
DePaul University DePaul University 

Digital Commons@DePaul Digital Commons@DePaul 

College of Science and Health Theses and 
Dissertations College of Science and Health 

Summer 8-22-2021 

WAVELET PACKET POWER SPECTRUM OF THE SDSS LYMAN-WAVELET PACKET POWER SPECTRUM OF THE SDSS LYMAN-

ALPHA FOREST: A TOOL FOR LARGE-SCALE STRUCTURE ALPHA FOREST: A TOOL FOR LARGE-SCALE STRUCTURE 

DETECTION DETECTION 

Jason Pero 
DePaul University, JPERO@depaul.edu 

Follow this and additional works at: https://via.library.depaul.edu/csh_etd 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Pero, Jason, "WAVELET PACKET POWER SPECTRUM OF THE SDSS LYMAN-ALPHA FOREST: A TOOL FOR 
LARGE-SCALE STRUCTURE DETECTION" (2021). College of Science and Health Theses and Dissertations. 
385. 
https://via.library.depaul.edu/csh_etd/385 

This Thesis is brought to you for free and open access by the College of Science and Health at Digital 
Commons@DePaul. It has been accepted for inclusion in College of Science and Health Theses and Dissertations 
by an authorized administrator of Digital Commons@DePaul. For more information, please contact 
digitalservices@depaul.edu. 

https://via.library.depaul.edu/
https://via.library.depaul.edu/csh_etd
https://via.library.depaul.edu/csh_etd
https://via.library.depaul.edu/csh
https://via.library.depaul.edu/csh_etd?utm_source=via.library.depaul.edu%2Fcsh_etd%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=via.library.depaul.edu%2Fcsh_etd%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
https://via.library.depaul.edu/csh_etd/385?utm_source=via.library.depaul.edu%2Fcsh_etd%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalservices@depaul.edu


WAVELET PACKET POWER SPECTRUM OF THE SDSS
LYMAN-ALPHA FOREST: A TOOL FOR LARGE-SCALE

STRUCTURE DETECTION

A Thesis

Presented in

Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

August, 2 0 2 1

BY

Jason Pero

DEPARTMENT OF PHYSICS AND ASTROPHYSICS

College of Science and Health

DePaul University

Chicago, Illinois



2

TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

0.1 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

0.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CHAPTER 1 Large-Scale Structure and Cosmology . . . . . . . . 11

1.1 Large-Scale Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Cosmic Microwave Background . . . . . . . . . . . . . . . . . 12

1.1.2 Density Fluctuations . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Calculating Density Fluctuations using Fourier Methods . . . . . . . 15

1.2.1 Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2 Parseval’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.3 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Lyman-α forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 Lyman series . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 Quasars and Absorption Spectra . . . . . . . . . . . . . . . . 20

1.3.3 Lyman-α line strength . . . . . . . . . . . . . . . . . . . . . . 23

CHAPTER 2 Sloan Digital Sky Survey . . . . . . . . . . . . . . . . 27

2.1 SDSS-I and SDSS-II . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 SDSS-III Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 APOGEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 SEGUE-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3 MARVELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



TABLE OF CONTENTS – Continued

3

2.2.4 BOSS at a glance . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 BOSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Telescopes, Cameras, and Spectrographs . . . . . . . . . . . . 31

2.3.2 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.3 Data Reduction Pipeline . . . . . . . . . . . . . . . . . . . . . 35

CHAPTER 3 Wavelet Packet Power Spectrum . . . . . . . . . . . 40

3.1 Introduction to Wavelet Analysis . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Wavelets and Wavelet Systems . . . . . . . . . . . . . . . . . . 40

3.1.2 Multiresolution Analysis . . . . . . . . . . . . . . . . . . . . . 43

3.2 Discrete Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Haar Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Discrete Wavelet Packet Transform . . . . . . . . . . . . . . . . . . . 50

3.4 Wavelet Transform vs Fourier Transform . . . . . . . . . . . . . . . . 54

3.5 Power Spectrum Estimation . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 Process Overview . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.2 Application of pipeline corrections to DR9 dataset . . . . . . . 58

3.5.3 Data binning . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.4 Wavelet Packet Power Spectrum Estimation . . . . . . . . . . 62

CHAPTER 4 Analysis of the Lyman-α Forest . . . . . . . . . . . . 64

4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Previous Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Palanque-Delabrouille et al. 2013 . . . . . . . . . . . . . . . . 70

4.2.2 Chabanier et al. 2019 . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Comparison with our results . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



TABLE OF CONTENTS – Continued

4

4.5 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

APPENDIX A Proof of Parseval’s Theorem for Discrete Wavelet
Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

APPENDIX B LyAlphaDataExtractor Program . . . . . . . . . . . 80

APPENDIX C LymanAlphaBinner Program . . . . . . . . . . . . . 84

APPENDIX D WP Power Program . . . . . . . . . . . . . . . . . . 87



5

LIST OF FIGURES

1.1 Plot of the density contrast δpxq vs the position x in a one-dimensional
toy model universe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 The energy level diagram for hydrogen, showing the lower-order lines
of the Lyman, Balmer, and Paschen series. . . . . . . . . . . . . . . . 19

1.3 Illustration of Lyman-α forest consisting of absorption lines produced
by multiple hydrogen clouds along the line-of-sight between the us and
the quasar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 High-level SDSS-III observing schedule. . . . . . . . . . . . . . . . . . 29

2.2 Illustration of the BOSS spectrograph setup. . . . . . . . . . . . . . . 32

2.3 The actual SDSS spectrographs mounted to the Cassegrain image
rotator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Spectra of randomly selected quasars from our sample, BOSS Lyman-
α data release 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Redshift distribution of the 54,468 high-redshift (z ą 2) quasars used
to probe the Lyman-α forest. . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Sky distribution of all SDSS BOSS DR9 spectroscopy. . . . . . . . . . 36

3.1 Example of a wavelet. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Translation and scaling of a wavelet ψ . . . . . . . . . . . . . . . . . 42

3.3 Plots of the Haar scaling function and the Haar wavelet. . . . . . . . 47

3.4 Wavelet packet tree for three levels of wavelet packet decomposition. . 52

3.5 Sample spectrum with Gaussian random noise added. . . . . . . . . . 55

3.6 Fourier power spectrum of sample. . . . . . . . . . . . . . . . . . . . 56

3.7 Wavelet packet power spectrum of sample. . . . . . . . . . . . . . . . 56

3.8 Fourier power spectrum of sample with 60 bad data points added. . . 57



LIST OF FIGURES – Continued

6

3.9 Wavelet packet power spectrum of sample with 60 bad data points
added. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.10 An overview flowchart of our process to calculate the wavelet packet
power spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 One-dimensional Lyman-α forest wavelet packet power spectrum. . . 65

4.2 A copy of Figure 2.5 with vertical lines marking the redshift bin
locations z “ 2.25 and z “ 2.8. . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Binned Lyman-α forest flux data for redshift range 2.4 ă z ă 2.6. . . 68

4.4 Power spectrum of Lyman-α forest flux data for redshift range 2.4 ă
z ă 2.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 One-dimensional Lyman-α forest power spectrum obtained with the
Fourier transform method. Figure from Palanque-Delabrouille et al.
2013 [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 One-dimensional Lyman-α forest power spectrum obtained with the
Fourier transform method. Figure from Chabanier et al. 2019 [6] . . . 72



7

ABSTRACT

One of the goals of astrophysics is to obtain a full understanding how the Universe

is organized on large scales and how structure evolved. In this thesis we develop

a method of detecting structure on Mpc scales by measuring the one-dimensional

power spectrum of the transmitted flux in the Lyman-α forest. The method is based

on the wavelet packet transform (WPT), which has several advantages over the

Fourier transform. This includes reduced noise, resulting in less data manipulation

and scrubbing in the early stages of analysis. Another advantage is localization of

outliers in the data, which allows the general trend of the power spectrum to be

revealed despite potentially problematic data. We apply the method to the set of

54,468 quasar spectra from the third collaboration of the Sloan Digital Sky Survey

(SDSS-III) Baryonic Oscillation Spectroscopic Survey (BOSS) data release 9 (DR9)

catalog. This is intended to be a proof of concept to determine if the wavelet packet

power spectrum is a valid technique to extract the power spectrum in order to detect

matter density fluctuations. Results are in good agreement with previous studies

that used conventional Fourier techniques. The power spectrum vs velocity space

plots show increasing power at smaller scales for both our results and earlier studies

by [21] and [6]. We conclude that the wavelet packet power spectrum is a tool for

detecting structure from transmitted flux in the Lyman-α forest. The advantages

the wavelet packet power spectrum over the Fourier transform method are it requires

less data manipulation and minimizes noise and propagation of errors and outliers

in the data. As a next step we propose applying the tool to the larger more recent

SDSS IV eBOSS dataset.
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0.2 Introduction

The questions of how the Universe is organized on large scales and how structure

evolved from the early Universe to the present time are two of the most profound

questions in modern astrophysics. Answering these questions provides details on

the origin of the Universe, its evolution and fate. Cosmology is the study of the

universe as a whole. The focus of cosmology is on structures in the universe which

are larger than individual galaxies such as galaxy clusters and superclusters. The

term large-scale structure (LSS) is used to refer to these massive structures which

are „ 150´200 Mpc across. Examining LSS gives us a clear picture of the evolution

of structure in the Universe.

The reason we see structure today in the form of clusters and superclusters

is because of the existence of small density fluctuations in the early universe. These

density fluctuations got amplified due to gravitational attraction to form LSS. One

way to detect fluctuations is by computing the variance as a function of scale (size),

otherwise known as the power spectrum.

To study LSS we need large and accurate sky surveys capable of collecting

data in various wavelengths of the electromagnetic spectrum. The existence of

all-sky surveys has greatly improved the number of high-redshift spectra necessary

to study LSS. This study uses data from the SDSS BOSS D9 catalog, which

consists of 54,468 quasar spectra in redshift range 2.0 ă z ă 5.7. From this dataset

we extract the Lyman-α flux and apply the wavelet packet power spectrum. The

transmitted flux is proportional to the amount of mass at that location. The more

transmitted flux from quasars detected from any particular line of sight means

more hydrogen is present, hence more dark matter. This means that the Lyman-

α forest can be used as a proxy for the amount of dark matter along the line of sight.
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This thesis is a proof of concept to determine if the wavelet packet power

spectrum is a valid technique to extract the power spectrum from the Lyman-α

forest to detect matter density fluctuations. The section on Large-Scale Structure

and Cosmology (Chapter 1) explains the basics of LSS including the influence

dynamics of the early Universe had on the formation of structure. It goes on to

explain in more detail density fluctuations along with how they relate to the evolu-

tion of LSS. An introduction to the classical way of analyzing density fluctuations

using Fourier methods is introduced, which includes explanations of the necessary

concepts of variance and energy conservation in signal processing. This chapter

concludes with a detailed explanation of the Lyman-α forest. Chapter 2 describes

the Sloan Digital Sky Survey (SDSS) and the various collaborations leading up to

and including the collaboration from which we selected our data, BOSS. Chapter

3 describes methods by which we bin the data and how the wavelet packet power

spectrum is calculated. Some necessary background information is included on

wavelet theory and the discrete wavelet packet transform (DWPT). This chapter

also provides a brief discussion of the advantages of the wavelet transform method

of calculating the power spectrum over the Fourier transform method. In Chapter

4 we present our results followed comparison with previous power spectrum studies.

Finally, we state our conclusions and discuss future research.
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CHAPTER 1

Large-Scale Structure and Cosmology

1.1 Large-Scale Structure

This thesis will develop a tool to probe large-scale structure (LSS). Before we do

this, a clear definition of what we mean by large-scale structure and some basic

background on how that structure arose is in order. The smallest scale density

fluctuations in the universe are on the subatomic quantum scale. Planetary systems,

star clusters and galaxies are on a larger scale, however they are relatively small

compared to clusters, superclusters and voids which are on the largest scales. The

largest superclusters and voids are „ 150 Mpc across. In cosmology the description

large-scale structure of the universe indicates all structures larger than individual

galaxies.

On scales of „100 Mpc in diameter, the universe can be approximated as

being homogeneous and isotropic [13]. To say the universe is homogeneous means

the universe looks the same no matter where you are or “same in all locations”.

To say the universe is isotropic means it looks the same no matter where you look

or “same in all directions”. Gravitational instability is the primary instrument for

building large structures, voids, clusters, and superclusters. In the early universe,

the cosmic microwave background provides clues that quantum fluctuations and

dark matter provided an initial foundation for structure formation.
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1.1.1 Cosmic Microwave Background

Observations of the cosmic microwave background (CMB) show that the early

universe was isotropic and emitted an almost perfect black-body spectrum. This

means it is almost homogeneous as well. Density fluctuations have imprinted their

signature on the CMB, therefore we know they were present during the time of the

last scattering. This was the last time CMB photons scattered from an electron

and the CMB photons became free to traverse the universe uninhibited. Photon

decoupling is the time when the expansion rate of the universe caused a decrease

in interactions between particles. In other words, the rate photons scatter from

electrons becomes smaller than the rate at which the universe expands. At the time

of photon decoupling, the pressure was reduced which caused the baryonic Jeans

mass to decrease suddenly. This caused the baryonic density perturbations to grow

after the epoch of photon decoupling.

On scales larger than superclusters, the interactions of baryons and photons

has had a profound effect on the evolution of density perturbations through baryon

acoustic oscillations (BAO). BAO originated during the epoch of photon decoupling

z „ 1090. The gravitational collapse of high-density sections of the photon-baryon

plasma was stopped by their own pressure, resulting in an acoustic rebound

and an outward expansion of the fluid. Expansion caused the pressure to drop

and the fluid to collapse again. This repetitive oscillations of the photon-baryon

fluid produce sound waves and are called acoustic oscillations. The size of these

high-density regions was close to the sound horizon distance, which is the max-

imum proper distance a sound wave in the photon-baryon fluid of the early universe.

After decoupling, the density fluctuations were low in amplitude, but grew

via gravitational attraction to the amplitudes we see today. It was not until
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photon decoupling that baryon density perturbations on galaxy and supercluster

scales could grow in amplitude. During this time, baryons fell into preexisting

gravitational wells of dark matter. This was the beginning of structure formation.

1.1.2 Density Fluctuations

To quantitatively describe density fluctuations, we start by defining the matter

density at an epoch in the universe in terms of the average density ρ and a local

fluctuation δpxq known as the density contrast

ρpxq “ ρp1` δpxqq (1.1)

Solving the above equation for the dimensionless density contrast yields

δpxq “
ρpxq ´ ρ

ρ
(1.2)

Some important insights can be gleaned from equation 1.2 regarding the behavior

of matter. For example, the value of δpxq will be negative in underdense regions.

However, when the value of δpxq is positive, that indicates an overdense region.

Overdense regions are where structure (clusters and superclusters) will form, while

underdense regions will produce voids. When δpxq “ 0, this corresponds to a critical

point. At critical points we can’t determine what will happen until later time. As

time goes on if a little more matter gets added to the area it will become overdense

and create structure. Conversely, if a small amount matter moves out of the region

it will become underdense and possibly create a void.

Figure 1.1 plots a toy model of density contrast vs position which further illustrates

the concepts of density fluctuations. The x-axis is a simplified position scale in a one-

dimensional toy universe. One can clearly see that the overdensities are of different

sizes. For example, in the range 0.91 ă x ă 0.92 there is a large overdensity, while
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Figure 1.1: Plot of the density contrast δpxq vs the position x in a one-dimensional
toy model universe. δ ą 0 indicate overdense regions, this is where structure will
form. Areas where δ ă 0 indicate underdense regions which will end up becoming
voids. Critical points are when δ “ 0. More matter moving into or out of the region
in a future time will determine if the region will become overdense or underdense.
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x „ 0.985 there is a smaller overdensity. This leads to the production of a variety

of different size structures. This means that the size of clusters and superclusters

follow a particular theoretical form. We are therefore looking at existing LSS to try

and determine what the cosmology is. The pattern of how the structures form tells

us about the cosmology that produced them. In other words, different plots like

in figure 1.1 will produce different large-scale structure and a different cosmology

to describe that structure. Different cosmologies will have different values for their

cosmological parameters such as the Hubble constant or the dark energy equation

of state.

1.2 Calculating Density Fluctuations using Fourier Methods

The traditional way of calculating density fluctuations is by computing the power

spectrum using Fourier analysis methods. One can separate a density fluctuation

field into individual Fourier components, and use those components to compute the

power spectrum. The power spectrum indicates how much matter is present at each

frequency. The following section will provide more details on the process computing

the power spectrum by using the Fourier method.

1.2.1 Fourier Analysis

Analogous to equation (1.2), start by defining the density fluctuation field, also

known as the density contrast δpxq, of a large expanding cube with comoving volume

V

δpxq “
ρpxq ´ ρ

ρ
(1.3)

which has the following Fourier expansion

δpxq “
V

p2πq3

ż

δpkqe´ik¨xd3k (1.4)
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The density contrast can be represented in Fourier components by splitting it into

an infinite number of sine waves. Each wave has comoving wavenumber k and

comoving wavelength λ “ 2π{k.

δpkq “
1

V

ż

δpxqe´ik¨xd3x (1.5)

1.2.2 Parseval’s Theorem

The reason that we can use the power spectrum to determine density fluctuations

is because in the act of performing the Fourier transform, energy is conserved. To

demonstrate, we expand a signal s in an orthogonal basis function φ such that

|spxq|2 ” spxqs˚pxq “
8
ÿ

´8

cnφnpxq
8
ÿ

´8

c˚mφ
˚
mpxq

Where cn,m are the expansion coefficients and asterisk means take the complex

conjugate. Next take the norm square and integrate over a Fourier basis interval.

ż L

0

|spxq|2 dx “
8
ÿ

m,n“´8

cnc
˚
m

ż L

0

φnpxqφ
˚
mpxqdx

“

8
ÿ

m,n“´8

cnc
˚
mLδm,n

“ L
8
ÿ

n“´8

|cn|
2

(1.6)

where the constant L will change depending on the choice of basis functions. The

|cn|
2 terms constitute the power spectrum. The result in equation (1.6) is called

Parseval’s Theorem. After computing the norm square, the basis function φ ends

up cancelling out due to orthogonality, leaving only the constant L and the coefficent

cn terms. This shows that the energy of a signal is distributed to the coefficients of

expansion.
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1.2.3 Variance

Additional insight can be gained from the power spectrum by inspection of the

variance because the variance captures local fluctuations. The variance (σ2) of a

function or signal s is defined as

σ2
rspxqs “

〈
spxq2

〉
´ 〈spxq〉2 (1.7)

The first term represents the square of the coefficients, which is simply the energy.

The second term is the zeroth coefficient, c0. We can write the variance as

σ2
rspxqs “

8
ÿ

n“´8

|cn|
2 , n ‰ 0 (1.8)

It is common practice to plot n vs |cn|
2 to get information on which components

contribute most to the energy (or variance).

Now that we have outlined a method to calculate density fluctuations, the

next question is what data can be used to perform these calculations? SDSS

provides the flux from quasars. Dips in the transmitted quasar flux are caused

by the Lyman-α line. The less flux that we see means there is more matter in

that line-of-site. If matter is present, in particular Hydrogen clouds, the Lyman-α

wavelength gets absorbed. The Lyman-α forest will serve as the data to perform

density fluctuation calculations. The next section provides more details on what

the Lyman-α forest is and how we will use it to measure large-scale structure.

1.3 Lyman-α forest

Although Lyman-α forest was discovered 5 decades ago, it is one of the essential

tracers of the large-scale structure in the Universe. Hydrogen is the most abundant

element and therefore can be used as an excellent tool to explore the formation of
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structure. The Lyman-α forest contains information about the density of neutral

hydrogen gas in the early Universe. Knowledge of the gas density reveals information

about matter density fluctuations, which means the Lyman-α forest can be used as

a proxy for the amount of dark matter along the line-of-sight.

1.3.1 Lyman series

The majority of our knowledge about the universe comes from the detection and

analysis light. The wave-particle duality nature of light allows conceptualization as

electromagnetic waves, or a flow of massless particles called photons. Electromag-

netic waves are described by their wavelength λ or frequency ν “ c{λ, where c is

the speed of light. Photons are described by their energy E “ hν, where h is the

Planck constant, h “ 6.626ˆ 10´34 J s.

The model for a neutral hydrogen atom is a nucleus containing one proton

and no neutrons, with a single electron orbiting the nucleus. The only stable state

for the electron is in the ground state. Electrons in excited states will decay to

lower energy states, emitting photons equal to the difference in energy between the

two states in the process according to equation

∆E “ En ´ En1
“
mec

2

2
α2Z2

„

1

pn1q2
´

1

n2



(1.9)

where me is the mass of an electron (9.109ˆ 10´31 kg) and Z is the number of

protons in the atom [23], so in the case for neutral hydrogen Z “ 1. The starting

energy level of the electron is n and the destination energy level is n1. The term α

is the fine-structure constant defined as follows

α ”
1

4πε0

e2

~c
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Figure 1.2: The energy level diagram for hydrogen, showing the lower-order lines of
the Lyman, Balmer, and Paschen series. The transitions for the Lyman series are
labeled on the left. The leftmost line is the Lyman-alpha line of the series.

Using the relation ∆E “ hν “ hc{λ, the wavelength of the photon emitted is given

by

λ “

ˆ

2h

mecα2Z2

˙„

1

pn1q2
´

1

n2

´1

(1.10)

The changes in energy levels in hydrogen are unique and easily recognizable. One

example are downward transitions that end at the ground state energy level n “ 1

produce wavelengths in the ultraviolet portion of the spectrum. These transitions

are called the Lyman series and were discovered by American physicist Theodore

Lyman [16]. Figure 1.2 shows the energy level diagram for hydrogen based on

equation (1.9) which indicates the transitions of the Lyman series.

The lowest energy is the first line in the Lyman series corresponding starting

energy level n “ 2 and destination energy level n1 “ 1. This is known as Lyman-α,
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or Lyα λ1216. The number 1216 in units of angstroms is the wavelength of the

light emitted by this transition, which can be computed using equation (1.10).

Emitted photons due to electrons moving to a less excited state are quantized at

the energy level differences of the atoms from which they come from. Therefore,

the emitted photons produce an emission spectrum which is the propagation of

photons at a particular wavelength.

An analogous process is when a continuous spectrum containing light from

all wavelengths, passes through a gas producing an absorption spectrum. This will

produce absorption lines at wavelengths or energies corresponding to the atomic

transitions of the elements that the gas is composed of. The energy transitions

that produce the emission lines are the same as the transitions that produce the

absorption lines. This is what allows the unique identification of the particular

ions the gas contains. In this case the bright continuous spectrum is the light from

distant quasars which shines through gas clouds in the interstellar medium and

produces absorption lines. When corrected for redshift, the absorption lines are at

wavelength 1216 Å, which identifies them as Lyman-α lines. Both absorption and

emission from Lyman-α transitions occur, however our focus is on the transmitted

quasar flux which is what remains after the Lyman-α absorption decreases the

amount of quasar flux that reaches Earth.

1.3.2 Quasars and Absorption Spectra

Before introducing the Lyman-α forest, which will be our matter tracer in this

thesis, it is necessary to introduce the objects that will serve as a background

light: the quasars. Quasar stands for “Quasi-stellar radio source”. Although they

are not transient, quasars are similar to transient events such as supernovae or

title disruption events because they are highly luminous and can be seen at large
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redshifts (z ą 6). This makes quasars beneficial for probing the status and content

of the intergalactic medium during the early stages of the universe [3].

Quasars contain active galactic nuclei with strong emission line spectra, which is

responsible for their high luminosity. Accretion of gas onto the galaxy’s central

supermassive black hole heats up the gas and produces enormous amounts of

radiation, making the quasar much more luminous than all of its stars combined.

The most distant quasar known, ULAS J1120+0641, is energized by a 2ˆ 109M@

black hole and is over 63 trillion times brighter than the Sun. At redshift z “ 7.085

the spectral lines from this quasar allow visibility into the early Universe only 0.77

billion years after the Big Bang [20]. Like all other galaxies, quasars are dispersed

throughout the universe and as their light travels to us it gets intercepted by

interstellar gas.

Neutral hydrogen atoms in their lowest state will interact with any source of

light that has been redshifted to ultraviolet wavelength of 1216 angstroms when

it reaches them. Therefore, as quasar light passes through interstellar gas it kicks

electrons in neutral hydrogen into the first excited state. The electron quickly

decays back to the ground state and a photon is emitted at the rest wavelength of

1216 angstroms, which is again the Lyman-α line. There are clouds of hydrogen

gas positioned between quasars and Earth. Since the gas clouds are closer to Earth

than the quasar, their absorption and emission lines will will have smaller redshifts

resulting in bluer or shorter wavelengths than the quasar emission line. Multiple

gas clouds along the line-of-sight will produce a grouping of Lyman-α absorption or

emission lines called the “Lyman-alpha forest”. Roger Lynds of Kitt Peak National

Observatory is credited with discovering the Lyman-alpha forest in 1971 [4]. Figure

1.3 is an artist’s depiction of Lyman-α forest lines created by absorbed light from a

distant quasar.
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Figure 1.3: Illustration of Lyman-α forest consisting of absorption lines produced by
multiple hydrogen clouds along the line-of-sight between the us and the quasar. The
absorption lines get redshifted by a value corresponding to the distance the absorbing
cloud. The transmitted flux from the quasar is proportional to the amount of mass
in the location of the emitting cloud, which is a tracer of dark matter.

There are hydrogen clouds between distant quasars and Earth along our

line-of-sight. The clouds absorb ultraviolet light equal to the wavelength of the

hydrogen Lyman-α line at a wavelength of 1216 Å and kick electrons in Hydrogen

atoms into the first excited state. As we image distant quasars, we are actually

viewing light that is passing through dark matter and hydrogen gas. The more

quasar flux that we detect means there is less matter along the line-of-sight. If

neutral hydrogen is encountered by the quasar light, it will create a decrease in

flux due to absorption at the Lyman-α line. Therefore, we can use the clustering

models of neutral hydrogen to gain insight into the underlying distribution of matter.

The Lyman-α forest contains information about the density of neutral gas in the

early Universe. The positions and clustering patterns of Lyman-α absorption lines

is determined by the expansion of space and the matter power spectrum. While the

shape of the absorption lines is influenced by the growth and evolution of structure

through the column density produced by the absorbing atoms [8].
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The Lyman-α line is good for studying high redshift objects because the

Lyman-α absorption lines are broad and readily observable in the optical regime.

For a Lyman-α absorption line, the observed wavelength λobs will be shifted due to

the expansion of space-time by:

λobs “ λrestp1` zq (1.11)

where λrest is the restframe wavelength. Another way to describe the restframe

wavelength is the wavelength emitted when measured at the location of the source

object. While the central wavelength of the Lyman-α line of the absorbing hydro-

gen resides in the ultraviolet portion of the spectrum (1216 Å), the cosmological

expansion stretches the wavelength that is measured on Earth. For redshifts larger

than 1.6, the line is shifted into the visible spectrum and can be detected through

Earth’s atmosphere[8]. Another feature of the Lyman-α lines which make them

noticeable is their broadening (or widening). Lyman-α lines can be broadened by

several methods including natural broadening, thermal broadening, and scattering

at different densities.

1.3.3 Lyman-α line strength

The optical depth measures how much the intensity of light is diminished when

moving through a gas. As the column density of absorbing atoms along the line-

of-sight increases, the width of any absorption lines created also increases. The

Lyman-α optical depth observed at frequency ν as a result of a homogeneous density

distribution of hydrogen is

τpνq “

ż zs

0

nHIpzqσ pνp1` zqq
c

p1` zqHpzq
dz, (1.12)

[12], where nHIpzq is the number density of neutral hydrogen, Hpzq is the Hubble

parameter at redshift z, zs is the redshift of the source, and σ is the Lyman-α
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cross section as a function of frequency. Using the frequency-wavelength relation

ν “ c{λ, the optical depth can be expressed in terms of wavelength (λ)

τpλq “

ż zs

0

nHIpzqσ

ˆ

cp1` zq

λ

˙

c

p1` zqHpzq
dz (1.13)

Higher densities of hydrogen gas contain more atoms to absorb photons, producing

a larger optical depth. Higher optical depths means more photons will be absorbed,

creating stronger absorption lines in observed spectra. In addition, the large cross

section for the Lyman-α transition makes this technique the most sensitive method

for detecting baryons at any redshift [2].

Thermal broadening involves the random motion of individual atoms or ions

produced line-of-sight velocities which are a function of temperature. Thermal

broadening bT is given by

bT “

c

2kBT

mH

(1.14)

where mH is the mass of the hydrogen atom, kB is Boltzmann’s constant, and

temperature T is given by

T “ T0

ˆ

ρ

xρy

˙γ´1

(1.15)

where T0 is the temperature at the average density xρy. During the re-ionization

epoch when the gas temperature was practically constant, γ „ 1. Long after

re-ionization γ Ñ p1 ` 1{1.7q [11]. This shows that temperatures above zero will

smear out emission or absorption lines produced by the gas. Doppler broadening

also involves the motion of gas particles, but on a larger bulk scale. Doppler

broadening does not depend on molecular mass of the particles and can produce

larger line widths depending on the gas temperature.

Due to its finite lifetime, the excited state has a degree of uncertainty known as the
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Heisenberg uncertainty principle. Since the energy is not specifically determined,

the wavelengths of the photons that produce the excited transition are also

uncertain. by an amount known as the natural width of the line. In the case of

pure natural broadening the line profile is determined by the Lorentz distribution

φpνqdν “
pγn{4πq

pν ´ ν0q2 ` pγn{4πq2
dν

π
(1.16)

where ν0 is the frequency of the line center. The term γn is a damping which depends

on the Einstein A coefficient for transitions from state n to state n1

γn “
ÿ

n1ăn

Ann1 (1.17)

The broadened width of the Lyman-α line due to natural broadening can be calcu-

lated by [23]
∆λ

λ
“

∆ν

ν
«
γn{4π

λ{c
« 2ˆ 10´8

Therefore, the line widening produced by natural broadening is significantly smaller

than the widening produced by thermal and Doppler broadening.

The Lyman-α forest lines (typically several hundred per quasar) are far too

numerous to be produced exclusively by normal galaxies. Also, the clouds have

a homogeneous distribution, which differs from the clustering patterns we see

of galaxies. Finally, the objects causing the Lyman-α forest seem to have be-

come rarer as the universe evolved, meaning there are less of them in recent times [4].

Hydrogen clouds responsible for the Lyman-α are diffuse and have low self-

gravity. Their gravity is too low to collapse into a star or galaxy, therefore they

have not contributed to the formation of structure. However, they also have not

dissipated yet. This is further evidence for dark matter, that there is something

keeping the intergalactic hydrogen clouds together and in place.
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High redshift quasars are useful tools to obtain information about the reion-

ization of the intergalatic medium due to their high intrinsic luminosity and strong

Lyman-α absorption lines. In particular, they provide information on the amount

of neutral hydrogen in the intergalactic medium. Optical depth is proportional to

the density of neutral hydrogen, and the density of hydrogen is a tracer of dark

matter. Broadening (thermal, natural, and Doppler) increases the line width of

Lyman-α lines making them easier to detect. On account of the prevalence of

hydrogen in the intergalactic medium, each quasar produces copious amounts of

Lyman-α lines which represent various distances leading to the edges of the early

universe. We therefore are able to gain a deeper understanding of the distribution

of dark matter and the evolution of large-scale structure.



27

CHAPTER 2

Sloan Digital Sky Survey

To study large-scale structure surveys are needed that are larger than the largest

structures in the survey itself. Advances in telescopes, CCD sensors, other obser-

vational instruments allows scientists to view objects at higher redshifts than ever

before. As a result, recent large-scale galaxy surveys are able to sample volumes

larger than the largest structures („150 Mpc in size). The Sloan Digital Sky Survey

[26] and its collaborations have been producing data sets that have the sample

volumes necessary for studying large-scale structure. The datasets produced by

SDSS are available to the public and are what we used in this thesis.

SDSS is the most detailed three-dimensional astronomical survey of the Uni-

verse ever made. SDSS maps or images a region of the sky without regard to any

one particular observational target. SDSS “first light” was in May 2000 and has

been in operation for over two decades. Our focus will be on the third-generation

survey SDSS-III. During the course of SDSS-III operation multiple collaborations

were formed which studied supernovae to measure the expansion history of the

universe, stellar spectra observations to determine the dynamics and chemical

evolution of the Milky Way (APOGEE and SEGUE-2), populations of extra-solar

giant planets (MARVELS), and mapping the clustering of galaxies and intergalactic

gas in the distant universe (BOSS). Our focus will be on BOSS, however we give

a brief overview of the four collaborations in the rest of this section. Then in the

next section, 2.3 we provide a detailed account of the BOSS survey.
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2.1 SDSS-I and SDSS-II

SDSS-III builds on the instrumentation and work done by the prior surveys

SDSS-I and SDSS-II, so a brief introduction to these first two surveys is provided

next. The first eight years of operation included the first two surveys, SDSS-I

from 2000-2005 and SDSS-II from 2005-2008. Together these first two surveys

covered over 25 percent of the total sky by capturing deep multi-color images to

create three-dimensional maps of the universe. The conclusion of SDSS-II marked

the successful image capture of 930,000 galaxies, 120,000 quasars, and 460,000 stars.

SDSS-II consisted of three collaborations: the Legacy Survey, the Supernova

Survey (SN), and the Sloan Extension for Galactic Understanding and Exploration

(SEGUE). The Legacy Survey was the original sky imaging plan which was in

operation from 2000 to 2008. Sky coverage for the Legacy Survey provided a 7,500

square degree map of the North Galactic Cap and 740 square degrees in the South

Galactic Cap. SN found and monitored hundreds of supernovae in a southern

equatorial stripe with the goal of measuring the expansion of the universe. SDSS-II

SN also measured lightcurves for more than 500 spectroscopically confirmed Type

Ia supernovae in the redshift range 0.1 ă z ă 0.4. SEGUE focused on the Galactic

plane and charted the motions and composition of 240,000 stars in the Milky Way.

At the conclusion of SDSS-II in July 2008, SDSS-III began in autumn of the same

year. Both surveys were executed with the dedicated, wide-field of view, Sloan

Foundation 2.5-m telescope at Apache Point Observatory (APO), a large mosaic

CCD camera, and a pair of double spectrographs, each outfitted with 320 optical

fibers plugged into custom-drilled aluminum plates. To process all of the data,

an elaborate system of data reduction, calibration pipelines, and data archiving

systems was developed [10].



29

Figure 2.1: High-level SDSS-III observing schedule. Dark-time observing programs
are marked in blue and bright-time observing programs are marked in red. Hardware
development activities are marked in green, and light blue squares mark the five
public SDSS-III data releases; DR8, DR9, DR10, DR11, and the final SDSS-III
data release, DR12 in 2014. Image from http://www.sdss3.org/collaboration/

description.pdf.

2.2 SDSS-III Overview

This third generation of SDSS consisted of four different collaborations: The

APO Galactic Evolution Experiment (APOGEE), the Sloan Extension for Galac-

tic Understanding and Exploration 2 (SEGUE-2), Multi-object APO Radial Ve-

locity Exoplanet Large area Survey (MARVELS), and the Baryon Oscillation

Spectroscopic Survey (BOSS). The details of BOSS will be provided in the next

section, after a brief description here of the other three surveys. Figure 2.1 displays

the high-level schedule that was followed for the four SDSS-III surveys and their

development activities.

http://www.sdss3.org/collaboration/description.pdf
http://www.sdss3.org/collaboration/description.pdf
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2.2.1 APOGEE

The APO Galactic Evolution Experiment used near-infrared spectroscopy to survey

over 100,000 red giant stars in the Milky Way Galaxy. Measurements of chemical

composition, stellar parameters, and high precision radial velocity allow APOGEE

to provide clues to the dynamical and chemical history of our Galaxy. The APOGEE

survey took advantage of ”bright” time, when the Moon is more than 60% illumi-

nated, a time which the BOSS survey cannot operate.

2.2.2 SEGUE-2

Sloan Extension for Galactic Understanding and Exploration 2 was an extension of

SEGUE-1 and together they provided spectroscopic observations of approximately

350,000 stars with the goal of investigating the kinematics and chemical composition

of the Milky Way. Specifically, these surveys focus on objects in the distant Galactic

halo and how it evolves over time. The goal is to understand stellar dynamics in

the halo and how they influence formation and metal enrichment throughout the

Galaxy.

2.2.3 MARVELS

The goal of the Multi-object APO Radial Velocity Exoplanet Large-area Survey

is to test theoretical models of the formation, migration, evolution of giant planet

systems. To accomplish this goal MARVELS observed radial velocities of 11,000

bright stars in attempts to find giant planets with orbital periods as short as a few

hours and as long as two years. Each star was observed approximately 20-40 times,

with a typical exposure lasting 50-60 min. Data collection began in Fall 2008 and

ended in Summer 2012.
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2.2.4 BOSS at a glance

The Baryon Oscillation Spectroscopic Survey (BOSS) consists of three scientific

goals: dark energy and cosmological parameters, the history and structure of the

Milky Way, and extrasolar giant planets. Its goal was to carry out precision BAO

measurements from the Lyman-α forest at z „ 2.5 [14]. The BOSS survey measured

redshifts of 1.5 million high mass galaxies and Lyman-α forest spectra of 150,000

quasars to obtain estimates of the distance scale and Hubble expansion rate at

z ă 0.7 and z « 2.5. The next section gives a more detailed account of BOSS

including instrument upgrades and data processing.

2.3 BOSS

2.3.1 Telescopes, Cameras, and Spectrographs

SDSS-II and SDSS-III used the same two telescopes for imaging. The first telescope

is a wide-field Sloan 2.5m telescope at APO in New Mexico and the other is a du

Pont 2.5m telescope at Las Campanas Observatory (LCO) in Chile. Although the

telescopes are different models, they both have identical spectrographs attached

(see figure 2.2). The primary goal of the SDSS spectrographs is the creation of a

three-dimensional wide-area map of the universe to reveal its large-scale structure.

To accomplish this, spectroscopic observations use between six and nine plates each

night. These are large aluminum plates with small holes drilled in them. Each

hole has a fiber optic cable which must be manually plugged in each observing

night. Each hole corresponds to an astronomical object (star, galaxy, quasar, or

random empty area to subtract background noise), and each plate is custom drilled

to correspond to a specific patch of sky. The 2.5m telescopes have a field of view

of 7 deg2, and each plate views a sky area of 5 deg2. A high number of fibers and
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Figure 2.2: Illustration of the BOSS spectrograph setup. Image from https://www.

sdss.org/instruments/boss_spectrograph/

higher density plates were used to ensure the survey could complete analysis of the

entire sky. To ensure complete sky coverage, there is a need for overlap between

fields of view. Also, sky-background measurements and cross-calibration of the full

survey require multiple observations.

The telescopes are Cassegrain models, in which the focus is behind a parabolic pri-

mary mirror. The focus is accessible through a hole in the primary mirror through

which reflected light from a secondary hyperbolic mirror passes. The advantage of

the Cassegrain model is that telescopes with a long focal length can still have a

compact design. Also, the focus is at the base of the telescope behind the mirror,

allowing easy access to mount large cameras and spectrographs. Consequently,

the telescope has two double fiber-fed spectrographs permanently mounted on the

image rotator (see figure 2.3). There is also a photometric/astrometric mosaic

camera, mounted at the Cassegrain focus. The camera images the sky with a

scanning path that follows great circles at the sidereal rate. The telescope enclosure

https://www.sdss.org/instruments/boss_spectrograph/
https://www.sdss.org/instruments/boss_spectrograph/
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Figure 2.3: The actual SDSS spectrographs mounted to the Cassegrain image rota-
tor. Spectrograph 1 is the green device on the right. Spectrograph 2 is the green
device on the left. In this photograph, the telescope is at a zenith angle of 600.
Figure from [24]

and mounting were constructed for ease of access and to facilitate fast swapping

between fiber plug plates and between imaging and spectroscopic modes. This

allows for an ideal observation strategy where sky imaging is done during optimal

weather conditions, and spectroscopy is performed during less pristine observing

conditions.

Imaging data was captured during clear, dark nights then reduced and cali-

brated. The processed imaging data was then used to select spectroscopic targets.

The imaging procedure begins with scanning the sky on the first night. After

scanning the sky, one thousand holes are drilled in an aluminum plug plate. One

thousand optical fibers are then plugged into the holes to allow light from the focal

plane to flow to the pseudoslit of the spectrographs. Flux captured from quasar
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Figure 2.4: Spectra of randomly selected quasars from our sample, BOSS Lyman-α
data release 9. The green region highlighted in each graph represents the selected
range of the Lyman-α forest region 1041 ă λrest ă 1185 Å.

light can be seen in figure 2.4. On the second night, the sky is re-scanned and the

spectra for the one thousand objects is collected. Of this detail collected we’ll be

using the Lyman-α forest spectra produced by quasars. For the SDSS-III survey

smaller diameter fibers that better matched the angular scale of BOSS targets were

installed. The original 640 fibers used for SDSS-I and SDSS-II where increased

to a total of 1000 fibers for SDSS-III BOSS. This increased the total number of

simultaneous spectra readings from the two spectrographs. The SDSS imaging

camera measures wavelengths on both the blue and red ends of the spectrum. On

the blue side, the short wavelength limit was set to 3900 Å. For longer wavelengths,

the red channel was added to enable observations of H-α to a redshift of z “ 0.2 or

more, and the observation of quasars out to redshifts beyond z “ 5.[24] The upper

wavelength limit was therefore set to 9100 Å. For the BOSS survey the limits were

extended to 3560 Åă λ ă 10,400 Å. Also, upgraded CCD cameras were installed

with higher quantum efficiency and smaller pixels. Overall the peak instrument
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efficiency was increased from 45% to 70%.

The spectroscopic resolution of 1500 at 3800 Å was set to measure spectro-

scopic redshifts of galaxies accurate up to the limit imposed by Doppler broadening

caused by velocity dispersions in the range 100 to 200 km/s. The BOSS upgrades

increased the resolving power to 2500 at 9000 Å.

2.3.2 Data Selection

Our selected data set is from the BOSS Lyman-α Forest Sample from SDSS Data

Release 9. This release is comprised of 54,468 quasar spectra with zqso ą 2.15.

This data set examines absorption redshifts in the range 2.0 ă zα ă 5.7 with sky

area coverage over 3275 square degrees, enclosing an estimated comoving volume

of 20h´3 Gpc3 [14]. Figure 2.5 shows the redshift distribution of the quasars, and

Figure 2.6 shows their distribution across the sky. There are many steps to per-

form against a set of quasar spectra before it is ready for cosmological analysis of

the Lyman-alpha forest. These steps include removing regions affected by damped

Lyman-α absorbers (DLAs), flagging inaccurate data, and accurate evaluation of

noise.

2.3.3 Data Reduction Pipeline

Lee et al. (2013) [14] describes several steps that must be taken to prepare a set of

quasar spectra for cosmological analysis of the Lyman-α forest. These steps involve

removing unreliable pixels, corrections to account for contamination by damped

Lyman-α absorbers (DLAs) or broad absorption lines (BALs), noise corrections, and

conclusively defining the full continuum baseline, before it is altered by absorption.

All of this difficult work was already completed by the SDSS consortium and we



36

Figure 2.5: Redshift distribution of the 54,468 high-redshift (z ą 2) quasars used to
probe the Lyman-α forest.

Figure 2.6: Sky distribution of all SDSS BOSS DR9 spectroscopy (Includes stars,
galaxies, and quasars). The solid line represents the Galactic equatorial plane.
Figure from [1]
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simply applied the recommended masks and corrections to the data to obtain the

full Lyman-α data set. The next sections summarize what the mask and corrections

are and why they are important.

Pixel Masks

SDSS BOSS Lyman-α analysis employs a bitmask system to flag unreliable pixels

which should be abandoned. Lee discusses the pipeline mask as the first bitmask

system which processes and calibrates BOSS galaxy and quasar flux data by way

of an automated classification and redshift measurement software called idlspec2d.

The second bitmask system he discussed is primary source of pixel noise, the sky.

The sky mask flags pixels that should be discarded due to the saturation by sky

variance, which drowns out the astrophysical flux signal.

BALs and DLAs

A broad absorption line (BAL) quasars have a continuous broad absorption spec-

trum and are associated with high velocity active galactic nuclei (AGN) outflows

from an accretion disk [15]. Lee states that BAL troughs may affect the continuum

fitting and introduce intrinsic quasar absorption into the Lyman-α forest region.

Therefore, 5,848 quasars were visually flagged as BAL quasars and omitted from

the data set.

Some hydrogen clouds are so dense that their outer layers shield neutral hy-

drogen in the interior from radiation. These high density regions will cause the

absorption to plummet. This type of region is known as a damped Lyman alpha

(DLA) region. These collapsed DLA regions therefore do not effectively trace the

underlying dark matter fluctuations on large scales. Also, according to Lee, each



38

DLA produces large damped absorption profiles that pollute large portions of

sightlines (∆v Á 5000 km s´1). Thus, it is desirable to exclude DLAs from any

large-scale Lyman-α forest analysis.

Noise Corrections

It is difficult to estimate continua when the spectra contain a lot of noise. The

idlspec2d software tool provided a noise estimation σp which took into account

each pixel in each spectrum. The overall noise estimate was refined by application

of a combination of several noise correction factors including individual exposure

correction (corexp), co-addition correction (coradd), and flux-dependent correction

(corflux). The total correction to the pixel noise is then

cortotpλ, fq “ corexp ˆ coraddpλq ˆ corfluxpf, λq (2.1)

To produce a more accurate noise estimate, the pipeline noise estimate is divided

by the overall noise correction

σcor “
σp

cortotpλ, fq
(2.2)

where f is a modified weighted flux for a given pixel. For more details on the noise

correction procedure see [14].

Continuum Fitting

The spectrographs collect photon counts within specific channels, they do not

obtain the actual spectrum. The actual spectrum of the source can be determined

by direct comparison of an observed spectrum with a set of models or an empirical

library of objects with known characteristics on a pixel-by-pixel basis. In the case

of estimating quasar continua, typical methods include models which perform a
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power-law extrapolation from λrest ą 1216 Å. However, due to uncertain blue-end

spectroscopy in BOSS and a break in the quasar continuum at λrest ą 1200

Å, continuum extrapolations are unreliable. Consequently, estimation of the

continuum must be accomplished using information in the Lyman-α forest itself.

Extraction of the transmitted Lyman-α flux is accomplished by dividing the

observed flux by an estimate of the intrinsic quasar continuum. A two-step process

using a modified version of the mean-flux regulated principal component analysis

(MF-PCA) technique was used to obtain a continuum estimate. An initial PCA

fit to predict the shape of the Lyman-α forest continuum, and a step to ensure

the continuum amplitude is consistent with published constraints on the Lyman-α

forest mean-flux.
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CHAPTER 3

Wavelet Packet Power Spectrum

Our primary method of analysis uses wavelet theory, the basis of which are wavelets.

Like the Fourier transform, we use the DWPT to separate a density fluctuation field

into individual components. Since Parseval’s Theorem for energy conservation holds

for wavelet transforms, we can use those DWPT coefficients to compute the power

spectrum.

3.1 Introduction to Wavelet Analysis

3.1.1 Wavelets and Wavelet Systems

A wavelet is a “small wave” which has its energy concentrated in time. This allows

analysis of transient, non-stationary, or time-varying phenomena. In addition, it

allows simultaneous time and frequency analysis [5]. Figure 3.1 displays an example

wavelet known as the Morlet wavelet, which has finite energy focused between

location ´3 and `3.

A function or signal fptq and an orthogonal set of basis functions ψi can be

expressed as a linear combination

fptq “
ÿ

i

aiψiptq (3.1)

where i is an integer index for an infinite or finite sum and ai are expansion coef-

ficients. For orthogonal basis, the inner product of the expansion set functions is
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Figure 3.1: Example of a wavelet.

zero when the indices are not equal

〈ψkptq, ψiptq〉 “
ż

ψkptq, ψiptqdt “ 0 k ‰ i, (3.2)

and the coefficients of the expansion can be calculated by the inner product

ak “ 〈fptq, ψkptq〉 “
ż

fptqψkptqdt (3.3)

For the case of a wavelet expansion, a two-parameter system can be developed from

equation (3.1) to produce

fptq “
ÿ

k

ÿ

j

aj,kψj,kptq (3.4)

where j, k are integer indices and ψj,k are wavelet expansion functions that form

an orthogonal basis. This provides the basis for building wavelet systems which

can map a function into a two-dimensional array of coefficients. The j index is the

scaling index, and k is the translation index. Combined with the summations, this
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Figure 3.2: Translation and scaling of a wavelet ψ

system moves the wavelet across the signal (which is called translation) sampling

different portions of it. It also can adjust or change the scale of the wavelet to

enable approximations at different resolutions.

Figure 3.2 is a graphical portrayal of the scaling and translation of an in-

dividual wavelet. The ψ term is an arbitrary wavelet which could be Haar,

Daubachies, Morlet, etc. The location of the wavelet can move along the horizontal

axis by changing the value of the index k. Adjustment of the k index allows the

wavelet expansion to definitively analyze a specific location of events in time or

space. On the vertical axis, the shape of the wavelet is controlled by the value of
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the index j, which corresponds to changing the scale of the wavelet. The shape of

the wavelet changes in scale as the index j changes. Higher resolution or higher

detail is achieved by increasing the scale. Larger scales (higher values of j) produce

a taller, thinner wavelet. A thinner wavelet coincides with smaller steps in time

for the wavelet duration. It is this two-dimensional procedure of thinner wavelet

and smaller transnational steps that produce higher resolution levels. As alluded

to earlier in this paragraph, in designing the wavelet system, the shape of the

mother wavelet can be changed to better suit analysis of the specific signal under

study. This dual parameterization consisting of scaling and translation functions

in wavelet systems allows localizing of the signal in both the time and frequency

domains.

The basis functions of wavelets are produced by two entities, the scaling

function, also known as the father wavelet φptq, and the mother wavelet ψptq [19].

The scaling function has the general form

φk “ φpt´ kq k P Z (3.5)

The mother wavelet is based on the scaling function and produces a two-dimensional

characterization which parameterizes time (or space) k and frequency (or scale) j

and has the form

ψj,k “ 2j{2ψp2jt´ kq j, k P Z (3.6)

3.1.2 Multiresolution Analysis

Fundamental to wavelet analysis is multiresolution analysis (MRA) which is decom-

position of a signal (for example a quasar flux signal) into subsignals of different

size resolution levels [25]. MRA is the core of wavelet analysis and depends on the

requirement of nesting of the vector spaces spanned by the scaling functions. In
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terms of signal processing, this means that the space containing high-resolution sig-

nals will also contain those of lower resolution. Another way to describe this feature

is that the elements in a space are just scaled versions of the elements in the next

space. Burrus et al.[5] describes how the MRA version of the scaling function can

be written as a shifted scaling function φp2tq

φptq “
ÿ

n

hpnq
?

2φp2t´ nq, n εZ (3.7)

The term hpnq represent a sequence of real or complex numbers called the scaling

function coefficients. The
?

2 maintains the norm of the scaling function with a

scale of two. The choice of the coefficient hpnq is what defines the design of the

wavelet system.

The mother wavelet or wavelet function is a weighted sum of the shifted

scaling function defined in equation (3.7)

ψptq “
ÿ

n

h1pnq
?

2φp2t´ nq, n εZ (3.8)

where h1pnq are a set of wavelet coefficients. By orthogonality the wavelet coefficients

are related to the scaling function coefficients by

h1pnq “ p´1qnhp1´ nq (3.9)

The function in equation (3.8) is what produces the general mother wavelet function

for a class of expansion functions in equation (3.6).

3.2 Discrete Wavelet Transform

The goal of most expansions of a function or signal is to have the coefficients of the

expansion provide more useful information about the signal than can be gleaned

from the signal itself. To efficiently represent continuous functions requires finite, or
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discrete approximations. Using the general scaling and mother wavelet expansion

functions from equations (3.5) and (3.6), any function or signal gptq can be written

as a series expansion in terms of the scaling function and mother wavelets

gptq “
ÿ

k

cj0pkqφj0,kptq `
ÿ

k

8
ÿ

j“j0

djpkqψj,kptq (3.10)

where the first part of equation (3.10) is the low resolution, coarse approximation

or trend. The second component of equation (3.10) is the high resolution detail or

fluctuation. The value chosen for j0 determines the coarsest scale spanned by φj0,kptq.

Therefore, j0 could be zero, or any other integer. If no scaling function is used, j0

would be set to negative infinity. The coefficients of this wavelet expansion constitute

the discrete wavelet transform (DWT) of the signal gptq. If the wavelet system is

orthogonal, the coefficients can be calculated by the following inner products

cjpkq “ 〈gptq, φj,kptq〉

djpkq “ 〈gptq, ψj,kptq〉

The orthonormality of the scaling functions and wavelet functions is important be-

cause it allows application of Parseval’s theorem. The Parseval relation for the norm

of gptq shows how the energy of the signal gptq relates to each component and their

corresponding wavelet coefficients. Parseval’s theorem can be expressed as a general

wavelet expansion of equation (3.10) [5]

||gptq||2 “
8
ÿ

t“´8

|gptq|2 “
8
ÿ

n“´8

|cpnq|2 `
8
ÿ

j“0

8
ÿ

k“´8

|djpkq|
2 (3.11)

This equation provides confirmation that the energy of a signal is distributed to the

coefficients of the expansion. In other words, the discrete wavelet transform process

conserves energy by preserving the energy in the time domain in the wavelet domain

[9]. See Appendix A for an explicit proof of Parseval’s Theorem for discrete wavelet

transforms.
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3.2.1 Haar Transform

One of the strengths of wavelet transforms is the multitude of wavelets that exists.

This allows one to select the wavelet type which works best for the particular

situation being analyzed. To better understand the discrete wavelet transform

(DWT), this section details Haar wavelets. Developed by Alfred Haar in 1910,

Haar wavelets are the most basic type of wavelet.

Haar wavelets make up the basis for the Haar transform. The Haar trans-

form is the basic model for all other transforms. The scaling function for the Haar

wavelet is a straightfoward step function that is equal to 1 on the interval [0,1) and

zero everywhere else.

φptq “

$

’

&

’

%

1 if 0 ă t ă 1

0 otherwise

Figure 3.3a is a graphical representation of this step function. Equations (3.8) and

(3.9) require that the wavelet function take the form

ψptq “

$

’

’

’

’

’

&

’

’

’

’

’

%

1 for 0 ă t ă 0.5

´1 for 0.5 ă t ă 1

0 otherwise

In our project, the data is in the form of discrete signals with length N whose values

occur at discrete instances in time or space. To simplify, we assume that the time

increment separating successive discrete values is always the same. The term equally

spaced sample values or just sample values will be the descriptor for this class of

discrete signal values. For processing, N must be a positive even integer, in other

words, a power of 2. If N is not a power of 2, zeroes can be added to the end of the

signal to make it a power of 2. The Haar transform process decomposes a discrete
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Figure 3.3: Plot (a) on the left is the Haar scaling function φptq. Plot (b) on the
right is the Haar wavelet ψptq. Both functions are defined on interval [0,1).

signal into two subsignals, each half the length of the original. One subsignal is a

running average, or trend. The other subsignal is a running difference, or fluctuation.

As an example, we will perform a 1-level Haar transform on the discrete sig-

nal s “[2 6 7 11 15 5 4 2] with length N “ 8, a positive integer. We’ll start with

the first average, or trend A1 “ pa1, a2, a3, aN{2q. To compute the first coefficient,

a1 we take the average of the first pair of values in the signal, then multiply by
?

2. The reason for the multiplication by
?

2 is to make sure the Haar transform

conserves energy in the signal. To proceed, we take the average of the next pair

of values in the signal and again multiply by
?

2. This pattern of generating the

average coefficients is represented by the following equation

Am “
s2m´1 ` s2m

2

?
2 “

s2m´1 ` s2m
?

2
(3.12)

for m “ 1, 2, 3, ..., N{2.
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From this it is easy to see that

a1 “
2` 6
?

2
“ 4

?
2

a2 “
7` 11
?

2
“ 9

?
2

a3 “
15` 5
?

2
“ 10

?
2

a4 “
4` 2
?

2
“ 3

?
2

So the first trend subsignal A1 “ p4
?

2, 9
?

2, 10
?

2, 3
?

2q.

The next subsignal is called the difference or first fluctuation of the signal s

which will be designated D1 “ pd1, d2, d3, dN{2q. The calculation of the difference

coefficients differs from the average coefficient calculation in that we take half the

difference of each pair of values in the signal then multiply by
?

2.

Dm “
s2m´1 ´ s2m

2

?
2 “

s2m´1 ´ s2m
?

2
(3.13)

for m “ 1, 2, 3, ..., N{2.

The difference coefficients for the first fluctuation are computed as follows

d1 “
2´ 6
?

2
“ ´2

?
2

d2 “
7´ 11
?

2
“ ´2

?
2

d3 “
15´ 5
?

2
“ 5

?
2

d4 “
4´ 2
?

2
“
?

2

So the first fluctuation subsignal is D1 “ p´2
?

2,´2
?

2, 5
?

2,
?

2q.
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Now that we have completed a 1-level Haar transform, the procedure can be

repeated to perform multi-level Haar transforms. The 1-level Haar transform

produced the first average A1 and the first difference D1. To perform the 2-level

Haar transform we compute a second average A2 and a second difference D2, but

only on the first trend A1. The previous difference D1 is copied into the next level

to keep the signal the same size. Using equation (3.12) it is straight forward to

calculate the second average A2 “ pa1, a2q, where the coefficients a1 and a2 are

unique to this second Haar level.

a1 “
4
?

2` 9
?

2
?

2
“ 13

a2 “
10
?

2` 3
?

2
?

2
“ 13

Therefore A2 “ p13, 13q.

It follows that the second difference D2 “ pd1, d2q is computed using equa-

tion (3.13)

d1 “
4
?

2´ 9
?

2
?

2
“ ´5

d2 “
10
?

2´ 3
?

2
?

2
“ 7

Therefore D2 “ p´5, 7q.

The process continues until you reach a trend node of size 1. The full Haar
transform decomposition of signal s is shown in table (3.1).
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2 6 7 11 15 5 4 2

4
?

2 9
?

2 10
?

2 3
?

2 ´2
?

2 ´2
?

2 5
?

2
?

2

13 13 -5 7 ´2
?

2 ´2
?

2 5
?

2
?

2

13
?

2 0 -5 7 ´2
?

2 ´2
?

2 5
?

2
?

2

Table 3.1: 3-level Haar transform. The first row represents the original signal [2 6
7 11 15 5 4 2] being processed. Each row is a different Haar level. So, the second
row is Haar level 1, the third row is Haar level 2, and the fourth row is Haar level
3, the final level for this transform. For the subsequent rows, the black numbers are
the average coefficients (trend) and the red numbers are the difference coefficients
(fluctuation).

The second row of table 3.1 represents a Haar level 1 transform, or one level of de-

composition. The frequency node in level 1 (second row) containing the four black

numbers represents the low-pass (low frequency) coarse component of the approxi-

mation. The black numbers are referred to as the average of that frequency. The

frequency node containing the four red numbers in the level 1 transform represent

the high-pass (high frequency) detail version of the approximation. The red numbers

can also be thought of as the local fluctuations at that frequency. The subsequent

row, row 3 is a Haar level 2 transform. This produces an average that is coarser

than the previous level, resulting in a frequency node containing two black numbers

[13 13]. The two red numbers in row 3 of the Haar level 2 transform represent a

narrower frequency node and thus more detailed approximation than the previous

level.

3.3 Discrete Wavelet Packet Transform

The DWPT is the primary analysis method used in this project. Both wavelet

transforms and wavelet packet transforms are time-frequency tools which decom-

pose a discrete signal in the time-frequency domain to obtain a good resolution in
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time as well as frequency. At the first level, both tools decompose the signal into

coefficients, the low frequency trend and the high frequency fluctuation. However,

the difference between these two is the way they decompose the signal after the first

level. The wavelet transform decomposes only the low frequency trend components

at each level, whereas the wavelet packet transform decomposes both the low

frequency trend and the high frequency fluctuation components at each level. As

a result, the wavelet packet transform produces better resolution when the signal

also contains high frequency information. The decomposition of the signal into

multiple frequency nodes can be stopped at any level. Increasing the number of

levels of decomposition increases the frequency resolution allowing the user to

customize this setting to the needs of the application. Figure 3.4 shows a level-3

decomposition which generates 8 wavelet packet coefficients. As mentioned above,

it is viable to use the results from level 1 or level 2 of the decomposition tree. The

choice of level to use is determined by the needed frequency resolution.

As an example, we will decompose the signal s “[2 6 7 11 15 5 4 2] from

section §3.2.1 using the DWPT method.

Both wavelet transforms and wavelet packet transforms use wavelets as a ba-

sis for signal processing. This example uses the Haar wavelet as the basis for the

calculation. The DWPT is calculated by performing a first level Haar transform

on all subsignals, both the trends and fluctuations. The first level Haar transform

and fist level DWPT are identical. The second level is where the decomposition

is noticeably different. For the second level, start with the first node of the level

one transform from table 3.1: r4
?

2 9
?

2 10
?

2 3
?

2s, and perform another level

1 Haar transform. This produces the first two nodes in the second level. The

first node contains the trend coefficients [13 13], and the second node contains

the fluctuation coefficients [-5 7]. Next, take the second node of the level one
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Figure 3.4: Wavelet packet tree for three levels of wavelet packet decomposition.
In this case Apzq and Dpzq represent the average (trend/low pass) and difference
(fluctuation/high pass) filters, respectively. The down arrows represent the down
sampler, or decimator by 2. After decomposition, the coefficients of the wavelet
packet transform in natural order. Revision from natural order to the correct fre-
quency order is done by applying grey code permutation.
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transform from table 3.1: r´2
?

2 ´ 2
?

2 5
?

2
?

2s, and perform another level 1

Haar transform. This produces the first third and fourth nodes in the second level.

The third node contains the trend coefficients [-4 6], and the second node contains

the fluctuation coefficients [0 4]. The full signal decomposition using the DWPT is

shown in table 3.2.

2 6 7 11 15 5 4 2

4
?

2 9
?

2 10
?

2 3
?

2 ´2
?

2 ´2
?

2 5
?

2
?

2

13 13 -5 7 ´4 6 0 4

13
?

2 0
?

2 ´6
?

2
?

2 ´5
?

2 2
?

2 ´2
?

2

Table 3.2: 3-level Discrete Wavelet Packet Transform using Haar wavelets. The first
row represents the original signal [2 6 7 11 15 5 4 2] being processed. Each row is
a different Haar level. For the subsequent rows, the black numbers are the average
coefficients (trend) and the red numbers are the difference coefficients (fluctuation).
Each level is grouped by frequency nodes. The final level is in natural order.

It is worth noting that when performing a DWPT, the frequency nodes in the final

level of decomposition are not automatically in frequency order. Returning to the

example in table 3.2, the nodes in the last row are in what is called natural order.

To get the nodes in frequency order, a gray code ordering algorithm must be applied.

The frequency ordering is applied to the last “requested” level of decomposi-

tion. The term “requested” level is used because the decomposition can be stopped

at any level, depending on the level of resolution you’re looking for. The signal

in 3.2 was fully decomposed for a total of 3 levels. The frequency order is then

determined by running the graycode algorithm, supplying the level as the argument

n. In this case where n “ 3 the graycode method returns [0 1 3 2 6 7 5 4]. This

vector contains the order of indexes which will result in all frequency nodes being
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in frequency order, with the index starting at zero. Applying this to the final level

of decomposition of the signal in table 3.2, the frequency order becomes

r13
?

2 | 0 | ´ 6
?

2 |
?

2 | 2
?

2 | ´ 2
?

2 | ´ 5
?

2 |
?

2s

What if the decomposition is set to stop after the second level? Two levels of

DWPT processing of signal s produces four frequency nodes, each containing two

coefficients. This is shown in row 3 of table 3.2 and copied again below

r13 13 | ´ 5 7 | ´ 4 6 | 0 4s

At level 2 the frequency order can be determined by setting n “ 2 and running the

graycode function yielding [0 1 3 2]. Use this gray code ordering to put the level 2

frequency nodes in order to obtain

r13 13 | ´ 5 7 | 0 4 | ´ 4 6s

The MATLAB wavelet toolbox contains a discrete wavelet packet transform function

called dwpt, which automatically performs the frequency ordering.

3.4 Wavelet Transform vs Fourier Transform

As discussed in §1.2.1 Fourier analysis is the traditional, older technique to

perform spectral analysis. Another tool for spectral analysis is the DWPT which

was introduced in this chapter. The DWPT technique of computing the power

spectrum has some distinct advantages over its Fourier counterpart.

First, for the Fourier transform the basis functions are limited to sines and

cosines. However, when using the DWPT there are an infinite number of wavelets

which can be chosen as basis functions. This provides the ability to choose the

wavelet which best approximates the signal being analyzed. Second, the Fourier
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Figure 3.5: Sample spectrum with Gaussian random noise added.

transform maps into a 1-dimensional array of coefficients while the DWPT maps

into a 2-dimension array of coefficients. This makes the DWPT localized in both

space (or time) as well as frequency. The result of this is that errors are also

localized. Contrarily, the Fourier transform is localized in frequency only. This

causes errors to be propagated throughout the entire signal approximation. Next,

we will explore an example which demonstrates the advantages in signal processing

that the DWPT has over the conventional Fourier method.

Figure 3.5 displays a sample spectrum produced with simulated data con-

taining Gaussian random noise (0 mean, unit variance) with a sampling frequency

of 1 Hz. The sample is based on the function with a power spectrum,

P pkq “
k

p1` k4q
(3.14)
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Figure 3.6: Fourier power spectrum of
sample.

Figure 3.7: Wavelet packet power
spectrum of sample.

Applying the Fourier power spectrum and the wavelet power spectrum to the

sample signal produced the result in Figures 3.6 and 3.7. The shape of the curves is

similar, but when using the wavelet method there is much less noise. The x-axis in

the Fourier case is traditionally known as frequency or scale. The Fourier method

has higher frequency resolution, however at the expense of picking up a lot of noise

in the process. For the wavelet power spectrum, the frequency is 1/node, where

node is a wavelet packet node, or frequency band. The frequency bands go from 0

to π, and are evenly distributed on each node.

In figures 3.8 and 3.9 60 bad data points have been introduced into the orig-

inal sample and the values where changed to the mean of the signal `5σ. After

computing the power spectrum using both methods, the general shape of the curve

is maintained. However, the Fourier version has changed by 2 orders of magnitude

while the wavelet version remains relatively unchanged. Since the basis functions

of the Fourier methods are infinite (sine and cosine waves), any errors will prop-

agate throughout the entire estimate, which includes all frequencies. The DWPT

method has the advantage of using finite wavelets as basis functions and being

localized in both space(time) and frequency. As a result, errors in the data are lim-
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Figure 3.8: Fourier power spectrum
of sample with 60 bad data points
added.

Figure 3.9: Wavelet packet power
spectrum of sample with 60 bad data
points added.

ited the branch of descendant frequencies in the wavelet packet tree (see Figure 3.4).

The Fourier transform has better frequency resolution than the DWPT, but

this comes at the expense of picking up high frequency noise that will tend to ”wash

out” the transform. The DWPT does not have this issue because it is capturing

information over a frequency bin.

3.5 Power Spectrum Estimation

In this section we provide an overview of the entire process of computing the power

spectrum. We describe how we applied the recommended data corrections from the

value added SDSS catalogs to ensure extraction of only Lyman-α spectra from the

BOSS DR9 dataset. The data binning algorithm is fully explained followed by the

details of calculating the energy and power spectrum from the DWPT.
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Figure 3.10: An overview flowchart of our process to calculate the wavelet packet
power spectrum.

3.5.1 Process Overview

Figure 3.10 is a flowchart of our process. We begin with the SDSS BOSS D9 data

described in §2.3.2 and apply the SDSS recommended masks and corrections from

the SDSS value added catalogs described in §3.5.2. We then bin the flux data by

redshift, while adjusting the bin size due to the expanding universe (see §3.5.3). The

data is then grouped by redshift range as described in §3.5.3. We then apply the

DWPT described in §3.3 to the flux and noise data. Finally, in §3.5.4 we use the

DWPT transform results to calculate the wavelet packet power spectrum described

in §3.5.

3.5.2 Application of pipeline corrections to DR9 dataset

The quasar spectral data is provided in multiple Flexible Image Transport System

(FITS) files. These individual “speclya” spectral files have a naming convention

which embeds the following information: plate number, fiber ID, and Julian

date. These three pieces of information are needed to identify the redshift of the

quasar. The speclya files are accompanied by additional mask and corrections as

listed in table 3.3. The value-added masks and corrections have not been applied

to the pipeline flux or variances. To extract Lyman-α forest transmission and
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corresponding pixel error we perform the following data clean up procedure on each

FITS file.

The quasar’s redshift is not in the same file as the rest of the quasar spec-

tral data, so we needed to use the plate number, fiber ID, and Julian date to locate

the redshift for the quasar in the sortedkeys file. Once the redshift is determined,

we verify that the spectra is indeed a Lyman-alpha absorption spectra from a

hydrogen cloud. In this data set, the maximum allowed Lyman-α forest interval is

1041Å-1185Å restframe with respect to redshift. Redshift is given by the formula

z ”
λob ´ λem
λem

(3.15)

where λob is the observed wavelength, and λem is the wavelength emitted from the

source. Solving for λob yields

λob “ zλem ` λem (3.16)

We define the Lyman-α forest region by the range 1041 ă λrest ă 1185 Å. This

range was chosen because it avoids quasar Lyman-α (1216) and Lyman-β (1026)

emission lines where continuum fitting is more difficult due to large gradients (by

8000 km/s and 5000 km/s respectively). Also, the chosen range avoids the quasar

proximity zone on the red end, to avoid contamination of the power spectrum by

astrophysical effects in the vicinity of the quasar [6].

Using equation 3.16 the minimum and maximum allowed observable wavelength

values for the Lyman-α forest can be computed as follows

λmin “ zαp1041 Åq ` 1041 Å

λmax “ zαp1185 Åq ` 1185 Å

Where zα is the redshift of the quasar. This range was then used to filter out

quasar absorption spectra that are not due to Lyman-α.



60

Table 3.3: Spectral Products in HDU 1 of ’SPECLYA’ Product Offering

Standard Pipeline Products

FLUX Coadded calibrated flux density in units of 10´17erg s´1 cm´2 Å´1

LOGLAM Logarithm base 10 of wavelength in angstroms

IVAR Inverse variance of the flux

AND MASK AND mask

OR MASK OR mask

WDISP Wavelength dispersion in dloglam units

SKY Subtracted sky flux in units of 10´17erg s´1 cm´2 Å´1

MODEL Pipeline best model fit used for classification and redshift

Value-Added Products

MASK COMB Combined mask incorporating pipeline AND MASK,

sky-line masks, and DLA masks

DLA CORR Flux correction for known DLAs

NOISE CORR Pipeline noise corrections

CONT Estimated quasar continuum in 1040-1600 Årestframe,

in units of 10´17erg s´1 cm´2 Å´1

In addition to the primary SDSS photometry and spectroscopy data, several

value-added catalogs (VACs) were included in the BOSS DR9 release. The VACs

contain masks and corrections must be applied to the fluxes and variances before

analyzing the data to ensure unrelated fluxes are filtered out. The following

corrections were applied according to instructions provided by SDSS1. DLA CORR

is the flux correction for known DLAs. CONT is the estimated quasar continuum in

1040-1600 Å restframe in units of 10´17ergs{s{cm2{Å. The corrected Lyman-alpha

1https://dr16.sdss.org/datamodel/files/BOSS_LYA/cat/speclya.html

https://dr16.sdss.org/datamodel/files/BOSS_LYA/cat/speclya.html
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transmission ΨLyα can be calculated using the formula

ΨLyα “ FLUX

ˆ

DLA CORR

pCONT qpRESIDCORRq

˙

(3.17)

where RESIDCORR is interpolated from file residcorr v5 4 45.dat, which is available

for download on the SDSS website. We find the last RESIDCORR value in the

RESIDCORR column that is less than or equal to the current wavelength. We also

take into account that the wavelengths in the SDSS data are log10(wavelength), with

the wavelength in units Å.

3.5.3 Data binning

After filtering unrelated fluxes as described near the end of §3.5.2, the true Lyman-

α fluxes are averaged for each bin. For the binning algorithm we first create four

bin groups by redshift ranges 2.0 ă z ă 2.2, 2.2 ă z ă 2.4, 2.4 ă z ă 2.6, and

2.6 ă z ă 2.8. Because the universe is expanding, the bin size will change according

to the redshift. This is accounted for in each redshift group by calculating the bin

size based on the median redshift value of the group. As an example, for redshift

group with range 2.2 ă z ă 2.4, the median redshift is 2.3. Using equation (1.11)

calculate the observed wavelength that corresponds to the median redshift of the

group range

λobs “ λrestp1` zq “ 1216Åp1` 2.3q “ 4013 Å

The relationship between the observed wavelength λ0, changing emitted wavelength

dλ, and changing velocity dv is

dv “
c dλ

λobs
(3.18)

Here dv “ 69 km{s, which corresponds to the pixel resolution of the spectrographs.

All pixels have the same resolution. Using equation (3.18) the bin size for redshift
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range 2.2 ă z ă 2.4 is

dλ “
pdvqpλobsq

c
“
p69{10´13q p4013q

p3ˆ 105{10´13q
“ 0.9229 Å

The 10´13 factors are converting the values from km/s to Å/s.

Next in the binning process is calculating the number of bins in the redshift

range Nbz.

Nbz “
λmax ´ λmin

dλ
(3.19)

Where λmax and λmin are the maximum and minimum wavelength of the redshift

range respectively. Therefore, for range 2.2 ă z ă 2.4, the total number of bins in

the range is

Nbz “
4134´ 3891

0.9229
„ 263 bins (3.20)

Next we determine which of the Nbz bins the quasar flux should be placed in, which

we call the bin location binL. The bin location is defined as

binL “ BGstart `
pλobs ´ λminq

dλ
(3.21)

Where BGstart is index of the first bin of the redshift bin group range, and λobs is

again the quasar observed wavelength. Now that we know the size of the bins in the

range and which bin the quasar belongs to, the quasar’s flux is added to the total

flux in that bin. This process is repeated until all quasar fluxes are properly binned,

resulting in bins containing the total flux contribution from all quasars in each bin.

3.5.4 Wavelet Packet Power Spectrum Estimation

To measure the one-dimensional power spectrum, the quasar absorption spectrum

are cast in velocity units, where all pixels in are the same size ∆v “ 69 km/s. We
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therefore use velocity instead of observed wavelength in our results.

As described in section 3.2, Parseval’s theorem also applies to the wavelet

packet transform. Therefore, the power (Pm) of a wavelet packet node m (or

frequency node) can be defined as

Pmpwattq “
EmpJouleq

2j
(3.22)

Where Em is the energy of the wavelet packet node.

Em “

N{2j
ÿ

i“1

node coefpiq2 (3.23)

where nodecoefpiq represent the individual DWPT coefficients of the frequency node.

The value j is the desired decomposition level which makes 2j the number of fre-

quency nodes (also called wavelet packet nodes or sampling nodes) at level j. This

leads to a definition for the power spectrum density in the mth frequency band

(PSDm) [9]

PSDmpwatt {Hzq “
Pmpwattq

2j
(3.24)
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CHAPTER 4

Analysis of the Lyman-α Forest

In this chapter, we will present the results, analyze our data, and compare to pre-

vious results.

4.1 Results

Using the procedures described in §3.3 and §3.5, we compute the wavelet packet

power spectrum and group the results into four redshift bins (see figure 4.1). We

have plotted the dimensionless quantity ∆2pkq ” π´1 k P pkq, which is the contri-

bution to the variance per unit ln k [18]. The horizontal axis is the wavenumber

based frequency space 2π{v in units of rkm{ss´1 with the highest k´mode possible

defined by the Nyqvist-Shannon limit krNyqvists “ π{∆v.

The error bars represent the standard error, with the variance found as the

spectral noise in the Lyman-α flux data. Constant comoving bin size of 69 km/s

produced 1,030 bins. Each Lyman-α forest flux was analyzed and placed in the

correct bin according to its redshifted wavelength. We then take the average flux

for the entire bin, and obtain the variance from the average. The wavelength bin

size changes depending on the redshift in order to keep a constant velocity bin with

of 69 km/s.

The results of the applying our wavelet packet power spectrum tool to the

SDSS DR9 dataset are plotted in Figure 4.1. The k values on the x-axis represent



65

Figure 4.1: One-dimensional Lyman-α forest wavelet packet power spectrum. Error
bars are the standard deviation of the power spectrum of the noise from the SDSS
DR9 Lyman-α flux data produced by quasars. The lines show the true power value.
Redshift range, from bottom to top, are: blue line 2.0 ă z ă 2.2, red line 2.2 ă z ă
2.4, yellow line 2.4 ă z ă 2.6, purple line 2.6 ă z ă 2.8.
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the size of the fluctuations in velocity space. The power spectrum on the y-axis

represents ∆2pkq ” π´1 k P pkq, where the power spectrum density P pkq is multi-

plied by kπ´1 to make it a dimensionless contribution to the variance. The plot

is logarithmic and the fluctuations follow a power law, so small scales are towards

the right side of the graph where there are many fluctuations. There are fewer

fluctuations for larger scales, which are towards the left side of the graph.

Aside from the recommended pipeline noise and mask corrections, we did

not filter out any data. We used the entire dataset of 54,468 quasars. We then let

the wavelet packet power spectrum analyze the data, filter out the noise, and tell

us the story of density fluctuations and patterns of large-scale structure.

Figure 4.1 shows our wavelet packet power spectrum results. Previous stud-

ies have shown there is an increase in power as you go through smaller and smaller

scales on this logarithmic plot. This is consistent with the hierarchical model of

structure formation where many small-scale structures merged to form larger scale

structures. The figure also shows that power generally increases with increasing

redshift. It is known that the flux power spectrum evolves strongly with redshift.

As discussed in detail by (Croft et al.) [7] this is due to the increased optical depth

at high redshift.

Note that while the data from redshift range 2.4 ă z ă 2.6 follow the gen-

eral trend of 2.0 ă z ă 2.2 and 2.6 ă z ă 2.8, it has anomalous features when

compared to these two redshift ranges. We hypothesize that a reason for this

can be explained by Figure 4.2, which shows the redshift distribution of the high

redshift quasars. At low redshift between 2 and 2.2, the number density of quasars

does not change much. However, from redshift 2.25 to 2.6 there is a sharp drop off.

For the middle redshift bins the number of quasars contributing sharply decreases.
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Figure 4.2: This is a copy of Figure 2.5 with vertical lines marking the redshift bin
locations z “ 2.25 and z “ 2.8 to guide the reader’s eye to the location where the
number density of quasars changes the most drastically.
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Figure 4.3: Binned Lyman-α forest flux data for redshift range 2.4 ă z ă 2.6. There
is inconsistent data, both high and low flux, which probably does not represent the
sample. At (Bin“ 33, Ψavg „ 195) there is a spike in flux that much higher than all
others. Towards the far right end of the graph there are several areas were the flux
abruptly drops to zero.
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Figure 4.4: Power spectrum of Lyman-α forest flux data for redshift range 2.4 ă
z ă 2.6.

To rephrase it, the number of quasars contributing to the flux in each bin changes

drastically in a small redshift interval. Nevertheless, the wavelet packet power

spectrum still captures the general trend without having to sacrifice any of the

data. The power increases as you go to smaller scales and the amplitude of the

power increases as a function of redshift.

To further illustrate this point, we isolate the flux data in range 2.4-2.6 and

show the average flux per bin in Figure 4.3. Note that there are outliers in the

data. At bin 33 for example, the flux which is averaging around 100, suddenly

jumps to 195. While at bins greater than 200 there are several sections where

no flux is being contributed at those bins. Still, we calculate the wavelet packet

power spectrum even though this data contains questionable points. The results
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are shown in Figure 4.4. Once again, at the smallest frequencies there is a general

increase in power from k “ 0.0100 to k “ 0.0228. The resulting power spectrum

in Figure 4.4 shows that the wavelet packet power spectrum is still able to recover

despite the data being potentially problematic. Even with questionable outliners

in the data, any effect they have stays local and the power spectrum is not affected

too much.

We did not investigate which quasar files were causing these outliers in the

data. The purpose of this thesis was to determine if the wavelet packet power

spectrum could recover regardless of any potential problems in the data. We need

to point out that in all published results of the power spectrum as will be discussed

shortly, the majority of the Lyman-α forest is discarded due to problems in the

data.

4.2 Previous Results

4.2.1 Palanque-Delabrouille et al. 2013

Palanque-Delabrouille et al. 2013 [21] developed a method based on the Fourier

transform to measure the one-dimensional power spectrum of the transmitted flux

in the Lyman-α forest. They applied their method to a subset of the SDSS-III

BOSS DR9 dataset. Of the over 50,000 spectra available in BOSS DR9, only

13,821 quasar spectra where selected based on high quality, high signal-to-noise

ratio (S/N), and good spectral resolution. Their results spanned redshift bins from

z “ 2.2 to z “ 4.4 and are shown in Figure 4.5.
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Figure 4.5: One-dimensional Lyman-α forest power spectrum obtained with the
Fourier transform method. Figure from Palanque-Delabrouille et al. 2013 [21]

The final power spectrum data is rebinned onto a predefined grid in k-space

(frequency), giving equal weight to the different Fourier modes that enter each

bin. This acts to minimize the size of the error bars. The power spectrum

calculation includes several corrections which take into account pixel noise, the

impact of the spectral resolution of the spectrograph. Finally, an estimate of

the uncorrelated background due to metal absorption in the Lyman-α forest is

completed by estimating the background component in sidebands positioned at

longer wavelengths than the Lyman-α forest region.

4.2.2 Chabanier et al. 2019

(Chabanier et al. 2019) [6] measured the one-dimensional power spectrum using

a Fast Fourier transform (FFT) method. They applied their method to quasar

spectra from SDSS-III BOSS and SDSS-IV eBOSS DR14 surveys. From a total
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Figure 4.6: One-dimensional Lyman-α forest power spectrum obtained with the
Fourier transform method. Figure from Chabanier et al. 2019 [6]

of 180,413 quasars, only 43,751 quasars were selected covering 13 bins spanning

redshift range z “ 2.2 to 4.6. After binning the Lyman-α forest absorbers according

to mean redshift, the final power spectrum was rebinned onto an evenly spaced grid

in k(frequency)-space. This assigned equal weight to the different Fourier modes

that entered each bin. This rebinning effort is what makes the error bars in Figure

4.6 small. The power spectrum calculation includes several corrections which take

into account pixel noise, the impact of the spectral resolution of the spectrograph,

correlated absorption from either Si III or Si II, and uncorrelated background noise

due to metal absorption. Their results are show in Figure 4.6
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4.3 Comparison with our results

Our results shown in Figure 4.1 are consistent with the previous results of

(Palanque-Delabrouille et al. 2013) [21] and (Chabanier et al. 2019) [6]. The data

lines up particularly well with the velocity space on the horizontal axis. Our power

spectrum result on the vertical access is „ 0.1 lower in magnitude than the two

previous results. However, the relative shape of the graph matches up very well

with both of the prior studies. Our results begin to flatten out after k „ 0.018

similar to both of the previous studies. This provides evidence that the wavelet

packet power spectrum is a valid technique to extract the power spectrum. Unlike

the previous studies, our method requires less data manipulation. The wavelet

packet method localizes noise and errors and allows us to use the entire dataset.

The rebinning of the power spectrum data in frequency space by both (Palanque-

Delabrouille et al 2013) and (Chabanier et al. 2019) contributed to the small error

bars in their results. In our results, our small error bars are due to the fact that

the wavelet packet power spectrum took care of a lot of the noise for us, keeping

our results closer to expected values.

4.4 Conclusion

In this thesis we developed a method of detecting LSS by measuring the one-

dimensional power spectrum of the transmitted flux in the Lyman-α forest. This

was a proof of concept which demonstrated that the wavelet packet power spectrum

is a valid technique to extract the power spectrum. Proving that Parseval’s

Theorem for energy conservation holds for the DWPT provided a preliminary

indication that this method had promise. Further investigation revealed that the

wavelet packet power spectrum, which is powered by the DWPT, is able to capture
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the important aspects of the power spectrum, but it does not do as good a job

as Fourier at capturing the high frequency information. Unlike Fourier transform

methods however, the wavelet packet power spectrum minimizes error propagation

by containing noise within a limited number of frequency nodes rather than

dispersing the error throughout the entire signal. It was also shown that despite

the presence of irregular data or outliers, the wavelet packet power spectrum is still

able to recover and produce meaningful results.

The decision was made to use the SDSS BOSS DR9 Lyman-α forest dataset

because it was fully vetted, contained the high redshift data necessary for studying

LSS, and was packaged with value-added products to assist in Lyman-α forest

analysis. After using the value added products to extract the quasar Lyman-α

forest lines we computed the wavelet packet power spectrum. The wavelet packet

transform handles noisy data efficiently, which minimized data manipulation in our

workflow. Contrary to previous studies, we did not filter out any data. Aside from

the application of the recommended SDSS corrections to the data, we used the

entire dataset of 54,468 quasars. We then let the wavelet packet power spectrum

analyze the data, filter out the noise, and tell us the story of density fluctuations

and patterns of large-scale structure.

Our results agree with previous studies which indicate increasing power mov-

ing towards smaller scales on the logarithmic plot. This is consistent with the

bottom-up scenario where the first objects to form are the smallest with galaxies

forming first, followed by clusters, then superclusters.[22] The trend of increasing

power with increasing redshift also provides evidence to support there is increased

optical depth at high redshift as designated by (Croft et al.).
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4.5 Future Research

This study was a proof of concept so we limited the scope to only the SDSS DR9

dataset. By comparison to previous studies which used the traditional Fourier

method we have established the proof of concept was successful. The first evident

follow-up research path is to apply our wavelet packet power spectrum tool to the

latest SDSS dataset which was produced by the extended Baryonic Oscillation

Spectroscopic Survey (eBOSS) collaboration. The sixteenth and final eBOSS data

release (SDSS DR16) was made available to the public in December of 2019. It

contains all data from eBOSS and its predecessor, BOSS, providing 210,005 quasars

with z ą 2.10 that are used to measure Lyman-α absorption [17].

It is possible that the wavelet packet power spectrum can be used as a data

clean up tool to prepare datasets for further processing. Since the wavelet localizes

by time and frequency, it can isolate where bad data points are. The wavelet

packet power spectrum can therefore be used as a way to denoise data as part of

the pipeline effort similar to wavelet coefficient thresholding.

Additional research efforts could include using a different binning technique.

Our study used a rounding technique to handle cases that were at the borders of

bins. It could prove fruitful to investigating other ways to ensure data fluxes at the

borders of redshift bins are placed in the bin that most realistically represents the

sample. Also, including and plotting additional redshift ranges could produce more

lines of investigation. Experimenting with different decomposition levels of the

DWPT to see how or if they change the power spectrum result is worth pursuing.

Finally, experimenting with different kinds of wavelets when running the DWPT

or using the maximally overlapped discrete wavelet transform may yield other

interesting ways to analyze LSS.
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APPENDIX A

Proof of Parseval’s Theorem for Discrete Wavelet Transforms

Start with the general statement of the series expansion in terms of the scaling

function and wavelet equation (3.10) copied here

gptq “
ÿ

k

cj0pkqφj0,kptq `
ÿ

k

8
ÿ

j“j0

djpkqψj,kptq (3.7)

where the first part of equation (3.10) is the low-resolution, coarse approximation

or trend. The second component of equation (3.10) is the high-resolution detail

or fluctuation. The value chosen for j0 determines the coarsest scale spanned by

φj0,kptq. Therefore, j0 could be zero, or any other integer. If no scaling function is

used, j0 would be set to negative infinity.

Starting with equation (3.10), let N be the length of the signal while J is

the desired level of signal decomposition. Therefore, N{2J is the length of

the wavelet packet node, or the number of coefficients per node at the current

decomposition level.

gptq “

N{2J
ÿ

k“1

cJ,kptqφJ,kptq `
J
ÿ

j“1

N{2J
ÿ

k“1

djpkqψj,kptq (3.7)

integrate the norm square of gptq

ż

|gptq|2dt “

ż

¨

˝

N{2J
ÿ

k“1

cJ,kptqφJ,kptq `
J
ÿ

j“1

N{2J
ÿ

k“1

djpkqψj,kptq

˛

‚

¨

˝

N{2J
ÿ

k“1

c˚J,kptqφ
˚
J,kptq `

J
ÿ

j“1

N{2J
ÿ

k“1

d˚j pkqψ
˚
j,kptq

˛

‚dt
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ż

|gptq|2dt “

N{2J
ÿ

k“1

cJ,k c
˚
J,k

ż

φJ,kptqφ
˚
J,kptq dt `

N{2J
ÿ

k“1

cJ,k

J
ÿ

j“1

d˚j,k

ż

φJ,kptqψj,kptq dt`

N{2J
ÿ

k“1

c˚J,k

J
ÿ

j“1

dj,k

ż

ψj,kptqφ
˚
J,kptq dt `

J
ÿ

j“1

N{2J
ÿ

k“1

dj,k d
˚
j,k

ż

ψj,kptqψ
˚
j,kptqdt

(A.1)

The norm of the wavelet is typically normalized to one, resulting in the following

ż

φJ,kptqφ
˚
J,kptq dt “ 1

ż

ψj,kptqψ
˚
j,kptq dt “ 1

The wavelet and scaling functions are orthogonal over both the translation and scale.

Therefore, we have the following relations

ż

φJ,kptqψj,kptq dt “ 0

ż

ψj,kptqφ
˚
J,kptq dt “ 0

Equation (A.1) then becomes

ż

|gptq|2dt “

N{2J
ÿ

k“1

cJ,k c
˚
J,kp1q `

N{2J
ÿ

k“1

cJ,k

J
ÿ

j“1

d˚j,kp0q`

N{2J
ÿ

k“1

c˚J,k

J
ÿ

j“1

dj,kp0q `
J
ÿ

j“1

N{2J
ÿ

k“1

dj,k d
˚
j,kp1q

ż

|gptq|2dt “

N{2J
ÿ

k“1

|cJ,k|
2
`

J
ÿ

j“1

N{2J
ÿ

k“1

|dj,k|
2 (A.2)
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This result shows that the energy of a signal is distributed to the coefficients of the

expansion and Parseval’s Theorem holds for the wavelet transform.
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APPENDIX B

LyAlphaDataExtractor Program

1 f unc t i on LyAlphaDataExtractor

2 %LYALPHADATAEXTRACTOR Extracts the r e l e v a n t Lyman Alpha data

from SDSS c a t a l o g s

3 % LyAlphaDataExtractor e x t r a c t s the r e l e v a n t Lyman Alpha

data from the

4 % SDSS value added c a t a l o g s . This data can then be

combined in to a s i n g l e

5 % array , or used as i s to study s p a t i a l c o r r e l a t i o n s or

other s t u d i e s .

6 %

7 % Outputs : Mat f i l e conta in ing the Lyman Alpha transmit ted

f l u x e s

8 % trea t ed approp r i a t e l y as de s c r ibed in Lee et al ,

a s t r o /ph

9 % 1211.5146 v2

10

11 t i c

12

13 datad i r = ’D:\ sd s s \ ’ ;

14 % get l i s t o f a l l f i t s f i l e s in d i r e c t o r y and s u b d i r e c t o r i e s

15 d i r i n f o = d i r ( f u l l f i l e ( datadir , ’ ∗∗\∗ .∗ ’ ) ) ; %get l i s t o f

f i l e s and f o l d e r s in any s u b f o l d e r
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16 f i l e l i s t = d i r i n f o ( ˜ [ d i r i n f o . i s d i r ] ) ; %remove f o l d e r s from

l i s t

17 d i r l e n = length ( f i l e l i s t ) ;

18

19 %d i r l i s t =importdata ( ’/ Users / jpando / Research /Cosmology/LSS/

SDSS/ data /BOSSLyaDR9 spectra/ f i s i c a f i l e s . txt ’ ) ;

20 %d i r l e n = length ( d i r l i s t ) ;

21 %m = m a t f i l e ( ’ / Users / jpando/ Research /Cosmology/LSS/SDSS/ data

/Binned Data/Weighted Binned Data . mat ’ , ’ Writable ’ , t rue ) ;

22 m = m a t f i l e ( ’C:\ Users\ j s p e r o \Desktop\ sd s s \
Weighted Binned Data2 . mat ’ , ’ Writable ’ , t rue ) ;

23

24 % deltalambda = 1 ; % b i n s i z e . Set to va lues de s c r ib ed in

a s t r o /ph 1812.03554

25 quasarcount = 0 ;

26 f o r dr= 1 : d i r l e n

27 i f rem( dr , 5000 )== 0

28 f p r i n t f ( ’ working on f i l e %g\n ’ , dr )

29 end

30 b i n f l u x = ze ro s (1 ,1050) ;

31 %s p e c f i l e = d i r l i s t {dr } ;

32 %s p e c f i l e = s p e c f i l e ( 3 : end ) ;

33 %fname = s t r c a t ( ’ / Users /JPANDO/ Research /Cosmology/LSS/

SDSS/ data /BOSSLyaDR9 spectra / ’ , s p e c f i l e ) ;

34

35 data = read f l ux ( dr , f i l e l i s t ( dr ) . name) ;

36 quasarcount = quasarcount +1;

37
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38 % Get Lyman−alpha r e d s h i f t f o r a l l quasars

39 z = ( data ( : , 1 ) − 1216) . / 1 2 1 6 ;

40 zend = length ( z ) ;

41

42 % Binning a lgor i thm to c a l c u l a t e t o t a l f l u x in each bin .

43 % deltalambda i s the bin width ( in angstroms )

cor re spond ing to

44 % v e l o c i t y space 69 km/ s .

45 % s e t to z ˜ 2

46 f o r zo = 1 : zend

47

48 i f z ( zo )>=2 && z ( zo )<2.2

49 lambdamin=3648;

50 %deltalambda i s the bin s i z e f o r t h i s r e d s h i f t

range

51 deltalambda = 0 . 8 6 7 1 ; %lambda mid = 3770 ( use

2 .1 in z=(lambda 0 − lambda em ) /lambda em )

52 binL = round ( ( data ( zo , 1 ) − lambdamin ) /

deltalambda ) ;

53 i f binL > 0

54 b i n f l u x ( binL ) = b i n f l u x ( binL ) + data ( zo , 2 ) ;

55 e l s e

56 binL =1;

57 b i n f l u x ( binL ) = b i n f l u x ( binL ) + data ( zo , 2 ) ;

58 end

59 e l s e i f z ( zo )>=2.2 && z ( zo )<2.4

60 lambdamin =3891;

61 deltalambda = 0 . 9 2 2 9 ; %lambda mid = 4013
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62 binL = 281+round ( ( data ( zo , 1 ) − lambdamin ) /

deltalambda ) ;

63 b i n f l u x ( binL ) = b i n f l u x ( binL ) + data ( zo , 2 ) ;

64

65 e l s e i f z ( zo )>=2.4 && z ( zo )<2.6

66 lambdamin = 4134 ;

67 deltalambda = 0 . 9 7 8 9 ; %lambda mid = 4256

68 binL = 545+round ( ( data ( zo , 1 ) − lambdamin ) /

deltalambda ) ;

69 b i n f l u x ( binL ) = b i n f l u x ( binL ) + data ( zo , 2 ) ;

70

71 e l s e i f z ( zo )>=2.6 && z ( zo )<2.8

72 lambdamin = 4377 ;

73 deltalambda = 1 . 0 3 4 7 ;%lambda mid = 4499

74 binL = 794 +round ( ( data ( zo , 1 ) − lambdamin ) /

deltalambda ) ;

75 b i n f l u x ( binL ) = b i n f l u x ( binL ) + data ( zo , 2 ) ;

76

77 end

78 end % f o r zo = 1 : zend

79

80 m. b i n f l u x ( dr , 1 : 1 0 5 0 ) =b i n f l u x ;

81 end % f o r end dr= 1 : d i r l e n

82 toc

83 di sp ( quasarcount )

84 end
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APPENDIX C

LymanAlphaBinner Program

1 f unc t i on LymanAlphaBinner

2 % LymanAlphaBinner b u i l d s the array to ana lyze by wavelet

packet power

3 % spectrum . Array conta in s a l l the data in average b ins

along with the

4 % var iance o f each bin .

5 %

6 % Outputs : 2 column f i l e . Column 1 conta in s the average at

that p a r t i c u l a r

7 % bin , column 2 conta in s the var iance at that bin

8 t i c

9

10 datad i r = ’C:\ Users\ j s p e r o \Desktop\ sd s s \ ’ ;

11 f l uxda t = [ ] ;

12 %save ( ’/ Users / jpando / Research /Cosmology/LSS/SDSS/ data /

Binned Data/ Weighted f lux Data . mat ’ , ’ f luxdat ’ ) ;

13 save ( s t r c a t ( datadir , ’ Weighted f lux Data2 . mat ’ ) , ’ f l uxda t ’ ) ;

14 % m = m a t f i l e ( ’ / Users / jpando / Research /Cosmology/LSS/SDSS/

data /Binned Data/Weighted Binned Data . mat ’ ) ;

15 %load ( ’/ Users / jpando / Research /Cosmology/LSS/SDSS/ data /

Binned Data/Weighted Binned Data . mat ’ ) ;

16 load ( horzcat ( datadir , ’ Weighted Binned Data2 . mat ’ ) ) ;
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17 % disp ( s i z e ( b i n f l u x ) )

18 % pause

19 % nzz = sum(m. b i n f l u x ˜=0 ,1) ; % used to e l im ina t b ins with no

data

20

21 tmpmu=ze ro s (1029 ,1) ;

22 v = ze ro s (1029 ,1) ;

23 f i g u r e

24 % par f o r n = 1:1029 % us ing p a r a l l e l too lbox to speed up

ope ra t i on s .

25 f o r n = 1:1029

26 i f rem(n , 500 )==0

27 f p r i n t f ( ’ working on bin %g\n ’ ,n )

28 end

29

30 [ r , ˜ ] = f i n d ( b i n f l u x ( : , n ) ) ; %−4

31 i f isempty ( r )

32 cont inue

33 end

34 nz = ze ro s ( l ength ( r ) , 1 ) ;

35 f o r nn=1: l ength ( r )

36 nz (nn) = b i n f l u x ( r (nn) ,n ) ;

37 end

38 tmpmu(n) = mean( nz ) ;

39 v (n) = var ( nz ) ;

40 c l e a r r nz

41 end

42
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43 p lo t (tmpmu)

44 f l uxda t = [ tmpmu v ] ;

45 %save ( ’/ Users / jpando / Research /Cosmology/LSS/SDSS/ data //

Binned Data/ Weighted f lux Data . mat ’ , ’ f luxdat ’ , ’ − append ’ ) ;

46 save ( s t r c a t ( datadir , ’ Weighted f lux Data2 . mat ’ ) , ’ f l uxda t ’ , ’−

append ’ ) ;

47 toc

48

49 end
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APPENDIX D

WP Power Program

1 f unc t i on WP Power( l e v e l )

2 %WPPOWER 1−D wavelet packet power spectrum

3 % WPPOWER(LEVEL) uses the d i s c r e t e wavelet packet

trans form func t i on

4 % DWPT to compute the 1−D power spectrum of a Sloan

D i g i t a l Sky Survey

5 % (SDSS) datase t . The argument @leve l determins the

te rmina l ( f i n a l −l e v e l )

6 % nodes o f the d i s c r e t e wavelet packet trans form (DWPT) .

7 %

8 % The SDSS datase t conta in s two columns o f r e d s h i f t binned

data :

9 % 1) Total f l u x per bin , and 2) Total no i s e per bin .

10 %

11 % For p l o t t i n g the power spectrum , the data i s group by

r e d s h i f t ranges .

12 % The average f l u x in each r e d s h i f t group i s ca l cu l a t ed ,

and that i s used

13 % to f i n d the var iance o f each f l u x f i l e from SDSS .

14

15 % Direc to ry conta in ing SDSS lyman−alpha f l u x f i l e s .

16 dataDir = ’C:\ Users\ j s p e r o \Desktop\ sd s s \ ’ ;
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17 load ( horzcat ( dataDir , ’ Weighted f lux Data . mat ’ ) ) ;

18 %dataDir = ’C:\ Users\ j s p e r o \Google Drive ( pero . jason@gmail .

com)\Education\DePaul\Courses\PHY 480 − Research\depaul−

cosmo−re search −p r o j e c t \ sandbox \ ’ ;

19 %load ( horzcat ( dataDir , ’ We ighted f lux Data a l l . mat ’ ) ) ;

20

21 n = 0 ;

22 DeltaV = 69 ; % km/ s

23 % Used to c r e a t e f our r e d s h i f t bin groups which w i l l be

p l o t t ed l a t e r

24 binGroupSize =[281 ,544 ,792 ,1029 ] ;

25 f 1 = f i g u r e ;

26 f o r zz =1:4

27 %i f ( zz == 1 | zz == 2 | zz==4)

28 i f ( zz == 3)

29 % Average f l u x f o r e n t i r e bin group

30 avg f lux= mean( nonzeros ( f l uxda t (n+1: binGroupSize ( zz ) ,1 ) ) )

;% , ’ omitnan ’ ) ;

31

32 % Variance from average f l u x f o r each data f i l e

33 % de l t a = nonzeros ( ( f l uxda t (n+1: binGroupSize ( zz ) ,1 )−

avg f lux ) . / avg f lux ) ;

34 de l t a = nonzeros ( f l uxda t (n+1: binGroupSize ( zz ) ,1 )−avg f lux

) ;

35 de l t a = de l t a . / avg f lux ;

36

37 % Standard dev i a t i on computed from the no i s e vec to r

38 sigma = s q r t ( f l uxda t (n+1: binGroupSize ( zz ) ,2 ) ) ;
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39 sigma=sigma . / avg f lux ;

40

41 % Standard e r r o r

42 sigma = sigma/ s q r t ( l ength ( f l uxda t (n+1: binGroupSize ( zz ) ) )

) ;

43

44 % Perform d i s c r e t e wavelet packet tranform on the f l u x

and no i s e data

45 [ nodecoef , bkv , p l e v e l s , f r eq , en ] = dwpt ( de l ta , ’ db1 ’ , ’ Leve l

’ , l e v e l ) ;

46 [ snodecoef , bkv , p l e v e l s , f r eq , s i g en ] = dwpt ( sigma , ’ db1 ’ , ’

Leve l ’ , l e v e l ) ;

47

48 % Number o f sampling nodes produced from the DWPT

decomposit ion

49 num Nodes = length ( nodecoe f ) ;

50

51 % Creates s epara t e va lue s f o r t o t a l energy o f a l l

f r equency ( sampling )

52 % nodes f o r both f l u x and standard dev i a t i on

53 t o t a l e n e r g y= 0 ;

54 t o t a l s i g e n e r g y =0;

55 f o r node l eve l =1:num Nodes

56 t o t a l e n e r g y = t o t a l e n e r g y +sum( nodecoe f {1 , node l eve l

} . ˆ 2 ) ;

57 t o t a l s i g e n e r g y = t o t a l s i g e n e r g y +sum( snodecoe f {1 ,

node l eve l } . ˆ 2 ) ;

58 end
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59

60 % We want energy per f requency

61 phys f req = pi /2∗ l i n s p a c e (1/( DeltaV∗num Nodes ) ,1/ DeltaV ,

num Nodes ) ;

62 phys f req = physfreq ’ ;

63 fwp = phys f req (2 ) − phys f req (1 ) ;

64

65 % Calcu la te the power spectrum

66 normfactor =1./(2ˆ num Nodes∗ fwp ) ;

67 pwrspec=t o t a l e n e r g y ∗ ce l l 2mat ( en ) .∗ normfactor ;% see eqs

(15 ,16) Ariananda et a l

68 spwrspec=t o t a l s i g e n e r g y ∗ ce l l 2mat ( s i g en ) .∗ normfactor ;

69 pwrspec=pwrspec ( 2 : end ) ;

70 spwrspec=s q r t ( spwrspec ( 2 : end ) ) ;

71 phys f req=phys f req ( 2 : end ) ;

72

73

74 % Plot o f power spectrum

75 % mult ip ly power spectrum by k/ pi l i k e in page 30 o f

0405013. pdf

76 % paper p l o t s l og data on a log s c a l e

77 f i g u r e ( f 1 )

78 e r r o rba r ( l og ( phys f req ) , l og ( pwrspec . ∗ ( phys f req / p i ) ) ,

spwrspec . / pwrspec , ’ .− ’ , ’ MarkerSize ’ , 12) ;

79 % er ro rba r ( physfreq , pwrspec . ∗ ( phys f req / p i ) , spwrspec ) ;

80 s e t ( gca , ’ Xscale ’ , ’ l og ’ , ’ Yscale ’ , ’ l og ’ )

81

82 % Update a x i s l a b e l s to show the exponent i a l va lue s
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in s t ead o f the

83 % logo r i thmi c va lue s .

84 x t i c k v a l s = [ −6.266 −5.991 −5.298 −4.893 −4.605 −4.382

−3 .912 ] ;

85 x t i c k l a b e l s = num2cel l ( x t i c k v a l s ) ;

86

87 y t i c k v a l s = [ −4.605 −2.303 0 ] ;

88 y t i c k l a b e l s = num2cel l ( y t i c k v a l s ) ;

89

90 % Convert a x i s va lue to i t s exponent i a l equ iva l en t . Also

, put in to c e l l

91 % array o f cha rac t e r v e c t o r s format f o r the x t i c k l a b e l s

func t i on .

92 % Since the va lue s in the p l o t are a l r eady logged ,

ac tua l l y , natura l

93 % logged , we j u s t need to take the exponent i a l o f the

cur r ent va lue to

94 % get the updated a x i s l a b e l va lue .

95 % ln ( newlabel ) = c u r r e n t a x i s v a l u e , so

96 % newlabel = exp ( c u r r e n t a x i s v a l u e )

97 f o r i =1: l ength ( x t i c k l a b e l s )

98 x t i c k l a b e l s {1 , i } = num2str ( round ( exp ( x t i c k l a b e l s

{1 , i }) , 4 ) ) ;

99 end

100 f o r i =1: l ength ( y t i c k l a b e l s )

101 y t i c k l a b e l s {1 , i } = num2str ( round ( exp ( y t i c k l a b e l s

{1 , i }) , 4 ) ) ;

102 end
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103

104 % Tick va lue s are s e t to the ac tua l l og va lue s . The t i c k

l a b e l s are

105 % updated to r e f l e c t the exponent i a l

106 x t i c k s ( x t i c k v a l s )

107 x t i c k l a b e l s ( x t i c k l a b e l s )

108 y t i c k s ( y t i c k v a l s )

109 y t i c k l a b e l s ( y t i c k l a b e l s )

110

111 hold on

112 end % //end i f ( zz == 1 | zz==4)

113

114 n = binGroupSize ( zz ) ;

115 end

116

117 % Make x−a x i s 1 . 5 t imes l a r g e r than the y and z axes

118 pbaspect ( [ 1 . 5 1 1 ] )

119

120 % Adujst a x i s to ensure a l l data po in t s are v i s i b l e with a

smal l white

121 % space cushion on e i t h e r s i d e and top and bottom of the x

and y axes .

122 a x i s ([−6 −3.70 −5.3 −1.2 ])

123 %a x i s ([−6 −3.70 −5.3 −1])

124 y l a b e l ( ’$P( k ) ∗k/\ pi$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 12)

125 x l a b e l ( ’ $k [km/ s ]ˆ{−1}$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 12)

126 %legend ( ’ 2 . 0 < z < 2 . 2 ’ , ’ 2 . 2 < z < 2 . 4 ’ , ’ 2 . 4 < z < 2 . 6 ’ , ’ 2 . 6

< z < 2 . 8 ’ , ’ Location ’ , ’ northwest ’ )
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127 %legend ( ’ 2 . 0 < z < 2 . 2 ’ , ’ 2 . 6 z < 2 . 8 ’ , ’ Location ’ , ’ northwest

’ )

128 l egend ( ’ 2 . 0 < z < 2 .2 ’ , ’ 2 . 2 < z < 2 .4 ’ , ’ 2 . 6 < z < 2 .8 ’ , ’

Locat ion ’ , ’ northwest ’ )

129 end
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