute value, or (3) 

to increase his attribute value by one (Schaefer, 2019). To assess the linear 

effect, a linear function is used such that the linear parameter (3 = −0.25) is 

multiplied by potential attribute value levels. A quadratic function is applied 

to the quadratic effect such that the quadratic parameter (3 = 0.50) is 

multiplied by the squared value of potential attribute value levels. Similarity 

effect calculations are shown in Table 10. 

Table 10 

Similarity Effect Calculation 

Behavior Change Option Connection Similarity Effect Similarity 
Statistic 

Decrease attribute value to 0 Actor A, Actor B 1 – (|0-2| / 3) = 0.33 1.33 

Actor A, Actor C 1 – (|0-0| / 3) = 1 

Maintain attribute value at 1 Actor A, Actor B 1 – (|1-2| / 3) = 0.67 1.34 
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Actor A, Actor C 1 – (|1-0| / 3) = 0.67 

Increase attribute value to 2 Actor A, Actor B 1 – (|2-2| / 3) = 1 1.33 

Actor A, Actor C 1 – (|2-0| / 3) = 0.33 

 

Table 11 shows the mathematics behind the three effects included in this 

example. The values in each equation represent (a) the beta values for a given 

effect and (b) the level of the attribute being assessed for each of the three 

potential decisions as calculated in Table 10. The final value of the objective 

function is the sum of each of the resulting effects. Based on the value of the 

objective function, Actor A will increase his attribute value by one to an 

attribute value of two, suggesting Actor A’s attribute value is being impacted 

by attribute values of Actor B and Actor C.  

(7) Actor A selects the action that maximizes his objective function (if network 

change, he will add an edge to C; if behavior change, he will increase his 

attribute value to two). The simulation will move to the next mini-step by 

looping back to step 2.  

(7) The simulation continues until no time remains for additional action by the 

actors.  

(8) Once the simulation reaches its maximum number of iterations for timepoint t, 

it will end. 

Table 11 

Example Behavior Objective Functions for a Similarity Effect 

If the attribute 
value 

Linear effect  
(L = −M. NO) 

Quadratic 
Effect 

(L = M. OM)	

Similarity 
Effect 

(L = P. O)	

Value of 
Objective 
Function  
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Drops to 0 (-1) -0.25*0=0 0.50*(02)=0 1.5*1.33=2 2 

Stays at 1 (0) -0.25*1=-0.25 0.50*(12)=0.50 1.5*1.34=2.01 2.26 

Increases to 2 (+1) -0.25*2=-0.50 0.50*(22)=2 1.5*1.33=2 3.5 

 

 While STERGM and SAOM present much methodological overlap, there are two 

key differences between them. First, the primary focus of STERGM is on the probability 

of an edge occurring, whereas the primary focus of SAOM is on the probability of an 

actor impacting edges. Second, STERGM focuses on networks in discrete time to answer 

questions about structure whereas SAOM focuses on networks in continuous time to 

answer questions about change (Karell, 2018). Yet, information is inherently lost when 

aggregating events into time points (Butts & Marcum, 2017). Even when each individual 

event between two actors is captured, both SAOM and TERGM require data to be 

aggregated into specified time points (i.e., panel data) and analyze the relationship 

between and across time points rather than between each individual event. Moreover, 

researchers must determine the appropriate width of aggregation, which impacts the level 

of dynamic granularity.  

Relational Event Models 

A key limitation of STERGM and SAOM is that they fail to fully utilize 

continuous time data (Leenders et al., 2016). STERGM and SAOM require aggregating 

continuous data into discrete, observable time points. To overcome this limitation, 

Relational Event Models (REM) can handle both discrete and continuous time data. By 

examining data in continuous time, one may more granularly examine interactions over 

time (Schecter & Contractor, 2017). 
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REM Theoretical Foundation. REM incorporates networks and time into team 

processes and views these processes as relational events rather than relational states 

(Schecter et al., 2018). Relational events are the unique actions produced by an individual 

taking an action directed toward another individual (Pilny, Schecter, Poole, & Contractor, 

2016). They occur at specific moments in time such that any given relational event is tied 

to a distinct time point. The ordering of episodic relational events is known as an event 

history. Examining event histories pushes dynamic network models beyond the 

individual or the edge level to the individual unit of a single interaction, providing the 

most nuanced examination of team processes amongst dynamic network models 

(Leenders et al., 2016; Schecter et al., 2018). 

Figure 10 shows how models using a relational event framework are proposed 

based on theory, which is used to determine a set of possible events (i.e., event history) 

and the mechanisms that determine event hazards (Butts & Marcum, 2017). Event 

hazards are defined as the propensity of a given event to occur and are specified through 

an exponential function of a linear combination of statistics (Butts & Marcum, 2017; 

Schecter & Contractor, 2017).  

REM is considered a micro-sequence analysis in that its focus is on who interacts 

with whom at a given time rather than focusing on what an entire group is doing at a 

given time (Pilny et al., 2016). When studying teams, REM offers a way to assess 

individual actions over time that produce event sequences that explain differences in team 

processes. REM is useful for studying theories of emergence as building theories of 

emergence requires focusing on the sequence and timing of team processes. Using an 

event history, REM connects emergent phenomena to different variables to understand 
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Figure 10 

REM Framework 

 

Figure 10. The relational event framework shows the notion of theory informing event propensities (i.e., 
event hazards) based on a set of possible events to explain an observed event. Event hazards are updated 
based on observed events. 
 

the underlying processes responsible for emergent outcomes. By determining the exact 

sequence and timing of individual actions, REM can precisely specify process 

mechanisms (Kozlowski, 2015; Schecter et al., 2018). Understanding the variation in 

how different team processes unfold can enable researchers to begin explaining 

differences in the emergence of higher-order phenomena (Schecter et al., 2018). 

REM Mathematical Foundation. REM assumes that past relational events 

influence subsequent relational events thus affecting their propensity (i.e., hazard rate) to 

occur (Butts, 2008). Actions that occur more frequently are said to have high rates of 

occurrence whereas actions that occur less frequently have lower rates of occurrence 

(Pilny et al., 2016). These rates additionally determine the amount of time that passes 

between interactions such that more frequent interactions result in a shorter interval 

between interactions. These rates are determined by model covariates, such as attributes 

of the actors and how these attributes interact with time.  
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Figure 11 presents the conceptual framework that governs relational events. To 

identify how and why relational events occur, REM considers influence from three 

factors: (1) past relational events, (2) actor attributes (3) and exogenous contextual 

factors. Past relational events, often referred to as “endogenous mechanisms,” are the 

prior event sequences that impact the probability of the next relational event to occur. 

Examples include: (a) inertia, or how the combination of prior events for a given 

individual will influence future rates of that individual’s behavior (e.g., tendency for past 

contacts to be future contacts); (b) reciprocity (e.g., tendency for Person A to send an 

event to Person B given that Person B just sent an event to Person A); (c) triadic closure 

in which three individuals form a clique-like structure based on prior events (e.g., if 

Person A and Person B both send events to Person C separately, what is the chance that  

Person A and Person B will interact?).  

Figure 11 

Conceptual Framework for Relational Events 

 

Figure 11. Adapted from Pilny et al., (2016). A conceptual representation of the relational events 
framework to explain how and why relational events occur based on past relational events, actor attributes, 
and exogenous contextual factors. 
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Actor attributes affect the propensity for interactions to occur based on an 

attribute of the sender, receiver, or event. Examples include attributes such as personality 

(e.g., does introversion result in increased outward communications?) or gender (e.g., are 

relational sequences the product of an individual’s gender?). Exogenous contextual 

factors include any characteristic that is outside of past relational events or actor 

attributes (i.e., environmental events beyond the system). For example, organizational 

culture spans beyond the interaction space but impacts communication patterns such that 

teams within a collaborative culture are likely to interact more than teams within a non-

collaborative culture (Pilny et al., 2016). Over time, the propensity of any given event to 

occur changes as the rate of any event is altered to reflect past actions. For example, if 

Person A receives consistent communications from two different individuals, Person B 

and Person C, the propensity for Person B and Person C to communicate to one another 

increases over time (Pilny et al., 2016). The event rates are continuously updated to 

account for changes in group interactions to provide insight into how past interactions 

impact the emergence of subsequent interactions.  

Using the foundational conceptual map for dynamic network models, Figure 12 

describes the key terms modeled in REM. REM is primarily focused on examining event 

histories (Pilny et al., 2016), making the dependent variable an interaction event that 

occurs between a sending actor (A) and a receiving actor (B) over time (F) (Schecter et 

al., 2017). Each time point represents a single relational event in which a single actor 

makes a change to his or her network, and the aggregation of decisions made within each 

relational event comprise the event history. There are sending (A) and receiving (B) 

actors with attributes (C), denoted by triangles and circles. The network structure (D) 
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includes the creation, maintenance, or dissolution of edges in which a (1) solid black line 

represents edge creation, (2) a solid gray line represents edge maintenance, and (3) a 

dashed black line represents edge dissolution. Decisions made by actors are driven by 

event histories (G) within the context of relevant external factors (E).  

REM can represent several relational event tendencies. For example, REM can 

model a participation shift involving the propensity for an initial sender, Person A, to 

send an event to a recipient, Person B, and in turn, Person B can direct the next event to 

another actor, Person Y. Table 12 provides example model terms for REM, including two 

types of participation shifts (i.e., PSAB-BA turn receiving and PSAB-BY turn receiving) 

and the effects of inertia, popularity, prior initiation patterns, and attribute homophily. 

REM assumes events occur based on the realized history of previous events. This 

produces the context for future events that create differential propensities for subsequent 

relational events to occur (Butts, 2008). The realized history of previous events 

determines both the relative rates at which future events occur and the type of events that 

are possible. Relational event specification includes a set of potential senders, S, potential 

receivers, R, and potential action types, C (Butts & Marcum, 2017). A single relational 

event, a, is a tuple containing: 

The sender of the action s = s(a) ∈ S, 

The recipient of the action r = r(a) ∈ R, 

The type of action c = c(a) ∈ C, and 

The time the action occurred τ = τ(a), 

denoted as a = (s, r, c, t) in which actions may include covariates (Xa) based on properties 

of event elements (e.g., sender and recipient; Butts & Marcum, 2017).  
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Figure 12 

Conceptual Foundation for REM 

 

Figure 12. This figure represents a simple example of REM, including sending actors, receiving actors, the 
actor attribute of gender, the network structure/actions of forming, maintaining, and removing edges over 
time, event history, and external factors. 
 
Table 12 

Example REM Terms 

Name Visualization Description 

PSAB-BA 
Participation-shift 
(turn receiving) 

 

An event from person A to B is 
followed by an event from 

person B to A 

PSAB-BY 
Participation-shift 
(turn receiving)  

An event from person A to B is 
followed by an event from 

person B to Y 

Inertia 
 

Person A initiates more events to 
Person B as a function of the 
number of past events from 

person A 
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Popularity 

 

Tendency of A to receive 
relational events based on how 
many prior relational events A 

has received  

High initiator 

 

Tendency of A to send many 
relational events 

Attribute homophily  
 

Tendency for individuals to send 
relational events to other 

individuals who are similar to 
them (e.g., gender, role, tenure) 

Table 12. Visual REM representation adapted from Leenders et al., (2016). Solid lines represent past 
relations. Dotted lines represent future relations.  
 

The set of possible events that can occur at any given point in an event history is 

known as the support, defined by the set of Q(Q$) 	⊆ 	S	$	T	$	U where Q represents the 

set of events that are possible at any given moment. Identifying the propensity of a 

specific relational event to occur requires specifying the event’s hazard (Butts & 

Marcum, 2017). Each possible event, including events that previously occurred and 

events that could have occurred but did not, has a non-zero hazard, with larger hazards 

representing higher occurrence propensities. To infer these propensities, event hazards 

are parameterized based on a combination of factors that inhibit or enable the realization 

of an event: 

',-!. = 	#$%(K/V(4(G)	, @(G), W(G), X, , Q$))    (9) 

where ',-!. represents the hazard of a potential event a at time t given event history At 

and	K represents a vector of model parameters; u represents a vector of statistics 
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governed by s(a), r(a), C(a), Xa and At. Figure 13 provides a visual adaptation of Figure 

12’s conceptual foundation for REM to represent the REM model statistics. 

Figure 13 

REM Conceptual Foundation with Model Terms  

 

Figure 13. An adaptation from Figure 12 (conceptual foundation for REM) to highlight model statistics 
used in REM. 
 

REM allows for the use of both continuous and ordinal time data (Butts, 2008). 

The data used in this dissertation are ordinal time data, which requires a different 

specification from continuous time data in REM. Thus, for this paper, REM specification 

is described in terms of ordinal time data (for an explanation of continuous time modeling 

using REM, see Butts, 2008). In the absence of exact timestamps on sequential data, the 

likelihood of events in event history At are based on the possibility of given events that 

occur next in a t-directed sequence. The probability that ai, or the conditional likelihood 

that a given event i occurs next in an event sequence, equals the occurrence rate for ai 

divided by the sum of the rates for all possible events that could occur (including ai). 
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Given successive events are conditionally independent, the likelihood of event history At 

is a product of multinomial likelihoods, specified as: 

%(K) 	= 	YZ
',"-#(%"&').

∑ ',0-#(%"&').
	
,0	1	-(-#)%"*)

\

4

'5*
																																				(10) 

 

where %(K) represents the probability of an event history Q$ to occur given some model 

parameters K; ∏ 	4
'5* represents the series product of non-null events (M), beginning with 

the first event (i = 1); ',"-#(%"&'). represents the occurrence rate of event G' (',") given 

event history (At) up to the prior event (ai-1) governed by model parameters defined by K; 

∑ ',0-#(%"&').
	
,0	1	-(-#)%"*)

 represents the sum of the rates for all possible events that could 

occur, governed by the sum of possible relational events (a’) that are an element of (∈) all 

possible relational events at a particular time period (A). 

 Figure 14 shows an example event sequence between three actors, Actor A, Actor 

B, and Actor C, at three discrete time points (Brandenberger, 2020). The relationships 

above the center line represent true events (observed events), whereas the relationships 

below the center line represent all other potential events that could have occurred in place 

of the observed event (null events). Given three actors, at each time point there are six 

potential sender-receiver options (three senders x two potential recipients at any given 

time). 

Table 13 shows the first five rows of a relational event sequence of 

communications for a team of 15 individuals, labeled A through J, including the time of 

the event, the sender, the recipient, and the action type. Assessing the explanatory   
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Figure 14 

Example Relational Event Sequence 

 

Figure 14. Example REM event sequence showing observed events at three discrete time points. Adapted 
from Brandenberger (2020). Null events represent all remaining potential events that could have occurred 
in place of the observed event. 
 

mechanisms that produced the observed event history requires specifying model effects. 

In this example, participation-shifts PSAB-BA (a reciprocation effect), PSAB-BY and 

PSAB-AY are examined. Each of these relational events are assigned a rate based on  

estimated model parameters, K, calculated based on the observed data (i.e., s(a), r(a), 

C(a), Xa, and At) via Maximum Likelihood Estimation (MLE).  

Table 13 

Example Relational Events Sequence 

Time Sender Recipient Type of Action 

1 A D Outgoing message 

2 B E Outgoing message 

3 E A Outgoing message 

4 H E Outgoing message 

5 B D Outgoing message 
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Table 14 shows resulting parameter estimates for the three specified participation 

shifts. Parameter estimates represent the logged multiplier for the hazard of an event, 

which, when transformed exponentially, represents a hazard rate relative to other events 

that could occur. In this example, the PSAB-BA coefficient suggests that reciprocated 

events have 1.6 times the hazard of other event types whereas the PSAB-AY coefficient 

suggests that communication from A to B followed by communication from A to Y has a 

much smaller hazard. This suggests that for this team, reciprocity is the most prevalent 

communication sequence to occur at any given point throughout the time observed.  

Table 14 

REM Example Model Parameters 

Model Term Estimate Hazard Transformation Resulting Hazard 

PSAB-BA 0.52 exp(0.52) 1.60 

PSAB-BY 0.24 exp(0.24) 1.27 

PSAB-AY -0.39 exp(-0.39) 0.68 
 

REM uses an evolutionary approach in which lower-level behavioral patterns are 

modeled, making it well-suited for studying process theories and capturing emergence 

(Schecter et al., 2017). Specifically, it seeks to understand the specific behaviors that 

drive what will occur next in a sequence of events (Butts & Marcum, 2017). By assessing 

interactions at the individual communication level, REM identifies the exact behavioral 

patterns that are most likely to drive future interactions. This positions REM to quantify 

process more directly (Butts, 2008; Schecter & Contractor, 2017), which is a key 

requirement for studying emergence (Grand et al., 2016). 
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Comparative Utility of Dynamic Network Models 

The three dynamic network models described in this dissertation offer relatively 

distinct approaches to studying networks dynamically. Table 15 provides a comparison of 

the utility of each model, focusing the unit of analysis, outcome level, purpose, an 

example question, and the data required for each method. The three models essentially 

represent a hierarchy of temporal resolution and unit of analysis (Schaefer & Marcum, 

2017). STERGM is conducted at the edge level of analysis with a network as the outcome 

and requires whole network data broken into longitudinal networks to assess change over 

time. This lends STERGM to answer questions about how individual actors, edges, and 

actor covariates impact how edges form and dissolve within networks. An example 

question STERGM can answer is, “how do individual attributes impact edge formation 

and dissolution over time?” STERGM can assess how individual differences within a 

team differentially impact the types of relations that form within teams. More concretely, 

suppose a researcher wanted to study homophily, or the phenomenon in which contact 

between similar individuals occurs more frequently than between dissimilar individuals 

(McPherson, Smith-Lovin, & Cook, 2001). To examine, for example, homophily of team 

role, researchers can use STERGM to answer the question of how this attribute impacts 

team relations over time, as outlined below: 

(1) Researcher collects relational data for a team over time, including edge 

formation, dissolution, and demographics (e.g., team role). 

(2) Researcher breaks data into logical time periods of interest (e.g., five time 

periods). 

 



DYNAMIC NETWORK MODELS  63 
 

Table 15 

Comparative Utility of Dynamic Network Models 

 Dynamic Network Model 

 STERGM SAOM REM 
Unit of 
analysis 

Edge  Individual  Edge 

Outcome 
level 

Network Individual and network Network 

Purpose Assess the effects of 
actors, edges, and 
covariates of 
network structures 
on how edges form 
and dissolve 

Assess the effects of 
actors, edges, and 
covariates of network 
structures on how edges 
form and dissolve; 
assesses multiple types of 
relations in a single 
model and addresses 
question about how 
network structure impacts 
actor attributes 

Assess sequencing, 
patterns, timing, and 
likelihood of social 
events 

Example 
question 

“How does the 
impact of individual 
attributes on edge 
formation and 
dissolution change 
over time?” 

“How do individual 
attributes change over 
time based on team 
interactions?” 

“What sequence of 
team behaviors 
drives what will 
occur next?” 

Data 
required 

Whole network 
broken into 
longitudinal panels 

Whole network broken 
into longitudinal panels 

Ordinal or 
continuous series of 
social interactions 

Note: Adapted from Schaefer & Marcum (2017). 

 

(3) After cleaning and formatting the data, the researcher runs a STERGM that 

includes terms for an attribute (e.g., team role), time, and the interaction of 

time and an attribute. 
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(4) STERGM produces theta values for effects to calculate probabilities for edge 

formation and dissolution. 

(5) Researcher interprets the theta values to understand what impacts edge 

formation and dissolution. 

STERGM enables the study of dynamic network phenomena and facilitates 

knowledge of team process over time by specifying two separable interaction channels 

responsible for a team’s relational behaviors that are differentially impacted by individual 

attributes, network structural effects, and team context. This distinction allows for 

examination of social mechanisms that occur within teams that result in relation 

formation, persistence, and duration by introducing dynamic properties of team 

interaction (Krivitsky & Handcock, 2014).  

SAOM is conducted at the individual level of analysis such that individuals have 

agency over their own decisions and requires whole network data broken into 

longitudinal networks to assess change over time (Schaefer & Marcum 2017). SAOM can 

answer the same questions as STERGM with the added ability to assess multiple types of 

relations in a single model. SAOM can additionally assess questions about the impact that 

network structure conversely has on actor attributes. An example question SAOM can 

answer is, “How do individual attributes change over time based on team interactions?” 

Research supports that frequent interaction enhances trust (Jarvenpa et al., 1998), but 

suppose a researcher wanted to know how these interactions impact trust – specifically, 

how does a team’s communication structure impact trust? Researchers can use SAOM to 

answer the question of how trust between team members changes over time based on 

network connections, as outlined below: 
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(1) Researcher collects relational data for a team over time, including edge 

formation and actor attributes (e.g., trust levels at each time point). 

(2) Researcher breaks data into logical time periods of interest. 

(3) After cleaning and formatting the data, the researcher runs a SAOM that 

includes effects of interest (i.e., trust levels and edge formation). 

a. In this simplified example, the model will use the behavioral function 

since it is the network structure that is predicted to drive changes in 

attribute levels. 

(4) Beta values will be produced from the model for each model parameter (i.e., a 

linear effect, a quadratic effect, and a trust effect). These values will be used 

to calculate the contribution of each potential decision an actor will make (i.e., 

decrease trust by one, keep current trust level, increase trust by one) which 

will be used to determine the most probable action choice for an actor. 

a. The potential decision (options for change in trust) with the highest 

sum across the three effects will be selected as an agent’s decision. 

SAOM further facilitates the study of dynamic network phenomena. Through 

specification of the co-evolution of network and behavior, SAOM can examine the 

complex interrelations of temporal team dynamics and team member attributes 

simultaneously (Kalish, 2020). SAOM can assess how team member attributes impact 

team relations and can also identify relational mechanisms responsible for the evolution 

of team phenomena such as team norms and attitudes. This examination of how lower-

level psychological phenomena produce interactions within teams that result in higher-

level team phenomena furthers the examination of team processes.  
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REM is conducted at the edge level such that individual actions and relations are 

examined without any aggregation, which requires an ordinal or continuous series of 

social interaction data. REM can answer questions about the sequence, patterns, timing, 

and likelihood of social events. An example question REM can answer is, “What 

sequence of team behaviors drives what will occur next?” Specifically, suppose a 

researcher wanted to know what patterns of information sharing will enhance team 

outcomes, such as innovation. Rather than collecting data at discrete time points and 

assessing what aggregated behaviors produce which outcomes, REM would allow the 

researcher to study each sequence of communications and their resulting outcomes, as 

outlined below: 

(1) Researcher collects relational data for a team over time and team outcomes 

(i.e., innovation). 

(2) Researcher breaks data into logical time periods of interest, if desired. 

(3) After cleaning and formatting the data, researcher runs a REM that includes 

relational effects hypothesized to impact innovation, such as reciprocity and 

high initiation (sending many relational events). 

(4) REM estimates effects for each variable for each team, identifying relational 

tendencies within teams. 

a. For example, a high value for reciprocity for a team would indicate 

that the team assessed has high patterns of reciprocal exchange; a high 

value for high initiation would indicate that teams have members who 

share many ideas with other team members. 
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(5) While REM itself cannot directly address the how relational sequences impact 

outcomes, this can be accomplished by comparing the results of independent 

t-tests for statistics assessed between teams rated as highly innovative and 

lowly innovative (Pilny et al., 2016). 

REM examines team process by analyzing data at the interaction level rather than 

aggregating data to a single time point. Interactions in REM are dependent on the 

situational context, individual attributes and events that transpired previously. This 

approach focuses on the evolution of actions over time rather than treating interactions as 

elements of higher-level phenomena. REM furthers the study of team process by enabling 

the identification of fine-grained interaction patterns amongst all possible team 

interactions (Pilny et al., 2016). 

Study Rationale 

 This study utilized a network perspective and theories of team process to examine 

teamwork in National Basketball Association (NBA) teams to represent a descriptive 

foundation for future studies using theories of time to study teams and demonstrate the 

utility of dynamic network models. Applying a network perspective to study team 

process forces an interactionist perspective that incorporates individual attributes and 

their context to create network phenomena (Brass, 2011), which is critical for studying 

emergence in teams (Kozlowski et al., 2016). Taking a dynamic network approach to 

study team process requires fine-grained data on interaction-level behavior amongst team 

members. Applying STERGM, SAOM and REM to the rich data provided for NBA 

teams overcomes traditional challenges to studying teams to advance an understanding of 

team process. 
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 This study analyzed data collected on teams in the NBA. NBA teams operate in a 

dynamic, ambiguous, intensive context that changes both within teams and for each game 

played. Within NBA teams, there are changes in team membership and team roles (i.e., 

player positions). For each game played, teams must change their game play location, 

their on-court configurations based on opponent strategy, and their game play strategy. 

While some changes, such as team membership, opponent, and location, are somewhat 

predictable, many changes experienced by NBA teams are unpredictable, requiring quick, 

dynamic responses to events as they occur. These nuanced, dynamic responses provide 

unique insight to team functioning.  

NBA teams employ multiple players with varying positions and skill levels who 

adapt to their context and must select and rotate players throughout the course of a season 

and a game based on various contextual factors. When team membership (the individuals 

belonging to a team at any given time) changes, a team’s composition changes. This 

continual change forces teams to frequently reset their team norms and interaction 

patterns and requires socialization of new team members (Feldman, 1984; Anderson & 

Thomas, 1996; Chen & Klimoski, 2003). When team configuration (the five individuals 

on the court during game play) changes, the team must collectively adapt strategies for 

game play.  

Actions involved in NBA game play include both offensive and defensive actions. 

Offensive actions are taken with the goal of scoring points for a team. These actions 

include passing the basketball and taking field-goal shots. Defensive actions are taken 

with the goal of stopping an opponent team from scoring points. These actions include 

securing rebounds when the offensive team misses shots and forcing the offensive team 
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to lose control of the basketball (i.e., make the offensive team commit turnovers). For a 

single season of game play, over one million actions and interactions are recorded that 

can be leveraged for studying team processes.  

The processes that result in success for a single game against a single opponent 

will reasonably vary from processes of a different game or opponent, forcing NBA teams 

to adapt their processes and select different strategies depending on the nature of their 

context. The actions players take throughout a game are highly dependent on the actions 

of other players. Shots cannot be taken by a single player without being the result of an 

action that another player, either a team member or opponent, took. The interdependence 

required of NBA teams warrants a relational perspective to studying team process.  

 Dynamic network models can leverage the vast, detailed data captured on 

basketball game play in the NBA to study team processes. STERGM, REM and SAOM 

can examine team processes through a network lens to assess the effects that team 

member attributes and context have on network formation, and the effects that network 

formation have on team member attributes. STERGM utilizes detailed interaction 

sequences that can be broken into various longitudinal panels (Krivitsky & Handcock, 

2014; Schaefer & Marcum, 2017). STERGM assesses temporally sensitive model terms 

(e.g., formation, persistence, and dissolution of edges) and the time trends responsible for 

changes in edges (e.g., linear, quadratic). Using NBA data, STERGM can assess the 

passing patterns that exist between players in a team that explain game play strategy and 

how these patterns change over time, providing insights to how team processes change 

over time. 
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 SAOM identifies the evolution of team processes in a network that occur between 

observed time points (Leifeld & Cranmer, 2015). SAOM utilizes detailed interaction 

sequences broken into discrete time points by breaking interactions into a series of mini-

steps (Kalish, 2020). These mini-steps can explain both relational (network) changes and 

behavioral changes that occur for a team. Using NBA data, SAOM can assess the passing 

patterns (e.g., reciprocity, transitivity) that occur for teams and can assess how player 

attributes (e.g., scoring) change based on relational behavior, exploring not only how 

individual behaviors impact team processes, but also, how individual behaviors change 

based on team processes. 

 REM represents sequential actions that comprise a process, such as team 

performance (Schaefer & Marcum, 2017). REM can leverage team passing sequences 

provided by NBA data to discover the prominence and impact of team interactions and 

team member attributes, such as reciprocity, transitivity, and player position. REM can 

additionally assess how team context, such as home versus away status for a game, 

impacts the actions taken by team members. To assess how these actions and interactions 

impact team outcomes, coupling REM with a series of independent t-tests can show how 

team outcomes change based on varying passing sequences, bringing research closer to 

understanding the manifestation of individual actions and team interactions to produce 

team outcomes. 

 Applying these dynamic network models to NBA data can advance the study of 

team processes by addressing key challenges to studying team process today (Leenders et 

al., 2016). STERGM, SAOM and REM address the challenge of using underdeveloped 

theories in relation to studying dynamic team phenomena by requiring an interactionist 
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perspective coupled with a process-oriented perspective of teams. For a dynamic network 

analysis, it is critical to understand that different team processes are critical at different 

times (i.e., during different performance episodes) for team success (Marks et al., 2001). 

NBA data addresses this theoretical perspective through the intensive, ambiguous context 

faced by NBA teams regularly. By having data on team context, such as changes in team 

configuration and opponent strategy over time, STERGM, SAOM and REM can model 

these contextual effects to explain the phenomena that produce network structures (e.g., 

highly successful passing sequences) and behavioral changes (e.g., changes in player 

scoring behavior). 

STERGM, SAOM, and REM address the challenges of conceptualizing process as 

being stable over time through aggregating data into summary indices and assuming that 

repeated measurements capture team dynamics by leveraging longitudinal data. These 

three methods use longitudinal data to assess how team processes change over time, with 

REM leveraging continuous relational data in its raw form. While STERGM and SAOM 

require some aggregation into time points, both methods can leverage continuous 

relational data that capture nuanced team process over time. STERGM and SAOM 

provide flexibility in determining appropriate time points for analysis based on 

theoretical considerations. In the case of NBA data, these time points can be as fine-

grained as a single passing sequence to provide a detailed examination of process. By 

utilizing the continuous data presented by NBA teams, all three methods push research 

beyond descriptive insight of what occurs in teams to explanatory insight of how teams 

do work. 
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 STERGM, SAOM and REM overcome the challenge of treating team member 

interactions as homogenous by incorporating individual differences in modeling relations 

over time. NBA data provides detailed information on both the actions and attributes of 

team members. STERGM and REM can use NBA data to assess whether and how 

individual attributes, such as team position and scoring behavior, impact relational 

patterns such as edge formation and dissolution (i.e., STERGM) and interaction 

sequences (i.e., REM) over time. SAOM can incrementally assess how relational 

dynamics subsequently impact individual differences. By leveraging nuanced NBA data, 

these three methods can examine heterogeneity of interactions based on individual 

attributes within teams that produce team outcomes. 

Statement of Research Questions 

This dissertation examined a series of research questions for each of the dynamic 

network models presented (i.e., STERGM, SAOM, and REM) to show how these models 

provide insight on teamwork using basketball teams from the NBA. The effects included 

in assessing these research questions were: (1) individual player attributes of basketball 

position (team role) and scoring; (2) passing behavior between all players in a team for 

all games played; (3) external network feature of home versus away status; (4) team 

outcomes of games won or lost for each team for each game played.  

Table 16 shows the research questions that this dissertation addressed, the primary 

model effects included, and the models that were used to address each question. The first 

set of research questions were addressed using STERGM as STERGM is well-suited for 

assessing the effects of actors, edges, and covariates within networks at the dyadic level 

(Schaefer & Marcum 2017). The first two research questions focused on network 
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attributes, specifically assessing the network patterns that explain relationship formation 

and persistence for NBA teams. Research Questions I and II were used to understand the 

varying levels of interconnection amongst team members over time, and assess how the 

factors that explain relationship formation differ from those that explain relationship 

persistence: 

Research Question I. What network attributes explain how passing relations 

form within teams across a season? 

Research Question II. What network attributes explain how passing relations are 

maintained within teams across a season? 

NBA teams are comprised of players from five positions: point guards, shooting 

guards, small forwards, power forwards, and centers. Different positions may adopt 

different passing strategies as each position has at least a partially unique purpose with 

respect to basketball strategy. Generally, a point guard serves as the initiator of offensive 

play; shooting guards and small forwards attempt to score points with moderate passing 

responsibility; power forwards and centers work to score shots and collect rebounds. This 

research assessed the impact that player position had on relationship formation and 

persistence within teams through Research Question III: 

Research Question III. What are the impacts of player position on passing 

behavior within teams across a season? 

The second set of research questions were addressed using SAOM as SAOM is 

well-suited for assessing the intersection of network structure and actor attributes at the 

individual level (Schaefer & Marcum 2017). Research Question IV assessed a similarity 

effect, which examines an individual’s propensity to enhance connections with those who 



DYNAMIC NETWORK MODELS  74 
 

have behavioral levels close to their own (Kalish, 2020). For this study, a scoring effect 

was modeled using recipient scoring (i.e., how many points players scored) and a 

similarity effect was modeled using scoring similarity, expressed as a player’s tendency 

to send passes to those who score similarly: 

Research Question IV. How does scoring behavior impact passing? 

Research Question V leveraged a beneficial feature of SAOM, which is its ability 

to assess both network and behavioral effects simultaneously. SAOM provides actors 

agency in choosing the type of change they wish to create, which can include a change to 

their network (i.e., change a single outgoing edge) or a change to their behavior (i.e., 

change their level of a given behavior). To study these phenomena, Research Question V 

assessed the comparative importance of network change versus behavior change across 

teams within games, focusing on changing network effects of passing reciprocity and 

passing transitivity, and the behavioral effects of recipient scoring and scoring similarity: 

Research Question V. What is the comparative importance of network versus 

behavior change for teams within games? 

Research Questions VI, VII and VIII were assessed using REM as REM is well-

suited for assessing sequencing, patterns, timing, and likelihood of relational events 

occurring at the edge level (Schaefer & Marcum, 2017). The edge level represents a 

single interaction between two actors. This model requires no aggregation, thus serving 

as the finest level of analysis of these dynamic network models. This research also sought 

to assess the analysis of similar model terms using different methods. This research 

modeled four REM participation shifts: (1) PSAB-BA, modeling a reciprocity effect for 

passing; (2) PSAB-BY, modeling continuous passing sequences amongst a set of players; 
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(3) PSAB-XY, modeling turn usurping in which new players take over a passing 

sequence; (4) PSAB-AY, modeling turn continuing in which the originator of a pass 

sends passes to new players. Thus, this research assessed how player scoring impacted 

passing sequences using REM, similar to RQIV for SAOM, through Research Question 

VI: 

Research Question VI. How do player attributes (i.e., player scoring) impact 

passing sequences?  

Research Question VII assessed the relationship between team context and 

passing behavior. For basketball teams, perhaps the most prevalent context is home or 

away status. Traditionally known as a “home court advantage,” home teams have the 

benefit of environmental familiarity, likely have traveled shorter distance prior to 

gameplay, signifying more rest for the team, and likely have majority of a stadium’s fans 

providing social support and motivation during gameplay (Mizruchi, 1985; Entine & 

Small, 2008; Boudreaux, Sanders, & Walia, 2017). This study examines the home court 

advantage effect through Research Question VII: 

Research Question VII. How does team context (i.e., home versus away game 

status) relate to passing sequences? 

Perhaps one of the most pressing questions of team process research relates to 

how team processes impact team outcomes, such as team performance (LePine et al., 

2008). Due to its edge level of analysis, REM is a useful method to address this question. 

Research Question VIII focused on the relation between team process and team outcomes 

by examining what pattern of passing sequences leveraged by teams (i.e., their passing 

strategies) relate to optimal team outcomes (i.e., games won). An optimal team outcome 
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is defined as whether a team won a game or lost a game. These effects were modeled in 

Research Question VIII: 

Research Question VIII. What passing sequences used throughout a game are 

associated with optimal team outcomes (i.e., team wins)? 

Table 16 

Dissertation Research Questions 

# Research Question Primary Model Effects Method to 
Assess 

I 

What network attributes 
explain how passing relations 

are formed within teams 
across a season? 

Edges, mutual, 
transitivity 

STERGM 

II 

What network attributes 
explain how passing relations 
are maintained within teams 

across a season? 

Edges, mutual, 
transitivity 

STERGM 

III 

What are the impacts of 
player position on passing 
behavior within teams over 

time? 

Edges, nodeifactor 
(impact of nodal 

covariate (position) on 
in-bound passes) 

STERGM 

IV 
How does scoring behavior 

impact passing? 
Recipient scoring, 
scoring similarity SAOM 

V 

What is the comparative 
importance of network 

versus behavior change for 
teams within games? 

Reciprocity, transitivity, 
recipient scoring, 
scoring similarity 

SAOM 

VI 
How do player attributes 

(i.e., player scoring) impact 
passing sequences? 

Covariate effect for 
scoring REM 

VII 

How does team context (i.e., 
home versus away game 
status) relate to passing 

sequences?* 

Covariate effect for 
scoring, PSAB-BA, 

PSAB-BY, PSAB-XY, 
and PSAB-AY 

REM 
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VIII 

What passing sequences used 
throughout a game are 

associated with optimal team 
outcomes (i.e., team wins)?* 

Covariate effect for 
scoring, PSAB-BA, 

PSAB-BY, PSAB-XY, 
and PSAB-AY 

REM 

*Note: Additional analyses required to assess full research question. To assess the impact of team context 
(i.e., home versus away) on passing sequence, a Multivariate Analysis of Variance (MANOVA) was 
conducted. To assess the impact of passing sequence on team outcomes (i.e., wins versus losses), a logistic 
regression was conducted. For more details, see “Analyses” section. 
 

Method 

Data Collection 

A large data collection effort was organized to record basketball passing and 

action sequences by the 30 teams playing in the National Basketball Association (NBA) 

for all 1,309 games played in the 2016-2017 season. Games throughout the season were 

manually coded by more than 70 graduate and undergraduate students at a midwestern 

university and other coders. The manual coding involved coders watching basketball 

games online and recording passes and actions by players. The recruiting effort for coders 

began in the fall of 2016 and continued through the end of 2017. The recruiting effort 

involved creating and posting flyers around campus and advertising to students in 

classrooms about the research opportunity. Coders were taken through a training 

designed to orient them to the fundamentals of basketball game play and were trained on 

the critical actions and passes to be recorded. The initial coding effort took more than 18 

months (i.e., fall 2016 into 2018) and 4,000 coding hours, while evaluation of coded 

games for accuracy took approximately 2 years. 

Coders were trained on how to code actions and passing sequences (detailed in 

Data Description). Coders worked closely with researchers on how to code games and 

coded their first few games with a partner – where one individual was watching the game 

and identifying the actions, and the other was tracking the actions in the coding template. 
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A coding template was provided to each coder that broke coding actions into possession 

number, the team that had possession at a given time, and the passing sequence itself. 

Researchers would review the work of the coders during their initial coding phase and 

determine when coders were ready to code independently. At this point, coders were 

responsible for watching the game and capturing each action into the coding spreadsheet. 

Researchers would periodically spot-check the quality of the coding throughout the 

coding process and work with coders to resolve any issues in coding.  

 Player and team data were scraped from Basketball-Reference (www.basketball-

reference.com) for players in the 2016-2017 NBA season to obtain information on player 

position (i.e., point guard, shooting guard, small forward, power forward, and center) to 

answer research questions focusing on nodal attributes. Team data includes home versus 

away status for each game and wins/losses which provided information in answering 

research questions focusing on the impact of team context and outcomes. 

Data Description 

This study utilized manually coded basketball passing data and publicly available 

data from the 2016-2017 NBA season. A total of 1,309 games were played in the 2016-

2017 NBA reason. Specifically, the data consists of passes completed and actions taken 

by players for each team within a single game across an entire season, resulting in 

approximately 1.2 million recorded actions. These actions include offensive and 

defensive actions, as well as passes between players.  

Table 17 shows key actions and their related codes used in data collection for 

recording actions during a possession. This list represents all possible actions that players 

can take throughout the course of a game. Offensive actions include field goals, free 
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throws, and offensive rebounds. Field goals are any shot scored by players that is not a 

free throw. There are two types of field goals: two-point field goals and three-point field 

goals. Three-point field goals are taken from outside of the arc on a court, and two-point 

field goals are taken from inside of the arc. There are two possible outcomes for field 

goals: attempted and made. Attempted field goals are unsuccessful shots and are denoted 

in this study as “FGA-” (field goal attempt). Made field goals are successful shots and are 

denoted in this study as “FGM-” (field goal made). The hyphen following “FGA” or 

FGM” represents the type of field goal: two-point or three-point. Two-point field goals 

will be followed with a “2,” and three-point field goals will be followed with a “3.” Shots 

that are taken because of a team committing a foul, or the illegal personal contact a player 

makes, are known as free throws. Free throws are classified as “FTM-” where the hyphen 

represents the number of successful free throws, which can range from zero to three. 

Offensive rebounds occur when the offensive team secures a rebound and maintains 

possession of the ball. Offensive rebounds are denoted as “ORB.” 

Defensive actions include turnovers and defensive rebounds. There are two types 

of turnovers that can occur: live ball turnovers and dead ball turnovers. A live ball 

turnover, also known as a “steal,” occurs when the defensive team secures the ball from 

the offensive team without stopping the clock (e.g., without the ball going out of bounds 

or committing a foul). Live ball turnovers are denoted as “LBT.” A dead ball turnover 

occurs when the offensive team touches the ball out of bounds or commits an offensive 

foul, thus turning possession over to the defensive team. This is referred to as a “DBT.” 

The final defensive action is a defensive rebound, or a “DRB,” which occurs when the 
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defensive team secures a rebound from a shot taken by the offensive team, shifting 

possession from the offensive to the defensive team. 

Other actions not directly related to specific offensive or defensive actions include 

the ball going out of bounds, a jump ball, a live ball, a personal foul, a technical foul, a 

flagrant foul, and a time out. Out of bounds, or “OB” occurs when the defensive team hits 

the ball out of bounds during an offensive team’s possession. A jump ball, or “JB,” 

always occurs at the start of the game to determine who has first possession and can 

occur at other points throughout the game if it is unclear who should have possession of 

the ball. A loose ball, or “LB,” occurs when the offensive team loses control of the ball, 

and both teams are fighting to secure a possession. Fouls can occur at any point in a game 

and can be classified as one of three types: personal fouls, technical fouls, and flagrant 

fouls. Personal fouls (“PF”) are the least severe of the three and occur whenever a player 

commits a violation on an opposing player that limits a player’s ability to move, score, or 

perform an action. Technical fouls (“TF”) occur when there is no physical contact 

between players, but rather unsportsmanlike conduct occurs. Flagrant fouls (FF) occur 

when there is excessive or violent contact by a player that could result in injury for the 

player being fouled. There are two types of flagrant fouls: Flagrant 1 (“FF1”) is a foul 

that is considered unnecessary, and Flagrant 2 (“FF2”) is an unnecessary foul that 

includes excessive force. FF2 results in the player who committed the foul to be ejected 

from the game entirely. 

Data were also collected on the passing actions taken by players. Table 18 

provides a sample sequence recorded from a game played between the Golden State   
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Table 17 

Key Action Codes for Recording Actions During a Possession 

Action 
Type 

Action 
Code Action Description 

Offensive FGA2 Two-point field goal attempt missed 
FGM2 Two-point field goal made 
FGA3 Three-point field goal attempt missed 
FGM3 Three-point field goal made 
FTM Free throws made (followed by the number of successful free 

throws) 
ORB Offensive rebound 

Defensive DBT Dead ball turnover (change of possession from: ball out of 
bounds on offensive team, offensive foul, offensive lane 
violation) 

LBT Live ball turnover 
DRB Defensive rebound 

Other OB Out of bounds, same team possession 
JB Jump Ball 
LB Loose Ball 
PF Personal Foul 
TF Technical Foul 
FF Flagrant Foul (followed by a one or a two to represent FF type; 

FF1= player who committed the FF remains in game; FF2 = 
player who committed the FF is rejected from game) 

TO Time out 
 

Warriors (GSW) and the Los Angeles Clippers (LAC) to highlight the nuanced level of 

detail captured through this data recording process. The data set is organized into three 

columns: (1) possession number; (2) team with possession of the ball; (3) possession 

sequence, which includes who passed to whom (with numbers representing player jersey 

numbers) and the actions taken by each player. For example, possession #1 tells us the 

following: (1) for the first possession of the game, (2) the Golden State Warriors took the 

following actions: (3) player #30 passed to player #11, who passed to payer #27, to #35, 

to #30, back to #27, to #35 who attempted a two-point field goal (FGA2) in which the 

opposing team had a defensive rebound (DRB). This level of detail provides insights into 
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basketball teamwork rather than solely using the sum and average number of actions 

taken by players on a team. 

Table 18 

Sample Sequence of Five Possessions From GSW-LAC 

Possession  Team Possession Sequence 

1 GSW 30-11-27-35-30-27-35-FGA2-DRB 
2 LAC 25-12-FGA2-ORB-OB-32-25-32-FTM1 
3 GSW 23-FGA2-ORB-30-FGM2 
4 LAC 25-6-32-25-FGA3-DRB 
5 GSW 35-FTM2 

 
 The intricate detail of what occurs, for example, between GSW’s #30 and the 

defensive rebound (DRB) that concludes their possession provides a partial movie of 

game play: GSW’s strategy for their first possession was to move the ball around the 

court by passing to four out of five of their total players on the court that eventually 

resulted in a failed shot. However, in their second possession (possession #3 in Table 18), 

only two players possessed the ball, and although the first part of the possession resulted 

in a failed shot, the second part of the possession following the offensive rebound (ORB) 

resulted in a successful shot. The differences in these sequences represent the variety of 

game play by teams, providing an opportunity for teams to evaluate the success of their 

game play strategies and adapt their strategies accordingly.   

Data Vetting 

The data were vetted to assess the quality of manually coded data. The vetting 

process was as follows: 

(1) Created a list of “permissible codes”, which includes true action codes that 

could be recorded during a game, and the player numbers for all active 



DYNAMIC NETWORK MODELS  83 
 

members of the 2016-2017 NBA season. Permissible codes include all actions 

listed in Table 17, plus “EOQ” representing the end of a quarter, and the 

following jersey numbers representing active players in the 2016-2017 NBA 

season: 00, 0-51, 54-55, 77, 88, 90-92, 95, and 99. 

(2) Extracted all action codes and player numbers that were not in the list of 

permissible codes, along with the action/player number, game number, and 

team name. 

(3) Identified abnormal patterns that existed in sequences, such as a “DRB” 

(defensive rebound) occurring in the middle of a sequence rather than at the 

end (DRB is a code that concludes a possession, therefore it can only exist if it 

is the final action at end of a sequence). 

(4) For each extracted item or abnormal pattern identified, video clips were 

watched of the original games to recover the true actions/player numbers 

responsible for actions and the passing sequences were updated to reflect true 

actions. Figure 15 represents an example of transforming a non-permissible 

action recorded for a game.  

A total of 1,267,824 total codes, including both player passing and actions, 

constitute the 2016-2017 season across the 1,309 games. The data vetting process was 

concluded when there was a sufficient match between game-level statistics computed 

from the manually coded sequences and official NBA box score statistics. A sufficient 

match was assessed using total field goal attempts (FGA; both two-point and three-point 

shots) taken by players in each game. A mismatch between manually coded and NBA 

recorded field goal attempts were assigned to one of four categories: 0 incorrectly coded   
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Figure 15 

Replacing Non-Permissible Code Process 

 

Figure 15. Example identification and transformation of non-permissible action codes. 
 

FGAs, 1-5 incorrectly coded FGAs, 6-10 incorrectly coded FGAs, and 11-15 incorrectly 

coded FGAs, with 15 incorrectly coded FGAs in a single game serving as the maximum 

allowance of mismatch. Data vetting was complete when all of the manually coded 

games had less than 16 FGAs incorrect relative to the NBA recorded data. Of the coding 

categories, approximately 11% of games had 0 incorrectly coded FGAs, 67% of games 

had 1-5 incorrectly coded FGAs, 17% of games had 6-10 incorrectly coded FGAs, and 

4% of games had 11-15 incorrectly coded FGAs. 

Data Transformation 

The possession sequences for each team for each game required transformation 

into edge lists for two of the analytical methods (STERGM, SAOM), which creates a row 
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for each dyadic connection between two individuals. This transformation and all other 

analyses were completed using R (R Core Team, 2019) via RStudio (RStudio Team, 

2016) using the following packages: “tidyverse,” which includes “ggplot2,” “dplyr,” 

“tidyr,” “readr,” “purr,” “tibble,” “stringr,” (Wickham, Averick, Bryan, Chang, 

McGowan, François, Grolemund, Hayes, Henry, Hester, Kuhn, Pedersen, Miller, Bache, 

Müller, Ooms, Robinson, Seidel, Spinu, Takahashi, Vaughan, Wilke, Woo, & Yutani, 

2019); “sna” (Butts, 2020); “dils” (Honaker, King, & Blackwell, 2011); “psych” 

(Revelle, 2020); “qgraph” (Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom, 

2012); “tidygraph” (Pedersen, 2020); “rem” (Brandenberger, 2018); “relevent” (Butts, 

2015); “statnet” (Handcock et al., 2018); “RSiena” (Ripley et al., 2021); “rvest” 

(Wickham, 2020). Figure 16 provides an overview of the data transformation process 

from raw data to edge lists. The edge list transformation process is as follows, using a 

single game as an example: 

(1) Starting with the first possession of a game, split the possession sequence into 

each individual action. 

(2) Iterating over the length of total actions within a possession, extract the player 

actions taken that are not passes. 

(3) For each team, split the sender-receiver actions into two columns using the 

hyphen between players (representing passes) into a new data frame: “Sender” 

and “Receiver,” respectively. The new data frame represents an edge list such 

that for each action taken, there is a sender of a pass and a receiver of a pass. 
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Figure 16 

Transformation from Raw Data to Edge List 

 
 
Figure 16. Example transformation from GSW first possession in raw data form into Sender-Receiver edge 
list. Sequences are transformed one at a time, extracting passing information and splitting individual passes 
into dyadic Sender-Receiver observations. 
 

This process iterated over all 1,309 games in the 2016-2017 NBA season. There is 

an edge list for each quarter played in each game for each team, resulting over 10,000 

individual edge lists for analysis (2,618 dynamic edge lists, with each dynamic edge list 

for each game/team combination being comprised of one edge list per quarter). For REM 

analyses, the data remained in their raw form, with each pass ordered sequentially. The 

sequential time stamps are ordinal as there is not a continuous indicator of the time of 

passes.  

STERGM and SAOM required further transformation. These two methods require 

transforming edge lists into adjacency matrices, which consists of a graph with rows and 



DYNAMIC NETWORK MODELS  87 
 

columns representing network actors. STERGM uses weighted connections, requiring an 

edge list with total connections between two individuals. SAOM requires an edge list 

representing only the existence (represented by a 1) or non-existence (represented by a 0) 

of a connection. The transformation process involves extracting individual sender-

receiver relationships for both STERGM and SAOM and summing them for each dyad in 

STERGM (i.e., number of total connections between any two individuals). The extracted 

edges are placed into the cells of a square adjacency matrix, with rows representing 

senders, and columns representing recipients. Figure 17 shows an example 

transformation of an edge list to an adjacency matrix for weighted connections in 

STERGM. For SAOM, cells would only receive values for existence (1) or non-existence 

(0) of a connection. 

Figure 17 

Example Transformation from Edge List to Adjacency Matrix 

 

Figure 17. Example transformation from GSW first possession Sender-Receiver edge list into Sender-
Receiver adjacency matrix. The adjacency matrix for STERGM totals the number of passes between 
Sender-Receiver dyads to create a weighted matrix. 
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Both STERGM and SAOM require aggregating these data into time points. This 

dissertation aggregated data for STERGM and SAOM into quarters, given quarters 

represent natural breaks in game play. As a result, each quarter within a game for a single 

team represented a passing network. Time-based analyses were conducted across an 

entire game for a single team, assessing network and behavioral patterns that occur 

throughout a single game. 

Results 

To analyze the Research Questions I-III (RQ I: What network attributes explain 

how passing relations form within teams across a season? RQ II: What network attributes 

explain how passing relations are maintained within teams across a season? RQ III: What 

are the impacts of player position on passing behavior within teams across a season?), 

STERGM was applied via the statnet package (Handcock et al., 2018). STERGM 

requires specifying network predictions, similar to a regression equation, where the 

dependent variable is the network and the independent variables are the proposed 

network effects. Weighted networks were used to conduct STERGM analyses in this 

dissertation. For Research Questions I-III, two models were specified. Model 1 included 

an edges term (to control for overall network density), a mutual term (reciprocity), and a 

transitive term (assessing triangles in a network) to answer RQs I and II. Model 2 

included an edges term and a nodal covariate, nodeifactor, to answer RQ III. Nodeifactor 

assesses the impact a factor (in this analysis, player position) has on receiving 

connections (i.e., passes). Table 19 provides a visual for each of the terms used.  
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Table 19 

Model 1 and Model 2 Network Attributes 

Effect Model Term Description Visual 

Reciprocity 
Mutual (referred to as 
mutual ties) 

Probability of an edge 
forming increases if it 
closes a mutual pair 

 

Transitivity  Transitiveties (referred 
to as transitive ties) 

Probability of an edge 
forming increases if it 

closes a triad 

 

Shared nodal 
attribute 

nodeifactor.Position.x* 
(referred to as position) 

Probability of an edge 
forming increases based 
on positional attribute 

 

*Note: The referent position is Center and x = one of four positions: shooting guard (SG), point guard 
(PG), small forward (SF) or power forward (PF).  
 

STERGM requires defining appropriate time periods for data aggregation. Given 

STERGM requires panel network data, and basketball quarters create natural breaks in 

game play, each game was broken into quarters and transformed into quarter-networks by 

team, resulting in 2,618 dynamic networks with anywhere between four and six networks 

for each game (for each quarter played, resulting in over 10,000 individual networks for 

analysis). Figures 18-21 show four networks from two games where the Golden State 

Warriors (GSW; the best NBA team in the 2016-2017 season) played against the New 

York Knicks (NYK; the worst NBA team in the 2016-2017 season) to show variance in 

strategies adopted by teams.  
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Figure 18 

NYK Game 1 Against GSW 

 

Figure 19 

GSW Game 1 Against NYK 
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Figure 20 

NYK Game 2 Against GSW 

 

Figure 21 

GSW Game 2 Against NYK 
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STERGM models use conditional maximum likelihood estimation (CMLE) to 

estimate model terms given the data are network panel data without duration information 

(Statnet Development Team, 2021). Model 1 was used to assess RQs I and II given it 

included network attributes (as opposed to nodal attributes). Table 20 shows output from 

Model 1 for the two sample games (NYK vs GSW). In the first game played between 

NYK and GSW, the mutual tie formation (Form~Mutual Ties) coefficient for NYK is 

positive (b = 2.10), indicating there is an 89% chance a relation will form between 

players during the game if it closes a mutual pair. The mutual tie formation coefficient for 

GSW is also positive (b = 2.20), indicating there is a 90% chance a relation will form 

between players during the game if it closes a mutual pair. The transitive tie formation 

(Form~Transitive Ties) coefficient is positive for both NYK and GSW; however, there is 

a higher chance a relation will form between players during the game if it closes a 

triangle for NYK (86% chance; b = 1.83) compared to GSW (65% chance; b = 0.63). The 

positive mutual tie persistence (Persist~Mutual Ties) coefficients indicate there is an 84% 

chance for NYK (b = 1.64) and a 72% (b = 0.93) chance for GSW that a relation will 

persist (i.e., be maintained) over time when it closes a mutual pair. Lastly, the positive 

transitive tie persistence (Persist~Mutual Ties) coefficients indicate there is a 64% 

chance for NYK (b = 0.57) and a 77% chance for GSW (b = 1.23) that a relation will 

persist over time when it closes a triangle. 

Table 20 

STERGM Results for NYK vs GSW  

  NYK 1 GSW 1 NYK 2 GSW 2 

Form~Edges -3.93 (0.78)*** -3.10 (0.31)*** -3.62 (0.31)*** -3.36 (0.39)*** 
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  NYK 1 GSW 1 NYK 2 GSW 2 

Form~Mutual Ties 2.10 (0.42)*** 2.20 (0.39)*** 1.54 (0.36)*** 1.69 (0.34)*** 

Form~Transitive Ties 1.83 (0.75)* 0.63 (0.29)* 1.21 (0.29)*** 1.24 (0.37)*** 

Persist~Edges -1.82 (0.30)*** -2.02 (0.29)*** -1.96 (0.31)*** -2.95 (0.38)*** 

Persist~Mutual Ties 1.64 (0.62)** 0.93 (0.63) 1.82 (0.73)* 1.60 (0.76)* 

Persist~Transitive Ties 0.57 (0.26)* 1.23 (0.30)*** 0.82 (0.30)** 1.74 (0.43)*** 

Iterations 8 9 14 15 

AIC 364.67 436.57 434.86 435.93 

BIC 387.98 462.18 461.48 461.54 

***p < 0.001; **p < 0.01; *p < 0.05 

 

For the second game played between NYK and GSW, the mutual tie formation 

coefficients indicate there is an 82% chance for NYK (b = 1.54) and an 84% chance for 

GSW (b = 1.69) that a relation will form between players during the game it closes a 

mutual pair. The transitive tie formation coefficients indicate there is a 77% chance for 

NYK (b = 1.21) and a 78% chance for GSW (b = 1.24) that a relation will form if it 

closes a triangle. The mutual tie persistence coefficients indicate there is an 86% chance 

for NYK (b = 1.82) and an 83% chance for GSW (b = 1.60) that a relation will persist if 

it closes a mutual pair. Lastly, the transitive tie persistence coefficients indicate there is a 

69% chance for NYK (b = 0.82) and an 85% chance for GSW (b = 1.74) that a relation 

will persist if it closes a triangle. 

These results suggest in the first game played between NYK and GSW, similar 

passing strategies were used by players in different teams. However, NYK was more 

likely to use passing between three individuals (transitive ties) as a strategy at some point 

during game play relative to GSW (formation), whereas GSW was more likely to use 
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transitive passing as a consistent strategy quarter to quarter relative to NYK (persistence). 

The key difference here is between the formation and persistence of transitive passes: 

NYK was more likely to use transitive passing at some point during game play 

(formation) whereas GSW was more likely to use transitive passing throughout game 

play (persistence). When time is considered, a difference in transitive strategies between 

the two teams emerged. GSW was more likely to use transitive passes across time in their 

second game against NYK as well. Considering GSW won both games played against 

NYK (by 7 points in Game 1 and 13 points in Game 2), leveraging transitive passing 

strategies may be a viable strategy for positive team outcomes. 

To address RQs I-II, model coefficients from Model 1 for all 2,618 dynamic 

network models were plotted over a season (shown in Figure 22). In general, these teams 

demonstrate similar patterns across the season assessed, with mutual tie formation 

emerging as the network attribute with the highest probability across the season (M = 

0.83, SD = 0.07), followed by mutual tie persistence (M = 0.77, SD = 0.16), transitive tie 

formation (M = 0.67, SD = 0.09), and transitive tie persistence (M = 0.66, SD = 0.14), as 

shown in Table 21. Moreover, the edges terms for both the formation (M = 0.05) and 

persistence (M = 0.16) models are much lower than the mutual and transitive tie terms in 

Model 1, which highlights the increased importance of mutual and transitive passing 

relations relative to general passing behavior. This suggests that passing relations are 

likely more strategic than sending passes at random, and that a dominant player (e.g., a 

point guide) simply passing to other players is not a sufficiently effective strategy of 

gameplay.  
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Figure 22 

Model 1 Edge Probabilities by Team Across a Season 

 

Figure 22.  Coefficients from Model 1, which includes edges, mutual and transitive ties for both tie formation and persistence, are plotted for each team across 
the 2016-2017 NBA season by game number. Model coefficients have been transformed to represent edge probabilities for simplified interpretation. Solid lines 
represent formation coefficients; dotted lines represent persistence coefficients.
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Figure 23 visualizes the proportion of game/team combinations that meet five 

probability thresholds (i.e., 50%, 60%, 70%, 80% and 90%) across the season to further 

examine prominent model terms. Game/team combinations represent a single game 

played by a single team. For example, one game/team combination is GSW’s first game 

played, and GSW will have a game/team combination for every other game they play. 

Each team will have a game/team combination for each game they played during the 

regular season, resulting in 2,618 total game/team combinations. While more than 80% of 

the game/team combinations (i.e., dynamic networks) analyzed had network patterns 

likely explained by all four analytical model terms (Form~Mutual Ties, Form~Transitive 

Ties, Persist~Mutual Ties, Persist~Transitive Ties), the prevalence of certain model terms 

decreases with stricter probability thresholds. Terms for mutual tie formation generally 

remain the most prominent for all game/team combinations, with 95% of observed 

networks producing coefficient probabilities greater than 0.70. Terms for mutual tie 

persistence follow a similar pattern, with 75% of networks observed producing 

coefficients greater than 0.70. Only 36% and 39% of networks produced coefficients 

greater than 0.70 for the formation and persistence of transitive ties, respectively, 

suggesting these strategies are less common across teams throughout a season. 

Table 21 

STERGM Output Descriptive Statistics 

Coefficient M SD Median 
Form~Edges 0.05 0.04 0.04 
Form~Mutual Ties 0.83 0.07 0.84 

Form~Transitive Ties 0.67 0.09 0.67 
Persist~Edges 0.16 0.06 0.16 
Persist~Mutual Ties 0.77 0.16 0.81 
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Persist~Transitive Ties 0.67 0.15 0.68 
 

These results suggest that when assessing network attributes for all 30 teams 

across all games played, teams are highly likely to use forming and maintaining mutual 

passing relations as a strategy during gameplay. As evidenced in Figure 22, there is a 

small amount of variation across teams across the season for the network attribute 

coefficients assessed. In an attempt to parse out nuanced differences amongst teams for 

network attribute coefficients, a hierarchical cluster analysis was conducted. Cluster 

analyses are used to reduce a large set of observations into homogenous groups 

(Beckstead, 2002). Hierarchical cluster analysis is particularly well suited when the 

number of groups for clustering is unknown a priori. Conducting a hierarchical cluster 

analysis requires creating a dissimilarity matrix, which assesses the distance between 

each data point based on Euclidean distance, or the square root of square discrepancies 

between two data points summed over all features measured (Beckstead, 2002). For each 

team, data were arranged by game number (82 total games) and model coefficient (3 total 

coeffects – Edges, Mutual Ties, Transitive Ties) for both the formation and persistence 

models (2 total models) to assess if similar season-wide strategies were deployed by 

teams, resulting in a 30 by 492 matrix (30 teams x 82 games x 6 model coefficients) for 

the cluster analysis.  

The method used to generate clusters was Ward’s (1963) which deploys a sum of 

squares method to minimize the distance to the center of a cluster within clusters and 

maximize the distance to the center between clusters. The distances obtained were 

centered to ensure data were internally consistent to enable adequate comparison. Figure  
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Figure 23  

Model 1 Game/Team Combinations and Probability Thresholds  

 

Figure 23. Figure 23 includes five probability thresholds to demonstrate the proportion of game/team 
network combinations that meet each threshold. For example, 100% of game/team combinations reached at 
least 50% probability for mutual tie formation coefficients, suggesting each team has at least a 50% chance 
of mutual ties forming at some point during game play.   

 

24 shows a scree plot of the distances between clusters based on the number of groups 

used for analysis, which demonstrates the smaller distance between clusters as the 

number of clusters increases. There is no formal stopping criterion for hierarchical cluster 

analysis as it is designed to be an exploratory method to make sense of data (Bratchell, 

1989). Typically, the elbow of a scree plot can be used to select the optimal number of 

clusters. However, given the minimal differences across teams across a season, the scree 

plot “elbows” in more than one place, specifically at both two and four clusters. If two 

clusters were chosen, there would be one cluster of two teams, and a second cluster of 28 

teams. If four clusters were chosen, there would be two clusters of a single team, one 
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cluster of six teams and one cluster of 20 teams. Given the exploratory nature of this 

research and the disproportionate clusters if only two or four groups were selected, three 

clusters were selected for further examination.  

Figure 24 

Scree Plot for STERGM Model 1 Hierarchical Clustering  

 

Figure 24. Scree plot demonstrating the decline in distance between clusters as the number of clusters 
selected increases. 
 

The dendrogram in Figure 25 summarizes the clustering output and visualizes the 

three clusters selected based on all 30 teams. Cluster 1 contains 22 teams (CHA, DEN, 

DAL, MIA, BKN, LAL, ATL, SAS, IND, ORL, UTA, MIL, PHX, BOS, NYK, CHI, 

GSW, SAC, CLE, LAC, NOP, TOR), Cluster 2 contains six teams (DET, MIN, OKC, 

PHI, MEM, POR) and Cluster 3 contains two teams (HOU, WAS). Descriptive statistics 

for each cluster are shown in Table 22. Generally, data in Table 22 suggest that across the 

entire season (82 games), network patterns present in Cluster 1 are more likely explained 
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by the formation of mutual ties (M = 0.84, SD = 0.06) relative to Cluster 2 (M = 0.82, SD 

= 0.07) and Cluster 3 (M = 0.79, SD = 0.07).  

Figure 25 

Dendrogram of Model 1 Cluster Analysis for All Teams 

 

Figure 25. Dendrogram from Model 1 hierarchical cluster analysis showing the three selected clusters. 

 

Table 22 

TERGM Model 1 Cluster Descriptive Statistics  

  Cluster 1 Cluster 2 Cluster 3 
Model Coefficient M SD M SD M SD 
Form Edges 0.05 0.05 0.05 0.03 0.06 0.03 
Form Mutual Ties 0.84 0.06 0.82 0.07 0.79 0.07 
Form Transitive Ties 0.67 0.09 0.66 0.08 0.63 0.06 
Persist Edges 0.16 0.05 0.18 0.05 0.17 0.05 
Persist Mutual Ties 0.78 0.15 0.74 0.15 0.75 0.14 
Persist Transitive Ties 0.66 0.13 0.65 0.12 0.64 0.14 
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A similar pattern is observed for the persistence of mutual relations, such that 

network patterns in Cluster 1 are more likely explained by the persistence of mutual ties 

(M = 0.78, SD = 0.15) relative to Cluster 2 (M = 0.74, SD = 0.15) and Cluster 3 (M = 

0.75, SD = 0.14). Although differences are slight, network patterns present in Cluster 1 

are also more likely explained by the formation of transitive ties (M = 0.67, SD = 0.09) 

relative to Cluster 2 (M = 0.66, SD = 0.08) and Cluster 3 (M = 0.63, SD = 0.06), and the 

persistence of transitive ties (M = 0.66, SD = 0.13) relative to Cluster 2 (M = 0.65, SD = 

0.12) and Cluster 3 (M = 0.64, SD = 0.14). In short, all four key model coefficients (i.e., 

mutual and transitive formation and persistence) are strongest in Cluster 1 relative to 

Cluster 2 and Cluster 3. 

Whereas Table 22 provides an assessment of the three Clusters at an aggregate 

level across the entire season, Figure 26 visualizes how model coefficients change over 

time for teams in each cluster from game to game to further understand similarities and 

differences amongst the observed clusters. Teams in Cluster 2 use similar transitive 

passing strategies to Cluster 1 with Cluster 1 experiencing slightly less deviance in 

mutual formation probabilities across a season. For teams in Cluster 1, the probability of 

forming mutual passing relations is consistently above 80% whereas this value drops 

close to 80% towards the latter half of the season for teams in Cluster 2. Cluster 3 had 

more variability in passing strategies across the season, although the variance is likely 

attributable to the fact that Cluster 3 only contains two teams. The shared passing 

strategies of the two teams in Cluster 3 include a reliance on mutual passing formation 

and persistence, with the persistence of mutual passes increasing mid-season to nearly the 

same probability of mutual passing formation. This suggests that throughout the season, 
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using mutual passing as a strategy for the full duration of a game (i.e., persistence) 

became a more likely explanation of observed passing relations towards the latter half of 

the season.  

Figure 26 

Average Coefficient Probabilities for TERGM Model 1 Clusters 

 

Figure 26. Average model coefficient probabilities across a season for teams by cluster. Solid lines 
represent formation terms, and dotted lines represent persistence terms. 

 

One potential explanation of this is that trust amongst dyads on the team may 

have increased over time, or that mutual passing proved to be a more viable strategy for 

successful team outcomes. The persistence of transitive ties quarter to quarter for Cluster 

3 were highest early- to mid-season, with average probabilities reaching 70% around 
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game 30, then declining for the remainder of the season. A potential explanation for the 

observed pattern for teams in Cluster 3 could be that persistent transitive passing 

strategies were not yielding targeted outcomes, and that as increased pressure for playoffs 

approached towards the latter half of the season, a shift in strategy was needed.  

However, the differences across the season for games and teams are quite small, 

suggesting there are not strong differences between teams across clusters. Networks for 

teams in all three clusters can be explained by the formation and persistence of mutual 

and transitive ties to a similar degree. This hierarchical cluster analysis was intended to 

detect nuanced similarities and differences between teams for the observed games. It 

appears that regardless of team or game played, basketball teams need both two-way and 

three-way passing patterns to be effective. While two-way and three-way passing patterns 

may emerge in different ways for different teams, this analysis is not sufficiently granular 

to highlight exact differences between these teams.  

 Research Question I and II were posed to assess what network attributes explain 

how passing relations form and persist within teams across a season. Given the mutual 

term for the formation model is highly probable across teams across the full season (with 

99% of game-team combinations across the season resulting in probabilities at or greater 

than 60%, and 95% of networks resulting in probabilities at or greater than 70%), the 

formation of mutual ties is highly likely to explain how passing relations formed within 

teams throughout games played in the 2016-2017 NBA season. The persistence of mutual 

ties highly probable across teams (with 88% of networks resulting in probabilities at or 

greater than 60%, and 75% of networks resulting in probabilities greater than 70%).  
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Transitive terms also emerged as strong explanatory factors in the observed 

networks, although to a lesser degree than mutual terms. 79% of networks resulted in 

probabilities at or greater than 60% for the formation of transitive ties (with the 

proportion of games reaching 70% probability dropping to 36%). A similar pattern is 

observed for the persistence of transitive ties such that 81% of networks observed 

resulted in probabilities at or greater than 60% (dropping to 39% of games that reached 

70% probability). Overall, these results suggest (RQI) that the formation of both mutual 

and transitive passing relations explain the observed networks, with mutual passing 

relation formation emerging as the most likely explanation for network patterns across 

the teams observed. Similarly, they also suggest that (RQII) the persistence of mutual and 

transitive passing relations explain the observed networks, with the persistence of mutual 

relations being a stronger explanation for relationship persistence over time relative to the 

persistence of transitive passing. The formation terms emerging as having stronger 

probabilities relative to the persistence terms (for both mutual and transitive ties) may 

highlight the notion that players involved in forming ties can change quarter to quarter, 

thus potentially capturing substitution patterns. Player substitution, or when an active 

player on the court is substituted with an inactive player from the bench, also reflects a 

change in game play strategy by changing the composition of the team on the court to 

work towards team outcomes. 

Model 2 was used to assess RQIII, which included an edges and nodal attribute 

term for player position. Figure 27 shows sample networks from a game played between 

the Toronto Raptors (TOR) and the Cleveland Cavaliers (CLE) to provide a high-level 

look at differential patterns in passing by player position. Figure 27 suggests small 
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forwards are not central to TOR’s passing network for the observed game, and that power 

forwards, shooting guards and centers may be equally utilized. CLE appears to have a 

more distributed passing model with majority of its players sending and receiving passes, 

irrespective of player position.   

Figure 27 

TOR and CLE Game Network with Position 

  

 Table 23 shows model output for a game played between TOR and CLE as these 

were the top two teams of the Eastern Conference in the 2016-2017 NBA season. When 

assessing nodal attributes, the nodeifactor term, representing the impact of an attribute on 

in-bound passes, uses a baseline category (in this research, the baseline category is the 

center position). The term Position.PF provides a model coefficient that compares the 

likelihood that relation formation is explained by player position comparing passes for 

centers to passes for power forwards (PF), whereas the term Position.PG would compare 

centers to point guards (PG) and so on.  

When assessing the impact of nodal attributes (i.e., player position), models to 

explain network patterns for TOR and CLE produce very different results. Negative 

model coefficients indicate the nodal attribute in question is less likely to explain network  
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Table 23 

Results of STERGM Analyses for Game Between TOR and CLE 

Model Term1 Team 
  CLE TOR  

Form~Edges -2.53 (0.52)*** -1.32 (0.34)***  

Form~Position.PF 1.04 (0.67) -0.27 (0.52)  

Form~Position.PG 1.63 (0.63)** -2.12 (1.07)*  

Form~Position.SF 2.01 (0.73)** -2.21 (0.79)**  

Form~Position.SG 1.16 (0.63) -0.84 (0.49)  

Persist~edges -2.20 (1.05)* -0.62 (0.47)  

Persist~Position.PF 2.04 (1.13) 0.38 (0.62)  

Persist~Position.PG 1.56 (1.13) -15.75 (1085.19)  

Persist~Position.SF 1.95 (1.17) -15.28 (1217.59)  

Persist~Position.SG -0.44 (1.48) -0.30 (0.67)  

Iterations 5 14  

AIC 306.52 286.80  

BIC 343.15 325.67  
***p < 0.001; **p < 0.01; *p < 0.05 
1Note. All position terms are nodeifactor terms, which indicate the impact of an attribute on in-bound passes. 

 

formation. All of TOR’s position formation terms are negative, suggesting centers (i.e., 

the baseline category) have more incoming passes relative to the other positions in the 

formation model. In the persistence model, these patterns remain with the exception of 

the Position.PF term, suggesting that while centers were more likely to receive passes 

throughout the game relative to point guards, small forwards and shooting guards, power 

forwards were more likely to receive passes compared to centers throughout the game 

(although the coefficient is near zero; b = 0.38, probability = 0.59). Overall, these 
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patterns suggest that throughout the observed game for TOR, centers are likely to be at 

the center of the passing networks. However, power forwards are slightly more likely 

than centers to receive incoming passes across the game relative to centers.  

CLE’s results suggest different patterns in passing behavior to explain their 

observed networks. All of CLE’s formation terms are positive, indicating power 

forwards, point guards, small forwards and shooting guards are more likely to receive 

passes relative to centers. The highest coefficient for CLE’s formation model is for 

Position.SF, indicating small forwards had the highest incidence of incoming passes 

relative to centers (b = 2.01, probability = 0.88), followed by point guards (b = 1.63, 

probability = .84). CLE’s persistence model shows a higher likelihood of incoming 

passes for power forwards (b = 2.04, probability = .89), followed by small forwards (b = 

1.95, probability = .88). These results suggest that incoming passes are more prevalent in 

CLE’s passing network for the observed game for small forwards and point guards, and 

that over the course of a game, players occupying power forward and small forward 

positions are more likely to receive incoming passes from other players. These data 

indicate different passing strategies between TOR and CLE based on player position, 

with TOR using a more concentrated passing strategy focused on passing to centers, and 

CLE more likely to use a dispersed passing strategy, utilize small forwards at some point 

in the game, and utilize power forwards and small forwards across the game.  

To assess patterns across teams for the full season, Figure 28 and Figure 29 show 

coefficient edge probabilities by team for the last 23 games played in the regular season 

for the formation and persistence models, respectively. The games were selected based on 

the 2016-20217 season trade deadline of February 18, 2017, to provide an examination of 
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Figure 28 

Model 2 Edge Formation Probabilities by Team 

 

Figure 28. Model 2 (position model) edge formation probabilities across the last 22 games of the regular season. Model coefficients include nodeifactor (in-
bound passes based on nodal attribute) for point guards, shooting guards, small forward, and power forwards, relative to centers. 
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Figure 29 

Model 2 Edge Persistence Probabilities by Team  

 
Figure 29. Model 2 (position model) edge persistence probabilities across the last 22 games of the regular season. Model coefficients include nodeifactor (in-
bound passes based on nodal attribute) for point guards, shooting guards, small forward, and power forwards, relative to centers. 
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stable player positions for each team. In general, the impact of player position varies 

slightly across the observed games for both forming and maintaining passing relations. 

Table 24 provides descriptive statistics for Model 2 terms for the teams across the 

observed games. Formation terms for all positions are at or near 0.50 probability, 

suggesting they are not more likely to explain network patterns than would be expected at 

random. The persistence term for power forwards (PF) (M = 0.55, SD = 0.24) and for 

point guards (PG) (M = 0.55, SD = 0.24) had the highest average probabilities across the 

season for explaining observed network patterns. In general, the persistence of position 

terms resulted in higher probabilities relative to the formation terms, with the exception 

of small forwards (SF). These data suggest that, relative to centers, the persistence of 

passing is more likely to be explained by in-bound passes to power forwards, point 

guards, and shooting guards. The persistence of passing is less likely to be explained by 

in-bound passes to small forwards (M = 0.43, SD = 0.32) relative to centers. These results 

could indicate that across all teams observed, throughout a game, passes are more 

consistently sent to power forwards, point guards and shooting guards relative to centers, 

potentially signaling a universal game play strategy based on player position. However, 

the probabilities are very small (i.e., barely over 50%), suggesting player position in-

bound may not be used as a viable passing strategy for NBA teams.  

Table 24 

Model 2 Term Descriptive Statistics  

Model Term M SD 

Form ~ Edges 0.148 0.095 
Form~ Power Forward (PF) 0.516 0.187 
Form~ Point Guard (PG) 0.508 0.189 
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Form~ Small Forward (SF) 0.508 0.230 
Form~ Shooting Guard (SG) 0.500 0.205 
Persist~ Edges 0.273 0.156 
Persist~ Power Forward (PF) 0.546 0.241 
Persist~ Point Guard (PG) 0.548 0.238 
Persist~ Small Forward (SF) 0.433 0.315 
Persist~ Shooting Guard (SG) 0.524 0.265 

 

 Figure 30 visualizes the proportion of game/team combinations that meet five 

probability thresholds (i.e., 50%, 60%, 70%, 80% and 90%) across the season to further 

examine prominent nodal model terms. Overall, position terms in the persistence model 

resulted in higher probabilities relative to those in the formation model. In the formation 

model, small forwards (SF) had stronger probabilities across a higher proportion of 

games throughout the games observed (with 51% of games reaching at least 50% 

probability for this term). Only half of game/team combinations reach at least 50% 

probability for any position terms for relation formation, suggesting either (1) there is 

variance game to game for teams such that the probability of position impacting network 

behavior varies over time (over a season) or (2) that there is minimal effect of player 

position on relation formation. The persistence model tells a similar story, with 

approximately 50% of game-team combinations reaching at least 50% probability for the 

position terms for power forwards, point guards and shooting guards, and only 40% of 

game-team combinations reaching at least 50% probability for small forwards.  
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Figure 30 

Model 2 Game/Team Combinations and Probability Thresholds  

 

Figure 30. Figure 30 includes five probability thresholds to demonstrate the proportion of game/team 
network combinations that meet each threshold.   

 

Given the variance observed in Figure 28 and Figure 29 and the large standard 

deviations observed when aggregating model output across all teams, a cluster analysis 

was conducted on Model 2 to identify if there were shared passing patterns based on 

position for the teams observed. Similar to the analysis used for Model 1, for each team, 

data were arranged by game number and model coefficient (position) for both the 

formation and persistence models to assess if similar season-wide strategies were 

deployed by teams, resulting in a 30 x 230 matrix (30 teams x 23 games x 10 model 

coefficients). Ward’s method (1963) was used to generate clusters to minimize the 
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distance to the center of a cluster within clusters and maximize the distance to the center 

between clusters. The distances obtained were centered to ensure data were internally 

consistent to enable adequate comparison. Figure 31 shows a scree plot of the distances 

between clusters based on the number of groups used for analysis. Given the data and 

minimal differences across teams across the season, the plot elbows in more than one 

place, at two and four clusters. Given the exploratory nature of this research and to 

balance cluster size (i.e., the number of teams in each cluster), three groups were selected 

to analyze further. 

Figure 31 

Scree Plot for STERGM Model 2 Hierarchical Clustering 

 

Figure 31. Scree plot demonstrating the decline in distance between clusters as the number of clusters 
selected increases. 

 

 The dendrogram in Figure 32 summarizes the clustering output and visualizes the 

three clusters selected based on all 30 teams. Cluster 1 contains 10 teams (BKN, BOS, 

CHI, SAS, POR, UTA, LAC NOP, HOU, MIN), Cluster 2 contains 12 teams (ATL, 
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CHA, CLE, IND, MEM, ORL, PHI, DET, DEN, PHX, MIA, OKC), and Cluster 3 

contains eight teams (MIL, WAS, DAL, NYK, SAC, GSW, LAL, TOR). Descriptive 

statistics for each cluster can be found in Table 23. Generally, data in Table 23 suggest 

that across the games investigated (games 60-82), the average probability that being a 

point guard explains persistent in-bound passing is at least 50% in each cluster, with 

probabilities strongest in Cluster 3 (M = 0.63, SD = 0.28) relative to Cluster 1 (M = 0.50, 

SD = 0.22) and Cluster 2 (M = 0.53, SD = 0.24). Probabilities for in-bound passing based 

on position explaining observed networks were highest for teams in Cluster 3 for the 

remaining positions as well, for both the formation model (MPF = 0.56, SDPF = 0.17; MSF = 

0.54, SDSF = 0.24; MSG = 0.54, SDSG = 0.21) and the persistence model (MPF = 0.62, SDPF = 

0.29; MSF = 0.52, SDSF = 0.36; MSG = 0.59, SDSG = 0.31). 

Figure 32 

Dendrogram of Model 2 Cluster Analysis for All Teams 

 

Figure 32. Dendrogram from Model 2 hierarchical cluster analysis showing the three selected clusters. 
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Table 25 

TERGM Model 2 Cluster Descriptive Statistics  

 
 Cluster 1 Cluster 2 Cluster 3 

Model Coefficient M SD M SD M SD 

Form Edges 0.16 0.20 0.15 0.09 0.13 0.08 
Form Power Forward 0.50 0.19 0.50 0.19 0.56 0.17 
Form Point Guard 0.49 0.19 0.50 0.18 0.54 0.19 
Form Small Forward 0.51 0.19 0.49 0.23 0.54 0.24 
Form Shooting Guard 0.47 0.21 0.49 0.19 0.54 0.21 
Persist Edges 0.30 0.15 0.30 0.16 0.21 0.17 
Persist Power Forward 0.49 0.23 0.55 0.23 0.62 0.29 
Persist Point Guard 0.50 0.22 0.53 0.24 0.63 0.28 
Persist Small Forward 0.44 0.29 0.37 0.31 0.52 0.36 
Persist Shooting Guard 0.50 0.24 0.50 0.25 0.59 0.31 

 

Although differences are slight, the differences observed in Cluster 3 relative to 

Cluster 1 and Cluster 2 may suggest that teams differentially leverage player position as a 

passing strategy. Whereas Table 25 provides an assessment of the three clusters at an 

aggregate level across the entire season, Figure 33 visualizes how model coefficients 

change over time for each cluster from game to game to demonstrate if and how teams 

change their passing strategies based on player position throughout the last 23 games of 

the season. Across the games observed, Cluster 1 had relatively stable passing patterns 

based on player position, with its model term probabilities mainly between 0.45 and 0.55 

and the persistence coefficients for point guards, power forwards and shooting guards 

being highest for game 60 and falling below 50% probability around game 75.  
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Figure 33 

Average Coefficient Probabilities for STERGM Model 2 Clusters 

 

Figure 33. Average model coefficient probabilities across a season for teams by cluster. Solid lines 
represent formation terms, and dotted lines represent persistence terms. 

 

Teams in Cluster 2 also had relatively stable model terms across the games 

observed with the formation coefficient for point guards, showing the greatest deviation 

from 50% probability, increasing over games 60 to 67, then dropping below 50% 

probability around game 72 and steadily increasing again after game 75. This deviation in 

probability could indicate a strategic shift in game play for these teams as playoff games 

approach in the latter portion of the season. Teams in Cluster 2 also saw the lowest 

probabilities for the persistence coefficient for shooting guards, with the values dropping 
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as low as 35% probability around game 72 and increasing only up to 50% probability for 

two games in the observed time period. 

 Teams in Cluster 3 had apparent increases in persistence terms relative to 

formation terms, apart from small forwards, suggesting strategies used tended to be 

maintained across quarters in a game rather than utilized strategically at certain points of 

a game. Probabilities for power forward, point guard and shooting guard were all well 

above 50%, with power forwards reaching the highest probability of all terms at 65% 

around game 70. Compared to Cluster 1 and Cluster 2, formation and persistence terms in 

Cluster 3, excluding small forward, stayed at or above 50% probability across the games 

observed, suggesting teams in Cluster 3 were more likely to leverage player position as 

part of their gameplay strategies. 

Research Question III was posed to assess the impacts of player position on 

passing behavior for teams over time. Given the generally low probabilities across the 

season for the nodal covariate of player position, with only approximately half of game-

team combinations for the networks observed resulting in model terms of at least 50% 

probability of explaining the observed network patterns, player position did not emerge 

as a consistent predictor of network behavior in NBA teams. However, the likelihood of 

player position predicting observed network patterns varies by team, with player position 

being more likely to explain the persistence of passing for a subset of teams (i.e., teams in 

Cluster 3 - MIL, WAS, DAL, NYK, SAC, GSW, LAL, TOR), suggesting player position 

might be used as a passing strategy for only a subset of teams.  

To analyze Research Questions IV and V (RQ IV: How does scoring behavior 

impact passing?; RQ V: What is the comparative importance of network versus behavior 
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change for teams within games?), SAOM was conducted using the RSiena package 

(Ripley et al., 2021). SAOM requires specifying model effects and creating an algorithm 

that will be used to estimate model parameters. The model effects included in SAOM 

(Model 3) were reciprocity, transitivity, covariate-related popularity (hereby referred to 

as recipient scoring), and covariate-related similarity (hereby referred to as scoring 

similarity). Recipient scoring models the degree to which the in-degrees of actors are 

impacted by a covariate and scoring similarity models the degree to which actors prefer 

ties to others with similar values on a covariate. Table 26 provides a visual representation 

of recipient scoring and scoring similarity.  

Table 26 

Model 3 Covariate Terms 

Effect Model 
Term 

Description Basketball 
Applicability 

Visual 

Covariate-
Related 
Popularity 

altX 
(Referred to 
as Recipient 

Scoring) 

Tendency for 
relations to 

form based on 
values of a 
covariate 

Tendency for passes to 
be sent to a player 

based on how much a 
player has scored 

 

Covariate-
Related 
Similarity  

simX 
(Referred to 
as Scoring 
Similarity) 

Tendency for 
relations to 

form based on 
similarity of a 

covariate 

Tendency for passes to 
be sent to a player 

based on how similar a 
sending player’s scoring 

is to a receiving 
player’s scoring 

 

 

SAOM requires defining appropriate time periods for data aggregation. Given 

SAOM requires panel network data, and basketball quarters create natural breaks in game 

play, each game was broken into quarters and transformed into quarter-networks by team, 

resulting in 2,618 dynamic networks with anywhere between four and six networks for 
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each game. As SAOM simulates behaviors that occur between timepoints to explain 

observed data (Leifeld & Cranmer, 2015), it requires post-simulation estimation to check 

for model convergence. Model convergence is achieved when a specified model can 

reproduce the observed behaviors beyond the second time period (Schaefer, 2019). If an 

initial model simulation did not achieve proper conversion (i.e., the t ratio was greater 

than 0.25), the model was re-estimated (Ripley et al., 2021).  

t ratios are used to test for convergence in SAOM and indicate the extent to which 

parameter estimates are stable (i.e., that they converge across simulations) by comparing 

estimated parameter values to simulated parameter values (Kalish, 2020). t ratios close to 

0 indicate simulated parameter values are the same as estimated parameter values. 

Although convergence thresholds are intended to serve as guidelines for convergence 

rather than severe limitations, excellent convergence is reached when the maximum t 

ratio for a model is less than 0.20 in absolute value and individual t ratios for parameter 

estimates are less than 0.10 in absolute value, reasonable convergence is reached when 

the maximum t ratio is less than 0.30 in absolute value, and a model is nearly converged 

when the maximum t ratio is less than 0.35 in absolute value when individual t ratios are 

less than 0.15 in absolute value. t ratios are obtained from deviations in parameter 

estimates. During simulation, parameter values for each model parameter are simulated 

and compared to observed values, which I will refer to as simulated deviations. Each 

parameter has a resulting t statistic, which takes the average simulated deviation of a 

parameter and divides that value by the standard deviation of all simulated deviations 

(Ripley et al., 2021). 
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Table 27 shows the distribution of maximum t ratios across all 2,618 models. 

While on average, maximum t ratios for the models show high average convergence (M = 

2.43, SD = 17.70), the range is quite large, ranging from 0.02 to 758.89. Given the 

skewness of the data, the median may serve as a more meaningful statistic in assessing 

maximum t ratios. The median maximum t ratio across all models was 0.10, a value that 

indicates excellent convergence. Table 28 shows the proportion of models that fell into 

the three convergence thresholds typically used in SAOM. 74% of models met the 

threshold for excellent convergence (< 0.20), 78% of models met the threshold for 

reasonable convergence (< 0.30), and 80% of models met the threshold for near 

convergence (< 0.35). To ensure results interpreted based on non-converged models are 

not misleading (Ripley et al., 2021), and given the exploratory nature of this research, the 

near convergence threshold was used as a filter for sufficient models for analysis (0.35), 

resulting in 529 models (Game/Team combinations) being omitted from further analysis 

(for a total of 2,089 models to further analyze).  

Table 27 

SAOM Overall Model Convergence Descriptive Statistics 

 N Mean SD Median Min Max Range Skew 

Maximum 
t ratios 2,612* 2.43 17.70 0.10 0.02 758.89 758.87 31.64 

*Six models failed to reach convergence, thus failing to produce t ratios. 

Table 28 

SAOM Model Maximum Convergence Thresholds  

Convergence Threshold N Percentage of Models 

Excellent (< 0.20) 1,945 74% 
Reasonable (< 0.30) 2,052 78% 
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Near Convergence (< 0.35) 2,089 80% 
 

Table 29 shows descriptive statistics of individual parameter convergence across 

the remaining 2,089 models. The average value is close to excellent convergence (M = 

0.01, SD = 0.06), with the median demonstrating perfect convergence (median = 0). 

There are also outliers in the data, as shown in Table 30. A vast majority of individual 

parameters demonstrated excellent (90% of model terms) or reasonable (97% of model 

terms) convergence. Model terms that did not reach reasonable convergence were omitted 

from further analysis.   

Table 29 

SAOM Individual Parameter Model Convergence Descriptive Statistics 

 N Mean SD Median Min Max Range Skew 

Parameter t 
ratios 16,775 0.01 0.06 0 -0.35 0.33 0.68 -0.39 

 

Table 30 

SAOM Individual Parameter Convergence Thresholds  

Convergence Threshold N Percentage of Models 

Excellent (< 0.10) 15,074 90% 
Reasonable (< 0.15) 16,218 97% 

 

Table 31 shows output from Model 3 for a sample game played between Boston 

(BOS) and Toronto (TOR). For both BOS and TOR, all terms reached excellent 

convergence (< 0.10 in absolute value) and the maximum convergence ratios were 0.05 

and 0.03 for BOS and TOR, respectively, indicating the simulated model values are close 

to target values. The rate function in SAOM indicates decision timing and assesses the 



DYNAMIC NETWORK MODELS  122 
 

opportunity for actors to make a change between time points. Data in Table 31 suggest 

that on average, BOS players were selected 10 times between timepoints (quarters) 1 and 

2, 8 times between timepoints 2 and 3, and 8 times between timepoints 3 and 4, and TOR 

players were selected 11 times between time points 1 and 2, 7 times between timepoints 2 

and 3, and 4 times between timepoints 3 and 4.  

Table 31 

Sample SOAM Output for TOR BOS 

 BOS TOR 

Coefficient (q) Estimate (SE) t Ratio Estimate t Ratio 

Rate constant (period 1) 10.40 (6.97) 0.03 11.20 (6.43) 0.01 

Rate constant (period 2) 8.18 (3.70) 0.04 7.42 (4.26) -0.02 

Rate constant (period 3) 7.59 (6.53) -0.01 3.90 (1.54) 0.01 

Outdegree (density) -2.16 (0.21) -0.03 -1.57 (0.18) -0.03 

Mutual Ties 2.14 (0.39) -0.05 1.24 (0.30) -0.03 

Transitive Ties  0.27 (0.07) -0.03 0.26 (0.10) -0.03 

Recipient Scoring 0.09 (0.06) -0.05 -0.01 (0.05) -0.03 

Scoring Similarity  0.63 (0.50) 0.04 -0.07 (0.66) 0.02 
 

Positive model coefficients (q) indicate that ties are more likely to occur based on 

an observed effect than without the observed effect, and negative model coefficients 

indicate ties are unlikely to occur based on an observed effect. Model effects can be 

translated into odds through the exp(q) transformation, which informs the odds of adding 

a tie versus not adding a tie based on an observed coefficient. The outdegree parameters 

for both BOS (q = -2.16) and TOR (q = -1.57) are negative, indicating that the density of 

each team’s passing networks decreases over time. However, this parameter primarily 

serves as a control for the density of the network, acting as a model intercept (Ripley et 
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al., 2021). Reciprocity (qBOS = 2.14, TOR qTOR = 1.24) and transitivity (qBOS= 0.27, qTOR= 

estimate 0.26) for both teams are positive suggesting that over time, ties that create 

reciprocated or transitive relations are more likely to be added or maintained for both 

BOS and TOR. More specifically, the odds of adding/keeping reciprocated tie are 8.5 and 

3.5 times the odds of adding/keeping a non-reciprocated tie for BOS and TOR, 

respectively, and the odds of adding/keeping a transitive tie are 1.3 times the odds of 

adding/keeping a non-transitive tie for both BOS and TOR.  

 The recipient scoring term is small for both BOS (q = 0.09) and TOR (q = -0.01), 

with the effect being negative for TOR. Although the effects are small, BOS’s positive 

coefficient suggests that in this game, ties were more likely to be sent to players with 

higher scores and less likely for TOR (although both values are extremely close to zero, 

suggesting minimal effect). Specifically, for TOR, the odds of a player sending a tie to a 

player with a higher success rate of scoring points was as likely as a tie forming 

irrespective of player scores whereas for BOS, the odds of a tie forming based on player 

scores was 1.1 times more likely than ties forming irrespective of player scores. The 

scoring similarity term is positive for BOS (q = 0.63) and negative for TOR (q = -.07), 

suggesting that players were more likely to send passes to players who scored similar to 

them for BOS (e.g., if Player A, the sending player, had scored 10 points, Player B had 

scored 2 points, and Player C had scored 8 points, Player A was more likely to pass to 

Player C given the greater similarity in scoring 10 and 8 points relative to the similarity 

between scoring 10 and 2 points). This impact did not emerge for TOR. For TOR, the 

odds of a tie forming based on player scoring similarity was as likely as a tie forming 

irrespective of passing behavior whereas for BOS, the odds of a tie forming based on 
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scoring similarity was 1.9 times more likely than ties forming irrespective of scoring 

similarity. Overall, these results suggest that for the observed game between BOS and 

TOR, players were more likely to pass to those who sent passes to them initially (mutual 

ties), and BOS players were more likely to pass to players who score similar to them 

(scoring similarity), suggesting creating mutual relations impacts player behavior in both 

teams and BOS players gravitate towards those with similar offensive skill levels. 

Figure 34 shows the patterns of SAOM model coefficients for each team across 

the regular season (82 games). Generally, mutual ties consistently emerged as the highest 

coefficient across games across teams, with the values varying game to game. Scoring 

similarity varies greatly game to game with value magnitude changing over time 

depending on the game. Coefficients for transitive ties and recipient scoring are relatively 

consistent across the season for all teams, with transitive ties being slightly higher than 

recipient scoring, although both values are close to zero.  

Table 32 shows descriptive statistics for model coefficients across game/team 

combinations for the entire season. Typical games will have three periods of simulation 

(one period between quarter 1 and 2, one period between quarter 2 and 3, and one period 

between quarter 3 and 4). Additional periods are simulated for games that go into 

overtime, with Period 4 representing simulation between quarter 4 and a first over time, 

and Period 5 representing simulation between a first and second overtime. On average, 

across the season for all games played by every team, players were selected 14 times 

between timepoints 1 and 2, 11 times between timepoints 2 and 3, 15 times between 

timepoints 3 and 4, 7 times between timepoints 4 and 5, and 3 times between timepoints 5 

and 6 to make a change in their behavior. The drop off in selection for period 4 and 



DYNAMIC NETWORK MODELS  125 
 

Figure 34 

SAOM Model Coefficients by Team Across the Season 

 

Figure 34. Model 3 (SAOM) model coefficient probabilities for each team across the regular 2016-2017 NBA season. 

Mutual Ties 

Transitive Ties 

Recipient Scoring 

Scoring Similarity 
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period 5 may be explained by shorter time allotted within overtime quarters for game 

play (teams only have five minutes of overtime game play compared to 12 minutes of 

regulation game play) and/or teams utilizing select, high-performing players given the 

game stakes in overtime.  

Table 32 

SAOM Model Coefficient Descriptive Statistics  

 N Mean SD Median Min Max 
Rate constant (Period 1) 1,904 13.50 12.60 9.71 1.63 131.00 

Rate constant (Period 2) 1,933 10.50 8.53 8.33 1.94 94.80 

Rate constant (Period 3) 1,861 14.60 15.20 10.20 1.90 152.00 

Rate constant (Period 4) 99 7.29 7.02 5.40 1.55 47.90 

Rate constant (Period 5) 3 3.07 0.33 2.92 2.83 3.45 

Outdegree (density) 1,899 -1.57 0.32 -1.56 -2.86 -0.46 

Mutual Ties 1,881 1.41 0.40 1.38 0.21 3.42 

Transitive Ties 1,821 0.23 0.07 0.22 -0.04 0.55 

Recipient Scoring  1,940 0.01 0.06 0.01 -0.37 0.26 

Scoring Similarity  1,944 0.08 0.51 0.07 -2.02 3.30 

 

The recipient scoring and scoring similarity terms can be used to address RQIV (how 

does scoring impact passing behavior). The average coefficient across all game/team 

combinations for recipient scoring is 0.01 (SD = 0.06), indicating no effect, on average. 

The average coefficient for scoring similarity is 0.08 (SD = 0.51), equating to 1.1 odds of 

players forming ties based on scoring similarity. Given the low average, median and 

maximum values for the recipient scoring estimates and no teams having higher than 

15% of their recipient scoring coefficients reach at least 1.1 odds, surprisingly, higher 

scoring does not result in players receiving more passes. Figure 35 shows the proportion 

of scoring similarity estimates that meet one of five odds thresholds: 1 (no effect), 1.25, 

1.50, 1.75 and 2.0 across teams. All teams have less than 25% of games analyzed 
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reaching 2.0 odds for scoring similarity, with ORL having the highest proportion of 

estimates reaching 1.25 and 1.50 odds (67% and 46% of estimates, respectively). LAC, 

SAS, ATL, and ORL had the highest proportion of estimates reaching 2.0 odds (20%, 

20%, 18% and 18%, respectively). With the exception of ORL, all teams had at least 25% 

of their games fail to reach an odds ratio of 1.0, suggesting for at least a quarter of games 

played, scoring similarity did not have an impact on passing behavior.  

Figure 35 

SAOM Scoring Similarity Estimates 

 

Figure 35. Proportion of odds ratios for scoring similarity estimates by team. 

 

In games where the odds of scoring similarity impacting passing behavior are 

greater than 1.0, a player had a higher chance of receiving a pass from a player who has 

similar scoring behavior, potentially signaling a homophily effect of player behavior. 
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However, given the inconsistent patterns across a season for scoring similarity, and the 

lack of consistent estimates produced for recipient scoring, this research is not able to 

conclude that scoring behavior is a consistent factor impacting changes in network 

behavior. 

To address RQV (what is the comparative importance of network versus behavior 

change for teams within games), the estimates for network terms (mutual and transitive 

ties) were compared to estimates for behavior change (recipient scoring and scoring 

similarity). Across game/team combinations for the games observed, mutual ties (M = 

1.41, SD = 0.40, median = 1.38) and transitive ties (M = 0.23, SD = 0.07, median = 0.22) 

emerged as having higher odds relative to recipient scoring (M = 0.01, SD = 0.06, median 

= 0.01) and scoring similarity (M = 0.08, SD = 0.51, median = 0.07), with mutual ties 

emerging as the strongest estimate. The mutual ties coefficient indicates the odds of 

adding/keeping a mutual tie are 4.1 times the odds of adding/keeping a non-mutual tie 

generally across games. The odds of adding/keeping a transitive tie are 1.3 times the odds 

of adding/keeping a non-transitive tie generally across games. The data suggest that 

mutual ties, rather than network change generally, are more likely to occur consistently 

across games across a season. Given the inconsistent scoring similarity patterns across a 

season and the consistent near-zero recipient scoring values, the behavioral change 

examined for the teams observed is not more likely to occur relative to network change. It 

is possible that mutual passing occurs more naturally, and consistently, during basketball 

game play relative more intentional passing strategies, such as passing to similar scoring 

individuals or passing to higher scorers.  
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Finally, to analyze Research Questions VI-VIII (RQ VI: How do player attributes 

(i.e., player scoring) impact passing sequences? RQ VII: How does team context (i.e., 

home versus away game status) relate to passing sequences? RQ VIII: What passing 

sequences used throughout a game are associated with optimal team outcomes (i.e., team 

wins)?), REM analyses were conducted using the relevent package (Butts, 2015). For 

REM, the dependent variable is an interaction between two actors, and the goal is to 

assess which factors best predict the event’s occurrence based on model effects. Table 33 

shows the five model effects included for REM, which were a covariate effect of player 

scores in each game, and four participation shifts: PSAB-BA, PSAB-BY, PSAB-XY and 

PSAB-AY.  

Table 33 

REM Model Effects 

Effect Model 
Term Description Basketball 

Applicability Visual 

Scores 

covariate 

covInt 
(Referred to 

as Scoring) 

Tendency for 

relations to form 

based on values 

of a covariate  

Tendency for passes 

to be sent or 

received based on 

player scores 

 

Participation 

shift: turn 

receiving 

PSAB-BY 
General turn-

receiving 

relational event 

Tendency for 

passing to shift from 

Player A to Player B 

to Player Y 

 

Participation 

shift: turn 

receiving 

PSAB-BA Mutual ties 

Tendency for 

passing to be 

reciprocataed 

between Player A 

and Player B 
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Participation 

shift: turn 

continuing 

PSAB-AY 
Continued 

relational event 

from A  

Tendency for 

passing to continue 

being sent by Player 

A to other players 
 

Participation 

shift: turn 

usurping 

PSAB-XY Turn claiming  

Tendency for 

passing to be 

claimed by a new 

player in the 

sequence  

 

 

This research treated all possessions within a game for a team as a single, 

continued possession. While each individual possession could be treated as a network or 

possessions could be combined by quarter, this research opted to treat a game’s worth of 

possessions as a single relational event sequence to assess to prominence of the proposed 

model terms throughout an entire game. Although turn usurping (AB-XY) and turn 

continuing (AB-AY) are not possible within a single possession for basketball teams (i.e., 

there must be continuity of passing between players), these terms are used in this research 

given this REM analysis combines all possessions into a single relational event sequence, 

allowing for the possibility of turn usurping and turn continuing between possessions.  

 Residual and model deviance values were used to assess REM fit. Residual 

deviance assesses the extent to which a response variable can be predicted by a model 

with p predictor variables and model deviance assesses the extent to which a REM 

deviates from an ideal model that fits the data perfectly. Of the 2,618 game/team 

combinations analyzed, model deviance for three models exceeded residual deviance, 

suggesting inadequate model fit (NOP game 70, SAC game 65, and MEM game 80). 

These three games were eliminated from further analysis, as were games played beyond 

the season standard of 82 games, resulting in 2,427 games. 
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 Table 34 shows output from Model 4 for a sample game played between Chicago 

(CHI) and Detroit (DET). Model coefficients in REM are maximum likelihood estimates 

(MLE) that represent the odds or chance that a relational event (i.e., a pass) will occur 

based on the coefficient assessed and can be interpreted based on the exponential 

function of the coefficient – the higher a coefficient, the higher the odds that a relation 

will form based on the parameter in question. The scoring (CovInt) term assesses the 

impact that player scoring has on relations being formed in a game, including both 

outgoing and incoming actions (i.e., are relations formed based on how well players are 

scoring?). After accounting for all other effects, relations were slightly more likely to 

form when a player in a pair had high scores compared to a player in a pair having low 

scores for both CHI and DET, with this effect being stronger for DET (MLE = 0.14, SE = 

0.01) than for CHI (MLE = 0.09, SE = 0.01) (although both effects signify weak effects 

given their magnitude). For DET, the odds that relations will be formed in a pair with 

higher scores is 1.15 times the odds of relations being formed in a pair with lower scores. 

Both turn receiving participation shift effects were positive for CHI and DET, suggesting 

reciprocity (PSAB-BA) and three-player continued passing (PSAB-BY) were likely 

effects impacting passing decisions. These effects were stronger for CHI PSAB-BA 

(MLE = 2.90, SE= 0.26) and PSAB-BY (MLE = 1.88, SE = 0.23) compared to DET 

PSAB-BA (MLE = 2.43, SE = 0.31) and PSAB-BY (MLE = 1.78, SE = 0.21). Turn 

usurping (PSAB-XY) was not a significant effect for either team (MLECHI = -1.06, SECHI 

= 0.29; MLEDET = -2.14, SEDET = 0.31) and passes continuously sent from one player to 

a range of other players (turn continuing; PSAB-AY) was only a prominent effect for 

DET (MLE = 0.25, SE = 0.29).  
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Table 34 

Sample REM Output for CHI DET 

 CHI DET 

 Maximum 
Likelihood 
Estimate 

Standard 
Error 

Maximum 
Likelihood 
Estimate 

Standard 
Error 

Scoring (CovInt) 0.09 0.01 0.14 0.01 

PSAB-BA 2.90 0.26 2.43 0.31 

PSAB-BY 1.88 0.23 1.78 0.21 

PSAB-XY -1.06 0.29 -2.14 0.31 

PSAB-AY -0.16 0.36 0.25 0.29 

Residual deviance 1156 - 1335 - 

Model deviance 504 - 625 - 

Win/Loss Loss  Win  

Home/Away Away  Home  

 

 To assess how different passing sequences relate to team context (i.e., home 

versus away status) and team outcomes (i.e., win or lose), t-tests were conducted on this 

game. T-tests are used to test the significance of means between two samples (Gerald, 

2018). Dependent t-tests are used when values in one sample affect the values in another 

sample. Specifically, when members in one group can be used to determine members in 

another group, the samples are said to be dependent. Independent t-tests are used when 

sample values are not matched to values in another sample and are used to compare two 

groups whose means do not depend on the other (Gerald, 2018). Although passing 

behavior for an offensive team (i.e., the passing data observed in these analyses) is 

inherently influenced by the behavior of the defensive team, because there is not a one-

to-one dependence between players in one team to players in another team, as used in 

dependent t-tests, an independent t-test was conducted. For team context, the home team 

(DET; M = 0.49, SD = 1.77) did not have significantly higher MLEs for the five REM 
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parameters assessed relative to the away team (CHI; M = 0.73, SD = 1.61, t(8) = 0.23, p 

= 0.82). For team outcomes, the winning team (DET; M = 0.49, SD = 1.77) did not have 

significantly higher MLEs for the five REM parameters assessed relative to the losing 

team (CHI; M = 0.73, SD = 1.61, t(8) = 0.23, p = 0.82).  

 Figure 36 shows the patterns of REM model coefficients for each team across the 

regular season games, and Table 35 shows descriptive statistics for REM coefficient 

estimates. The data show generally consistent trends in model coefficients for teams 

across games across the season, with mutual ties (PSAB-BA) emerging as the strongest 

effect relative to the other four effects modeled (M = 2.81, SD = 0.41), suggesting that on 

average, the odds of reciprocal passes occurring within a game are 16 times the odds of 

non-reciprocal passes occurring generally across the season. Following PSAB-BA, 

PSAB-BY emerged as the second strongest effect relative to the remaining three effects 

(M = 1.87, SD = 0.35) suggesting that on average, continuous passing from player A to 

player B to player Y (i.e., three-way passing) is 6.5 times the odds of non-continuous 

passing occurring generally across the season. Turn continuing (PSAB-AY) was the next 

strongest effect with an average coefficient of 0.20 (SD = 0.42) and turn usurping (PSAB-

XY) was the weakest effect with an average coefficient of -1.47 (SD = 0.39).  

It is not surprising that PSAB-BA and PSAB-BY are more prominent in the 

model relative to the other two participation shifts (PSAB-AY and PSAB-XY) given the 

nature of the data. Possessions were treated as continuous across a whole game to allow 

for examination of PSAB-AY and PSAB-XY. However, each possession is unique, thus 

instances in which PSAB-AY and PSAB-XY occurred could only exist at the start of a 

new possession, which does not truly model continuous passing behavior. Somewhat 
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surprisingly, the scores covariate was not a significant parameter, hovering around zero 

for all game/team combinations (M = 0.05, SD = 0.04). In response to RQVI (how do 

player attributes (i.e., player scoring) impact passing sequences), the data suggest that, as 

found in SAOM, player scoring does not impact passing behavior. This is not surprising 

given the small effects detected in SAOM for scoring behavior, the stronger effects of 

network versus behavioral network patterns (SAOM), and the prominent effect of 

reciprocity and transitivity in the networks observed (both in SAOM and STERGM).  

Table 35 

REM Coefficient Descriptives Across Teams Across the Season 

 Mean SD Median Min Max 
Scoring (Cov.Int) 0.05 0.04 0.05 -0.27 0.20 

PSAB-BA 2.81 0.41 2.82 0 4.05 

PSAB-BY 1.87 0.35 1.90 -0.33 2.94 

PSAB-AY 0.20 0.42 0.22 -2.14 1.50 

PSAB-XY -1.47 0.39 -1.45 -3.85 0 

 

 To address RQ VII (how does team context (i.e., home versus away game status) 

impact passing sequences), a one-way Multivariate Analysis of Variance (MANOVA) 

was performed to determine the effect of home versus away status on the three prominent 

REM model effects (PSAB-BA, PSAB-BY, PSAB-AY) as MANOVA is used to assess 

significant differences of one or more independent variables (in this case, home versus 

away status) based on a set of two or more dependent variables (in this case, three model 

terms) (Weinfurt, 1995). Table 36 shows descriptive statistics for the three examined 

effects based on home versus away status across the season. The average effect for 

PSAB-BA for home teams was 2.82 (SD = 0.40) and 2.81 (SD = 0.41) for away teams; 
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Figure 36 

REM Coefficients Across the Season 

 

Figure 36. REM coefficient MLEs for each team across the regular 2016-2017 NBA season. 
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the average effect for PSAB-BY for home teams was 1.87 (SD = 0.35) and 1.86 (SD = 

0.34) for away teams; the average effect for PSAB-AY for home teams was 0.19 (SD = 

0.43) and 0.20 (SD= 0.42) for away teams. There was no statistically significant 

difference between home versus away status on the combined dependent variables 

(PSAB-BA, PSAB-BY, PSAB-AY), F(3, 2611) = 0.51, p = 0.67), suggesting team 

context did not impact the passing behavior observed.  

Table 36 

REM Home Versus Away Descriptive Statistics  

 Home Away 

 M SD M SD 

PSAB-BA 2.82 0.40 2.81 0.41 

PSAB-BY 1.87 0.35 1.86 0.34 

PSAB-AY 0.19 0.43 0.20 0.42 

 

 While home versus away status can impact player behavior given home teams 

have a “home court advantage” (Mizruchi, 1985; Entine & Small, 2008; Boudreaux, 

Sanders, & Walia, 2017; Perkins, 2017), this research did not find a link between home 

versus away status and passing behavior for the terms assessed. A possible explanation 

for the insignificant effects could be that home court advantage more closely relates to 

how successful actions are (i.e., points scored) versus passing behavior. Passing is the 

behavior that enables other actions to be taken (such as positioning the ball on the court 

to allow for two- versus three-point shots), so it is feasible that home court advantage best 

supports the success of actions versus the actions taken. In the 2016-2017 NBA season, 

home teams won 763 games compared to away teams winning only 546 games. A chi-

square test of independence was conducted to assess the “home court advantage” on wins 
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versus losses for the 2016-2017 NBA season, which finds that there is a significant 

association between home versus away status and wins and losses, X2(1, N = 2,618) = 

71.29, p = .00). Home teams were more likely to win games than away teams, supporting 

the notion that “home court advantage” positively impacts team outcomes.  

To assess whether passing behavior related to team outcomes and address RQ 

VIII (what passing sequences used throughout a game are associated with optimal team 

outcomes (i.e., team wins)), a logistic regression was performed using the three 

prominent REM model effects (PSAB-BA, PSAB-BY, PSAB-AY) as predictors for 

winning or losing a game. Table 37 shows descriptive statistics for the three examined 

effects based on win or loss status. The average PSAB-BA effect for winning teams was 

2.81 (SD = 0.40) compared to 2.82 (SD = 0.41) for losing teams; the average PSAB-BY 

effect for winning teams was 1.87 (SD = 0.35) compared to 1.86 (SD = 0.34) for losing 

teams; the PSAB-AY effect for winning teams was 0.18 (SD = 0.44) compared to 0.21 

(SD = 0.40) for losing teams.  

Table 37 

REM Win Versus Loss Descriptive Statistics  

 Win Loss 

 M SD M SD 

PSAB-BA 2.81 0.40 2.82 0.41 

PSAB-BY 1.87 0.35 1.86 0.34 

PSAB-AY 0.18 0.44 0.21 0.40 

 

The logistic regression model, shown in Table 38, shows only a single significant 

effect, which is a small, negative effect for the PSAB-AY passing sequence such that, all 

else being equal, the odds ratio of winning a game using PSAB-AY as a passing strategy 
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is 45% lower than not using this strategy (OR = 0.82, 95% CI [0.67, 1.00]). Given the 

non-significant differences in two of the three model terms and the small relation 

between PSAB-AY and winning/losing games, the observed passing strategies did not 

appear to have an effect on team outcomes. This is not entirely surprising given the 

variance in REM coefficients for teams across the season (shown in Figure 36), 

suggesting teams may deploy different passing strategies across games. Moreover, the 

level of granularity used when analyzing relational event sequences may be too nuanced 

to link to higher-level phenomena, such as games won or lost. 

Table 38 

REM Logistic Regression Output  

 ! SE 
Odds Ratio 

(Exp(!)) 
95% CI 

Intercept 0.06 0.30 1.06 [0.59, 1.09] 

PSAB-BA -0.04 0.12 0.96 [0.90, 1.04] 

PSAB-BY 0.05 0.14 1.04 [0.79, 1.39] 

PSAB-AY -0.20* 0.10 0.82 [0.67, 1.00] 

**p < .05, *p = .05 

Discussion 

 The purpose of this dissertation was to provide a descriptive foundation for future 

research using theories of time to study team phenomena by examining behaviors 

responsible for interaction patterns amongst team members and to demonstrate the utility 

of dynamic network models. This research provided a theoretical and mathematical 

description of three dynamic network methods along with providing an analytical 

example of each method used to explore team processes.  
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STERGM 

 STERGM models the temporal evolution of a network by considering an 

observed network based on all previously observed networks, which enables researchers 

to capture dynamic properties that drive network change over time (Guo et al., 2007). 

STERGM is unique in its assessment of how relations form and dissolve as it assumes 

that edge formation and edge dissolution are independent of one another, allowing for 

researchers to examine differential behaviors that drive various outcomes. Using STERM 

analyses, this dissertation found that both mutual and transitive passing relations for NBA 

teams in the 2016-2017 season explain the observed networks. Mutual passing relation 

formation was the strongest factor in predicting network patterns across teams, followed 

by mutual passing persistence, transitive passing formation, and transitive passing 

persistence. These results suggest that across teams across games, there is a strong 

likelihood that mutual passing will occur at some point during the game.  

These results are not surprising given the high interdependence amongst 

basketball players during game play, and the relatively straight forward strategies of 

reciprocating passes and creating transitive relations. Moreover, the persistence of mutual 

passing might suggest that this strategy is used over time throughout gameplay rather 

than being strategically deployed during game play. It is also likely that transitive 

relations will form amongst three players on a team during game play and that these 

relations remain throughout a game. Formation terms generally emerged as having 

stronger probabilities relative to persistence terms. Formation terms suggest that the 

observed relationship occurs at some point during game play. Persistence terms suggest 

that observed relationships are maintained across game play. The stronger prevalence of 
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formation terms may capture substitution patterns during game play. Teams can use 

player substitution as a strategy to change the composition of the team on the court in 

response to opponent strategy or as an intervention strategy when the current team 

composition is not performing well. This can make it difficult to maintain mutual and 

transitive passing relations if players are being substituted in and out as relations are 

forming. These patterns of mutual and transitive passing did not differ across teams based 

on a cluster analysis, suggesting mutual and transitive relations may be inherent in the 

passing structures of highly interdependent teams.  

A supplemental logistic regression was conducted to assess if different passing 

strategies were deployed by winning versus losing teams (see Appendix for additional 

details). Across all game/team combinations, no significant effects were found for 

predicting wins and losses for persistence model terms (i.e., edges, mutual ties, and 

transitive ties), and logistic regression model coefficients were near zero for all three 

terms. However, significant effects were found for formation terms such that increased 

use of the general passing (edges) (OR = 0.37, 95% CI [1.00, 2.76]), mutual passing (OR 

= 0.20, 95% CI [1.11, 1.88]) and transitive passing (OR = 0.49, 95% CI [1.00, 1.50]) 

increase the likelihood of winning games. These results suggest that winning teams may 

more consistently use mutual and transitive passing as a viable game play strategy. 

This research did not identify strong effects for player position on passing 

behavior based on STERGM analyses. Across the season, the persistence of passes being 

sent to power forwards and point guards emerged as the strongest coefficients, especially 

for MIL, WAS, DAL, NYK, SAC, GSW, LAL and TOR. For these eight teams, player 

position partially explains the observed passing behaviors. The higher probabilities of 
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passes sent to point guards is not surprising given their high passing responsibility (i.e., 

point guards typically start plays when a team gains or re-gains possession). It is worth 

noting that a high degree of in-bound passes to point guards throughout game play could 

also reinforce the importance of point guards in re-setting players on the court if deployed 

strategies are not working effectively. For example, if a team tried a strategy in which 

they sent the ball directly to centers, but centers were being heavily defended by the 

defensive team, it makes sense that a center would send the ball back to the point guard to 

re-set and try another strategy, which could represent real-time shifts in game play 

strategy.  

Power forwards also received slightly more passes relative to centers. However, 

the incidence of passing is higher for point guards and power forwards for only a subset 

of teams which may be indicative of game play strategy. Specifically, point guards for 

these teams appear more likely to receive passes during game play which could signal 

greater ball movement on the court (i.e., as opposed to a point guard initiating passes to 

positions with greater scoring responsibility). A higher likelihood of passes to power 

forwards for these teams could also indicate strategic selection of which positions are 

selected to take shots, potentially based on the skill of power forwards or a dynamically 

recognized offensive opportunity for power forwards to have access to the basket based 

on how a team is playing defense.  

The formation and persistence coefficients for each model term for each team 

across a season demonstrates the unique capability of STERGM in modeling temporal 

evolution by differentially specifying formation and persistence passing patterns. While 

the coefficients were not drastically different relative to one another in aggregate, they 
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show how the formation of different relations can be entirely separate from how relations 

are maintained. For example, MIN passing was best explained by the formation of mutual 

passes, followed by the persistence of transitive passes, the persistence of mutual passes, 

and the formation of transitive passes. Given the deviance between mutual formation and 

persistence and the deviance between transitive persistence and formation, the factors that 

resulted in formation likely differ from the factors that resulted in persistence. Perhaps 

during game play, mutual passes occurred strategically given they existed generally 

(formation) but were less likely to persist within each quarter. Alternatively, this could 

demonstrate the notion of substituting team members at the start of the quarter, which 

could inhibit continued passing relations. The larger effect for forming mutual passes 

relative to the other model terms, namely transitive passing, could signal the more 

complex nature of forming transitive relationships. The persistence of transitive passes 

emerged as more prominent relative to the formation of transitive passes which could 

suggest that when transitive passes occurred for MIN during game play, it was more 

likely to occur throughout the entire duration of a game (persistence) rather than just at 

some point during gameplay (formation).  

Another example is the passing patterns that emerged for HOU. For HOU players, 

the formation of mutual passing was the strongest coefficient for the first half of the 

season, but towards the second half of the season, the persistence of mutual passing 

became more prominent. Whereas the first half of the season saw a stronger likelihood of 

mutual passes occurring generally, as observed for all teams across the season, the second 

half of HOU’s season saw a stronger likelihood of mutual passing patterns being 

maintained quarter to quarter. This might suggest a shift in gameplay strategy midseason, 
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potentially a result of increased trust between players, or could suggest changes in 

substitution patterns. This is useful for further understanding the composition of players 

on the court and could allow for examination of which players should play together and 

for how long. These two examples of separating out formation and persistence terms 

highlights areas in which different interaction mechanisms may differentially impact 

team processes. 

SAOM 

SAOM represents network evolution using an actor-based simulation (Ripley et 

al., 2021). While STERGM models the likelihood of events occurring based on observed 

networks, SAOM models how networks evolve between observed timepoints. The actor-

orientation used in SAOM implies all changes in relations are determined by actors 

within the network. This dissertation used SAOM to assess the impact of both network 

and behavioral actions for the observed networks. Behavioral effects were defined based 

on how many points players scored. First, scoring similarity between players was 

assessed (i.e., did more passes occur between players who score like one another). This 

research did not find strong effects for scoring similarity. This is not entirely surprising 

given each player has a unique role on the court and scoring behavior can vary greatly 

between players. Even if two players score similarly, how they score points can be quite 

different. Moreover, scoring behavior is quite variable during game play, and it is 

impacted by contextual variables, such as who is defending a player and the opposing 

team’s defensive strategy. However, behavioral similarity in SAOM can still be applied 

to more theoretically driven research questions focused on homophily, such as how 

gender or occupation impact the formation of groups (Ruef, Aldrich & Carter, 2003). 
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This research also examined how the degree of scoring for each player generally 

impacted passing behavior (i.e., were more passes sent to players who scores more 

points). Although this may seem like a popular strategy (i.e., pass to those who are 

preforming better), this research did not find strong effects for passing to players with 

higher scores. This is somewhat surprising as one can presume that team members that 

are performing well (i.e., scoring more) would be given greater opportunities to continue 

performing well (i.e., be given more passes). A potential explanation is that teams adopt 

passing strategies that involve passing to less-expected players. For example, if a player 

is consistently scoring, the defensive team may be more inclined to defend that player, so 

the offensive team may respond by moving the ball to a player that has a weaker defense 

to increase the chances of scoring success. Another potential explanation relates to the 

nature of SAOM analyses. This approach may overlook the strategies that lead to 

successful and non-successful scoring behavior. For example, if a team deployed a 

strategy to pass the ball to all five players on the court with the fifth player designated to 

take a shot (as this player had the highest success with scoring previously), SAOM would 

treat each pass between the first and fifth player equally, which could result in an 

inaccurate comparison of in-bound passing based on player scoring. SAOM would count 

the first three passes as passes to lower scoring players, and only count the final pass as a 

pass to a higher scoring player, which neglects the strategic path taken to get the ball to 

the highest scoring player. 

SAOM also allows researchers to compare the importance of network versus 

behavioral change within networks. This research included assessing mutual and 

transitive ties as simple network terms to compare to the two behavioral terms (similar 
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scoring and recipient scoring). Given the insignificant effects of the behavioral terms, the 

network terms better explained the observed networks. Specifically, mutual ties emerged 

as the strongest term in the model across games across the season relative to the other 

terms assessed, followed by transitive ties. This pattern follows those found in STERGM 

analyses, providing additional support for the ubiquity of mutual and transitive passes 

amongst NBA basketball teams. It is likely that the nature of this research is a key reason 

for this finding as prior research has found significant effects for behavioral terms after 

controlling for network effects (see Kalish, 2020). This research did not collect detailed 

behavioral data that may have provided more insight into player passing behavior such as 

personality, physical aptitude, or hours of sleep players were playing on. Although the 

behavioral effects evaluated in this dissertation were not strong, this research 

demonstrated the unique capability of SAOM in simultaneously modeling network and 

behavioral actions taken by team members.  

REM 

 Of the three analytical methods examined in this paper, REM most closely models 

behavioral emergence. REM utilizes discrete and continuous data for analysis, assessing 

relational events rather than relational states. This allows for an examination of unique 

actions that occur from one individual to the next, moving analyses beyond the individual 

level to a single interaction. This research used REM to analyze four types of REM 

sequences and address how player attributes (i.e., scoring) impact passing sequences. Of 

the four passing sequences analyzed, PSAB-BA (reciprocity) and PSAB-BY were the 

strongest (PSAB-AY produced small model coefficients and PSAB-XY produced 

negative model coefficients). These results are not surprising given reciprocity was 
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identified as the strongest passing pattern to explain network behavior in both STERGM 

and SAOM. It is also not surprising that PSAB-BY emerged as a strong coefficient. For 

basketball teams, this is a passing sequence in which three players are involved and the 

ball is moved across the players (from Player A to Player B to Player Y). This sequence 

indicates turn continuation, which is necessary for transitivity to occur (which was found 

to be a significant model coefficient in both STERGM and SAOM). PSAB-AY and 

PSAB-XY were included in analyses for demonstration purposes, and their insignificance 

to these results is to be expected. PSAB-AY and PSAB-XY sequences only make logical 

sense for data in which the recipient of an action does not need to be the sender of the 

next action. The continuity of passing sequences used for REM analyses in this 

dissertation allowed these sequences to be modeled, but in basketball game play, it is not 

possible for these sequences to exist. This research also did not find a significant effect of 

player scoring on passing behavior. Player scoring in REM was modeled as a covariate 

effect for both outgoing and incoming actions (Butts, 2015). These results suggest that 

relations are not more likely to form between players based on how well players are 

scoring (i.e., if players are scoring more).  

This dissertation also used REM to examine how team context (i.e., home versus 

away status) relates to passing sequences. Teams can experience a “home court 

advantage” in which home teams have the benefit of operating in a familiar environment 

with minimized travel distances prior to gameplay (relative to away teams) and with fans 

providing social support and motivation throughout a game (Mizruchi, 1985; Entine & 

Small, 2008; Boudreaux et al., 2017). However, this research did not find an effect of 

home versus away status on passing sequences. This is not entirely surprising considering 
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no additional contextual variables were controlled for, and the variables that are theorized 

to link to a “home court advantage” (i.e., social support, motivation, familiar 

environment, travel distance) were not directly assessed in this research. This research 

did, however, provide an illustration of how contextual variables can be integrated into 

REM research by creatively linking different analytical approaches (i.e., REM and 

MANOVA). 

Finally, this research also assessed team outcomes – specifically, what passing 

sequences are associated with optimal team outcomes (i.e., team wins). This research 

found a small, negative effect for PSAB-AY on game wins/losses, suggesting that the 

odds ratio of winning a game using this passing strategy is lower than losing at random 

(50/50 odds). However, given PSAB-AY is not a true possible continuous passing 

sequence for basketball teams, this research does not conclude this as a significant effect. 

A possible explanation for why the other model terms found to be significant in this 

research (such as PSAB-BA and PSAB-BY) did not relate winning or losing games could 

be due a micro versus macro perspective. Multi-level theory highlights the importance of 

time when analyzing multi-level data. Specifically, lower-level phenomena (in this case, 

relational event sequences) have more rapid dynamics relative to higher-level phenomena 

(e.g., team wins or losses) (Kozlowski & Klein, 2000). The nuanced passing sequences 

examined at the interaction level may more readily explain team outcomes at a similarly 

nuanced level (such as at the possession level) compared to higher-level phenomena 

(wins and losses). Alternatively, the lack of relation of these passing sequences to team 

outcomes might suggest that these passing sequences are more generalized to basketball 
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game play for all teams rather than serving as a differentiated competitive advantage for 

winning teams. 

Interestingly, mutual ties (PSAB-BA) analyzed in REM did not relate to team 

outcomes (i.e., wins versus losses), but the formation of mutual ties analyzed in 

STERGM did relate to team outcomes (i.e., winning teams had stronger coefficients for 

forming mutual ties). Similar for passes involving three players, three-player sequences 

(PSAB-BY) modeled in REM were not significantly related to team wins whereas 

transitive relations (the formation of transitive ties) modeled in STERGM did relate to 

team wins. One possible explanation is that STERM highlights how dynamics that impact 

the formation of relations versus the persistence of relations can differ. Specifically, 

STERGM would suggest that forming mutual and transitive ties during game play might 

be deployed strategically in certain quarters for winning teams (versus maintaining 

mutual and transitive ties throughout a game), whereas REM would suggest that using 

mutual passing (PSAB-BA) or three-player passing (PSAB-BY) continuously throughout 

a game is not a differentiating strategy for winning teams. This difference in strategy 

success for seemingly similar model terms highlights the utility of using multiple 

analytical approaches when studying team processes. 

Theoretical Implications 

 Organizations and organizational researchers can benefit from the three dynamic 

network models studied in this dissertation. Teams researchers frequently use the I-P-O 

and IMOI frameworks to facilitate the study of teamwork (Hackman, 1987; Ilgen et al., 

2005). However, empirical research lags with respect to rigorously measuring and 
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assessing team processes over time. Leenders and colleagues (2016) highlight four key 

limitations to the empirical investigation of teamwork that this research addressed. 

 A first limitation to studying team processes is measuring team process as an 

aggregated summary index (Leenders et al., 2016). This dissertation identified three 

dynamic network methods that minimize data aggregation and instead use more granular 

behavioral data. STERGM and SAOM are time-based analyses that require some 

aggregation of data (i.e., creating edgelists that capture connections between two 

individuals within a specified time frame), avoiding the need for a single summary 

statistic to represent a team. REM requires no aggregation of data, protecting the 

granularity of the raw observed data. Limiting the aggregation of team data helps to 

protect researchers against losing any critical details from aggregation. The nuanced data 

and limited aggregation used in this research allowed for the detection of various 

relational strategies (e.g., mutual ties, transitive ties) at a dyadic level that otherwise 

could be lost by aggregating self-reported data on relations that formed within the teams 

observed. 

 A second limitation to studying teamwork is assuming homogeneity of 

interactions between all team members (Leenders et al., 2016). When interactions are 

aggregated to represent a team, information on individual and dyadic behavior is lost. 

This dissertation showed the importance of mutual and transitive passing relations, which 

focus on behavior between two and three individuals, respectively. Moreover, for a select 

few game/team combinations, the persistence of in-bound passes to point guards slightly 

explained observed network behaviors, highlighting the importance of recognizing 

individual differences in team behavior. By taking individual-level constructs and 
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assessing their impact at a team level, rather than using a single summary index to 

represent a group of diverse individuals, these dynamic network models allow for an 

investigation of how individual behaviors differentially evolve over time amongst 

different individuals. While this research did not find strong, consistent effects of player 

position or scoring behavior on passing behavior, the three methodologies assessed in this 

research provide researchers with a way to assess how individual attributes impact 

interdependent behaviors within teams.  

 A third limitation of studying teamwork this research addressed is the reliance on 

underdeveloped theories of teamwork with respect to time scales (Leenders et al., 2016; 

Mitchell & James, 2001). Typically, empirical studies measure teamwork for only a few, 

poorly specified performance episodes, which may result in missing critical information 

on how team members perform their work over time. To truly capture team process, 

researchers must consider the most appropriate methods for studying intricate behaviors 

at the lowest level possible to assess the emergence of behaviors throughout performance 

episodes. By capturing data at the most granular level, researchers have the flexibility to 

identify the most appropriate timepoints for aggregation when necessary (i.e., when using 

STERGM and SAOM) or to leverage interaction-level data to understand behavioral 

evolution over time (i.e., when using REM). STERGM and SOAM provide an 

examination of how relationship formation and maintenance between any two individuals 

evolves over time, which can provide information on team processes altogether. REM is 

the most sophisticated of the three dynamic network methods studied with respect to time 

given its use of continuous data. Since no data aggregation is required, REM enables 
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researchers to explore how team processes unfold, action by action, which provides a 

detailed look at constantly evolving team strategies over time.  

A fourth limitation of studying teamwork is assuming repeated measurements capture 

team process more granularly (Leenders et al., 2016). Repeated measurements of 

aggregated team processes and interactions may provide some insight into aggregated 

contemporaneous and lagged effects, but it does not provide granular information on how 

team members accomplish their work. While STERGM and SAOM treat data as 

longitudinal panel data during analysis, fine-grained individual and relational data can be 

used to create a set of panel data. There are infinite options when creating panel data 

based on such nuanced individual-level data – an approach which is not possible to do 

when only a single observation is gathered at pre-specified time points. Given the 

continuous data leveraged in REM, there is no need to break data into panels for 

assessment, enabling researchers to assess specific relational sequences that predict future 

behavior.  

Practical Implications 

 STERGM, SAOM and REM are useful methods for exploring interdependent 

behavior within organizations. While the data collection effort in this paper was lengthy 

and rigorous, relational data within organizations is often collected but is not always 

leveraged. For example, most organizations rely on email and calendar management 

platforms, such as Microsoft Outlook and Gmail. These platforms can track all emails 

and instant messages sent and received within an organizational network, along with 

information on who is meeting, when they are meeting and for how long. Additional 

information on email and calendar data includes subject lines (e.g., what is the email or 
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meeting regarding) and email and meeting attachments (e.g., any related documentation). 

Email, messaging, and calendar data represent nuanced interactions, such as who is 

involved in certain conversations, how frequently teams communicate and meet, and how 

they spend their time when they do meet. While there are data privacy and accessibility 

concerns regarding email, messaging, and calendar data that organizations must consider 

before using the data, the data exist and do not require arduous data collection efforts. 

Organizations can also leverage sociometric badges, or wearable electronic devices that 

capture person-to-person interactions, including physical proximity and conversational 

time (Kim, McFee, Olguin, Waber & Pentland, 2012), to collect fine-grained team 

interaction data. 

 A key benefit to leveraging relational data is the ability to enhance organizational 

outcomes. Teams generally exist within organizations to produce outputs. When teams 

fall short of expectations, it is useful for organizations to intervene to enhance 

performance. By using granular data to assess team processes, organizational 

practitioners can identify how interaction patterns relate to team outcomes and assess 

which interaction patterns result in optimal outcomes. A primary outcome of interest to 

organizations is team performance, which can be defined differently based on 

organizational goals. Given STERGM, SAOM and REM require collecting time-based 

data, practitioners can identify time points for analysis based on their intervention goals. 

They can also capture performance data that matches the time points specified to assess 

the relationship between the observed relational data and performance at given time 

points. By integrating relational data with performance data, organizations can identify 
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optimal relational patterns and behaviors for success and intervene when performance is 

dropping below expectations.  

 Assessing relational data can also inform organizations on their diversity and 

inclusion (D&I) efforts. Diversity is defined as surface or deep-level characteristics of 

individuals that differ (Bell et al., 2011). These characteristics can include visible 

attributes (e.g., age, race, gender) or hidden attributes (e.g., educational background, 

personality). Inclusion refers to the acceptance and belongingness of diverse individuals 

(Hays-Thomas, 2017). Research suggests diversity increases organizational outcomes, 

such as attracting talent and customers and increased financial returns (Herring, 2009; 

Singal, 2014; Bell et al., 2011; Hunt, Layton & Prince, 2015; Hoobler, Masterson, 

Nkomo, & Michel, 2016). The three dynamic network methods studied in this paper 

allow organizational practitioners to assess how relations formed within organizations are 

impacted by diversity-related variables. This is especially critical for inclusion efforts, as 

organizations can examine if and where silos in communication are occurring amongst 

teams and groups. For example, using SAOM would allow practitioners to assess if new 

team members are being included within their teams and can unveil if certain relational 

patterns (such as sending or reciprocating communications) are more likely to occur 

amongst those who share demographic variables. This can enable organizations to 

investigate where they need to dedicate resources to support D&I efforts and provide data 

to track their progress on D&I initiatives.   

 Nudge theory can be used to further the organizational assessment of performance 

and D&I within organizations. Organizations are increasingly considering/adopting the 

use of “nudges” to reinforce and direct individual behavior (Kosters & Van der Heijden, 
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2015). For example, organizations can nudge an employee with a reminder to complete 

an online training. Nudges are intended to produce specified outcomes from individuals. 

To enhance team performance or inclusion, knowing how interactions change over time 

can inform organizations of when and where to nudge teams. For example, organizations 

can nudge teams to enhance the degree of information being shared and how to share 

information (e.g., share frequently, reciprocate information) if previous examinations of 

team communication suggest team information sharing has decreased over time for 

certain teams and has resulted in poor performance. For D&I efforts, organizations can 

nudge team leaders to check-in with diverse team members to enhance inclusion when 

communication patterns are not as strong for minority individuals. STERGM, SAOM and 

REM can enable organizations to enhance the efficiency and effectiveness of 

organizational interventions by assessing actions and processes that directly relate to 

certain outcomes and targeting specific actions at specific times (Braun et al., 2022).  

Limitations 

 This study had several limitations. The biggest limitation involved the treatment 

of the data collected. Specifically, the raw data included both passing sequences and 

game play actions (e.g., taking field goal shots, securing rebounds). To obtain the passing 

sequence edge lists, all game play actions, with the exception of passes between players, 

were removed from further use. As a result, many player actions that likely impacted 

player behavior were omitted from consideration. In basketball, action sequences within 

possessions are continuous and include actions outside of passing, such as field goals and 

rebounds. For example, an action sequence for a given possession in a game could be 23-

15-FGA2-ORB-7-9-FGM2. However, this dissertation only kept passing sequences 



DYNAMIC NETWORK MODELS  155 
 

rather than the full action sequence, which would record the previously described 

possession as 23-15-7-9, which missed a field goal attempt, an offensive rebound, and a 

successful two-point field goal.  

In STERGM and SAOM, these omitted actions could provide additional 

underlying information that explains the observed edge lists (e.g., did passing occur 

between two players primarily when there was an offensive rebound?). This approach 

also gives an allusion of passing continuity, which is untrue and especially problematic 

for REM analyses. The utility of REM is its ability to examine relational sequences at a 

micro-level by leveraging the exact timing and sequence of actions, allowing for the 

specification of process mechanisms to enable the exploration of emergence (Schecter et 

al., 2018). Although this was an exploratory assessment of dynamic network 

methodologies and their applicability to psychological research, the assessment of 

emergence in these three dynamic network methods is not entirely accurate.  

 For exploratory purposes, this research additionally treated passing sequences in 

REM as entirely continuous throughout a game. This enabled the examination of two 

impractical model terms for basketball teams: PSAB-AY and PSAB-XY. These two 

passing sequences are not possible within a single possession of basketball game play. 

These two patterns suggest that the recipient of an action (AB) is not the sender of the 

next action (AY or XY). However, in basketball game play, if a player is the recipient of 

a pass, they must be the sender of the next pass or action. Given PSAB-AY and PSAB-

XY ignore this assumption entirely, depending on the research question, continuous 

sequential data that requires recipients to be future senders (e.g., basketball data) may not 

be the most valid data for conducting research using REM. 
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 Another limitation of this research is regarding data accuracy. Despite an 

intensive data cleaning and vetting process, the manually collected data were not a 

perfect match to the data collected by the NBA. Granular passing data (i.e., data used in 

this dissertation) do not readily exist for public use which inhibits the ability to validate 

true passing sequences. For example, it is quite possible that players were left out of any 

given passing sequence or the wrong jersey numbers were recorded in the sequence. 

Without a way to assess the accuracy of player-by-player passing sequences, the 

complete accuracy of the data used in this research cannot be established, which limits 

the analytical power of these methods and their related inferences.  

The data vetting process of this dissertation involved assessing the accuracy of 

player actions (i.e., field goals). This research set an arbitrary cut off for data accuracy: 

field goal attempts recorded in the manually coded data could not be off by more than 15 

field goal attempts relative to the data scraped from Basketball Reference, an online 

sports website that hosts vast NBA data (www.basketball-reference.com). While majority 

of the games analyzed were off by one to five field goal attempts, there are nuances in 

how the NBA records field goal attempts (i.e., any rebound a player makes that is 

followed by that player releasing the ball, even if the player is not attempting to shoot the 

ball, is considered a field goal attempt, which a manual coder is more likely to record as a 

pass or a turnover). This makes it difficult to discern the true accuracy of the manually 

coded data.  

 The use of player positions also presented challenge in analytical rigor due to 

trades made throughout a season. Position data were scraped from Basketball Reference 

(www.basketball-reference.com), and these data often included duplicate numbers in a 
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team due to trades made during the season. To analyze player data using these network 

methodologies, you cannot have duplicate node IDs (i.e., player numbers). For that 

reason, a decision was made to only analyze players that were on a team for majority of 

the season, which presents inaccuracy in true player positions and, subsequently, related 

model effects. Moreover, there were instances in which a player in the manually coded 

data did not exist in the covariate dataset (i.e., a player was incorrectly coded into a 

sequence), which left these players without a position attribute specified during 

STERGM analysis. While no effect of player position was found in this research, having 

more accurate position and player data may have impacted the findings for player 

position on network behavior. 

 Another limitation of this research is the model terms selected for analysis. Model 

terms were selected primarily based on understandability of the terms and practicality of 

large-scale analysis. For example, evaluating reciprocity is less computationally intensive 

than assessing more intricate effects, such as a k-star effect where k = 4. This term alone 

would require the model to identify all possible 4-paths for each individual node within 

each network, of which the dataset contained more than 10,000 separate networks. It is 

possible that more computationally intensive model terms could explain the observed 

networks better than the model terms used in this dissertation.  

 While this research assessed one contextual variable (home versus away status), 

there are many other variables that can impact game play. One potential contextual 

variable is travel distance, as partially indicated by home versus away status. For home 

teams, travel distance would be minimal. However, this research did not consider the 

travel distance of away teams. Frequent air travel has negative effects on basketball 
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players, such as negatively impacting sleep and nutrition (Huyghe, Scanlan, Dalbo, 

Calleja-González, 2018). The result of frequent air travel is travel fatigue, which refers to 

a lack of energy, discomfort, light-headedness, and impatience when traveling across 

time zones. Players are challenged with adapting to time zones and properly resting 

before games, which can impact their physical activity, performance, and recovery 

(Huyghe et al., 2018). Additional contextual variables can include, but are not limited to, 

a team’s coach (who essentially decides on the team’s strategy), the level of competition 

between teams (e.g., perhaps increased competition with an opponent changes game play 

strategies), personal life circumstances of players (e.g., the loss of a family member), or 

other affective and cognitive variables (e.g., trust and cohesion amongst players). 

Without consideration of these contextual variables, findings from this research cannot be 

properly generalized.  

 A final limitation of this research is the nature of the teams studied. NBA teams 

were specifically chosen for this research given the high interdependence between 

players and the dynamic context in which teams play. While this type of context is 

appropriate for the research conducted in this dissertation, it limits the generalizability of 

findings to teams that operate differently than NBA teams (i.e., teams that are less 

interdependent and/or teams that have stable operating environments). STERGM, 

SAOM, and REM are still extremely useful methods for examining team processes, 

specifically relational processes. The NBA data used in this dissertation are rich, 

nuanced, and provide these analyses a high volume of interaction data. However, less 

interdependent teams may not provide enough data to match the analytical rigor of the 

methods used in this research. 
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Future Research Directions 

This study sought to demonstrate the utility of three dynamic network models to 

guide future research and to highlight the importance of applying rigorous data collection 

and analytical approaches to understanding team processes. Future research seeking to 

understand and build theories related to team processes or any other group-level 

phenomena could consider using these methodologies to enhance data collection efforts 

and analytical rigor. STERGM, SAOM and REM can help researchers better understand 

the interrelations between individuals and variables observed to not only explain what 

phenomena occur in groups and teams, but how these phenomena unfold over time. 

Future studies could collect specific relational data based on research questions of interest 

and apply a theoretically driven approach to selecting appropriate time periods and model 

terms to better understand underlying behavioral processes of teams.  

Another potential endeavor for researchers may be to combine dynamic network 

models with other analytical approaches to better understand team processes and 

emergence. Current research on process is typically based on factor theories, which 

confine processes to process factors (Braun et al., 2022). Process factors represent 

summaries of actions and behaviors (e.g., how frequently is an action performed, how 

well is an action performed) that ignore any temporal or configural elements of behavior 

(Braun et al., 2022). Researchers can instead leverage process theories, which focus on 

individual actions taken by actors and seek to understand how, when, and why certain 

actions are taken (Braun et al., 2022).  

An analytical approach that is well-suited for studying process theories is 

computational modeling. Computational modeling is a method that uses mathematical 
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relationships, such as equations and logical if-then statements, to specify how systems 

change over time (Kozlowski, Chao, Grand, Braun & Kuljanin, 2016). Computational 

models provide a theory-based method of examining phenomena of interest via 

mathematics to assess how dynamic processes unfold (Kozlowski et al., 2016). They 

allow researchers to specify how processes dynamically relate and interact to produce 

observed actions (Braun et al., 2022).  

Using a computational model to assess potential avenues for network behavior based 

on findings from these dynamic network models could unveil a more nuanced 

understanding of step-by-step actions taken in STERGM and SAOM (as REM already 

provides step-by-step actions) and could demonstrate what could happen in these models 

if actors chose a different course of action than what was observed. For example, a 

computational model would allow researchers to specify which players were on the court 

at what time, what actions they took, and what the outcomes were. Specifically, a 

computational model can leverage the REM results of this research to further understand 

when certain passing sequences are used by whom and how that relates to observed 

outcomes. This could further allow researchers to understand key intervention points in 

team processes to enable a more efficient and effective assessment of how interventions 

are performing, and to further understand both intended and unintended consequences of 

interventions (Braun et al., 2022). Moreover, computational models allow researchers to 

program an infinite number of variables, including contextual variables, which would 

help assess a team’s entire system versus just observing the data collected.  

Future research also could apply all three methods used in this study to further 

address underlying processes for given research questions. Each method assessed in this 
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dissertation has unique functionality and purpose. STERGM can be used in research 

aimed to assess how individuals, their relations and their covariates impact relationship 

formation and persistence over time. SAOM can be used in research intended to 

additionally assess how network structure impacts individual behavior to further 

understand the interrelatedness of network and individual behavior. REM can be used in 

research intended to focus on the sequencing, patterns, timing, and likelihood of social 

interactions to focus on the nuanced behavioral sequences that drive future behavior. For 

researchers seeking to explore the intersection of network structure, individual behavior, 

and action sequences, all three methods can provide unique yet complimentary 

perspectives on individual and team behavior. While each research method provides a 

unique way to explore and analyze team data, researchers would benefit from leveraging 

the various perspectives provided by each method to address their research questions 

more holistically.   

Future researchers could also assess more contextual factors to understand how they 

enable or constrain behavior. This research focused on the relationship between home 

versus away status and player behavior. However, many other contextual variables exist 

for these teams and each team has a unique set of contextual variables that impact 

behavior. The I-P-O model considers context as an input that influences team processes 

(Hackman, 1987). For example, the interdependence of work is an antecedent of 

psychological safety, or the shared belief that team members can take interpersonal risks 

without fear of backlash (Edmondson, 1999). Interdependence is just one contextual 

variable that can impact team processes, and future research on team processes could 

incorporate more contextual variables to better understand team phenomena. 
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Conclusion 

This study aimed to explore three dynamic network methods (STERGM, SAOM, 

REM) that can advance the study of team processes using NBA basketball teams. This 

research highlighted the unique capabilities of each dynamic network method in 

assessing team processes and encourages future team process researchers to use these 

methods as they require methodological and analytical rigor that team process research is 

lacking today. STERGM is well suited for examining how relationships form and are 

maintained over time; SAOM is well suited to further examine the interrelatedness of 

network and individual behavior; REM is well suited to understand nuanced behavioral 

sequences that drive future behavior. 

This dissertation discovered that for NBA basketball teams, mutual passing is the 

most prevalent passing behavior of those examined, followed by transitive passing. 

Universally for NBA teams, players are likely to pass back to those who pass to them 

(mutual ties), and it is also likely that triangular passing relations form between three 

players (transitive ties). Passing behavior was found to link to performance based on 

STERGM analyses such that teams that formed more mutual and transitive passing 

relations were more likely to win games. Player position and player scoring were not 

found to have strong effects on relational behaviors within teams, nor was home versus 

away status found to impact passing relations. Future research is encouraged to assess 

team process at a fine-grained level and consider the team system, including inputs and 

context, to identify how team processes link to team outcomes.  

Conceptualizing teams as networks forces researchers to take a relation-based 

approach to analyzing teams and to treat team member behaviors as interdependent, as 
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they are, by definition, within teams (Humphrey & Aime, 2014). Network analyses assess 

how the intersection of relations within groups enable or constrain behavior within a 

group’s context, focusing on who is related to whom in a network (Borgatti & Ofem, 

2010). Dynamic network analyses incorporate time to explore when certain individuals 

interact and when their behavior occurs, which brings researchers closer to understanding 

how actions impact outcomes, as required of process theories (Braun et al., 2022).  

The field of industrial and organizational (I-O) psychology is dedicated to 

addressing workplace issues to improve how organizations operate with the intent of 

enhancing the lives of the people that interact with organizations (SIOP, 2022; Watts, 

Gray & Medeiros, 2021). Organizations are multilevel and dynamic, making them 

inherently complex and comprised of infinite interaction processes (Katz & Kahn, 1996; 

Kozlowski & Klein, 2000). For I-O psychologists to continue impacting organizations by 

identifying interventions to enhance organizational processes, it is critical that our 

research methods and analytical approaches match the complexity and rigor demanded of 

organizational systems. Taking a dynamic network approach and a process theory lens to 

studying teams within organizations can further advance the field of I-O psychology by 

learning the complex nature of behavioral interactions and processes of teams and 

enabling researchers to better identify optimal interventions for improving processes and 

related outcomes for organizations.  
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Appendix 

Supplemental Logistic Regression Output for STERGM Model 1 

 

 ! SE 
Odds Ratio 

(Exp(!)) 
95% CI 

Intercept 0.504* 0.260 1.656 [0.995, 2.756] 

Form~ Edges 0.367*** 0.260 1.443 [1.105, 1.884] 

Form ~ Mutual Ties 0.200** 0.136 1.221 [1.004, 1.486] 

Form ~ Transitive Ties 0.491*** 0.100 1.633 [1.182, 2.257] 

Persist ~ Edges 0.020 0.166 1.020 [0.987, 1.055] 

Persist ~ Mutual Ties 0.010 0.008 1.010 [0.994, 1.026] 

Persist ~ Transitive Ties -0.017 0.013 0.983 [0.958, 1.008] 
*p < .10, ** p< .05, ***p < .01 
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