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ABSTRACT

Classical models of thermal transport breakdown at lengthscales below a few microns

in many materials, including the surfaces of bulk semiconductors. This presents dif-

ficulties in the analysis and design of small electronic devices, where unexpected

thermal effects can occur such as hot spots that deteriorate performance and limit

speed. Time-resolved x-ray diffraction has been proposed as one method to inves-

tigate this regime of nanoscale thermal transport, especially inside semiconductor

materials where other techniques can not penetrate or yield quantitative results.

Towards this goal, this thesis benchmarks a new, portable, and fast open-source x-

ray dynamical diffraction code (TRXD) for strained crystals developed by DePaul

University against an existing standard server-based closed-source calculation tool

(GID SL, Grazing Incidence Diffraction for Superlattices). TRXD is also validated

against experimental x-ray peak lineshapes by convolving the calculation results with

an appropriate instrumentation resolution function. TRXD is shown to properly

predict the long time-scale classical thermal behavior of a cooling semiconductor,

while revealing discrepancies at the short time-scale where new nanoscale thermal

transport models are under development. A new high-resolution x-ray diffraction

data set is compared to a previously published low-resolution data set, and found

to give the same result for delayed thermal transport in ultrafast laser-excited 100

nm metal film on a Gallium Arsenide crystal substrate.
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CHAPTER 1

Introduction

1.1 Thesis motivation

The Fourier Law of Heat Conduction describes heat transfer at macroscopic length

scales (generally over 10 microns at room temperature). The Law states that heat

flow is proportional to the negative gradient of temperature [1] and can be expressed

mathematically as a diffusion equation,

∂T

∂t
= α∇2T (1.1)

where T is temperature, t is time, and α is a constant termed the thermal diffusivity.

Recently, it has become well known that this textbook partial differential equation

breaks down at length scales comparable to or shorter than the phonon Mean Free

Path (MFP), where ballistic transport may significantly alter thermal conductiv-

ities in semiconductors and insulators [2]. This is the signature phenomenon of

”nanoscale thermal transport” [3] : electronic devices built for small size and high

speed may develop unanticipated hot spots resulting in reduced performance and

lifetime [4]. These implications are particularly significant for next generation Light

Emitting Diodes, thermoelectric devices for waste heat recovery, photovoltaics, op-

toelectronics, and high speed integrated circuits [5].

To date, almost all experimental studies of phonon MFP are based upon one of two

indirect measurement techniques: ultrafast optical methods and Inelastic Neutron

Scattering (INS). Most recent and prominent are measurements of surface temper-

ature using optical techniques [6]. In these methods, the surface temperature of a

bulk material or heterostructure is monitored following spatial [7] or temporal [8]



12

modulation of surface heating (usually with a short-pulse later). The bulk behavior

is then inferred from the surface temperature evolution. The time-dependent sur-

face temperature has been found to change depending upon modulation frequency;

the thermal conductivity value is seen to increase monotonically as the modula-

tion wavelength increases past the phonon mean free path. This ”accumulation”

method of phonon MFP spectroscopy has yielded several insights. For instance,

low-frequency phonons carry thermal energy very long distances, but rely on scat-

tering with high-frequency phonons to locally equilibrate [9]. Thus, details of the

phonon density of states (DOS) may have significant impact on the phonon lifetime,

and thereby the MFP and conductivity. This has brought about a renewed interest

in INS for phonon dispersion and lifetime measurements [10].

There are several limitations implicit in these methods. First, the optical tech-

niques only allow surface temperature to be measured. Deviations from the depth-

dependent temperature profile are presumed, but have not been verified. Second,

the exploration of transport across defects has been extremely limited, since the

accumulation techniques are not very sensitive to sub-surface modifications which

affect mostly high-frequency phonons which cannot be clearly isolated from the “ac-

cumulated” spectra. Third, the major technological issue associated with nanoscale

thermal transport are buried interfaces, which are all but invisible to optical tech-

niques. In 2007, a research team including Prof. David Cahill (UIUC) and Dr.

Eric Landahl (now at DePaul University) participated in an early attempt to ob-

serve ballistic transport using Time-Resolved X-Ray Diffraction (TRXD) at APS

7ID [11]. Their approach was to construct a depth-dependent temperature probe

by burying layers at different depths within metal-coated semiconductor samples.

The buried layers acted as thermometers at different locations, and using kinemati-

cal diffraction they were able to show a significant discrepancy in both heat transit

time and maximum temperature between the Fourier Law and the buried layer data,

and proposed that a multi-channel model of phonon conductivity was needed. A

related paper [12] showed it was possible to use TRXD to watch thermal transport
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across a buried interface and measure the thermal (or ”Kapitza”) resistance.

X-ray techniques have made no significant contribution to nanoscale thermal trans-

port since this time. However, recent improvements in TRXD techniques [13] and

detectors [14] present the possibility of employing sophisticated analysis [15, 16, 17]

to reliably reconstruct transient 3D stress profiles beneath the surface of a laser-

excited semiconductor [18]. Based on these advances, a recent experimental effort

was led by DePaul University to measure temperature as a function of depth and

position (i.e., T (t, z)) using TRXD to directly validate transport models, with the

ultimate experimental goal to extract the phonon MFP spectra directly. This the-

sis presents the initial analysis of this dataset.

1.2 Classical theory of heat transport

1.2.1 Overview

The specific problem considered here is the one-dimensional calculation of heat

transport from an ultrafast (sub-picosecond) laser excited metal film into a sub-

strate, as illustrated in Fig. 1.1. This problem is considered both because it is

experimentally realizable, and also because it is an idealized abstraction to many

situations found inside compact electronic devices in which metal electrodes layered

onto crystalline semiconductors are rapidly heated by fast switching currents (e.g.

Field Effect Transistors). First, the incident laser rapidly (≈ 1 ps) raises the tem-

perature of the film uniformly because metal has many free electrons to distribute

energy quickly. The film has been deposited on top of a bulk material, which is

initially at a uniform colder temperature near room temperature. The specific ex-

periment that is considered here is a 100 nm thick chromium film sputtered on top

of a bulk crystalline Gallium Arsenide wafer. The wafer is 500 µm thick, has a (100)

surface orientation, and an area of approximately 1 cm2.
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Figure 1.1: Results of the classical thermal transport equation as described here,
applied to a 100 nm thick Cr film on a bulk GaAs substrate following heating by
an ultrafast laser pulse of 14.8 mJ/cm2. This matches the experimental conditions
studied in this thesis. The thermal profile is smooth across the interface, but has a
discontinuity in the first derivative due to the different thermal properties of the film
and substrate. The temperature profile flattens as time increases after the initial
rapid heating. The x-ray probe depth is approximately the micron depth displayed
in the figure, although simulations are run out to 10 µm.
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1.2.2 Solving the diffusion equation

These results are taken from Example 10.8 of Hahn and Ozisik, Heat Conduction

[19]. They consider a one-dimensional, two-layer composite slab with a film of

thickness L on top of a semi-infinite bulk material; this problem is illustrated in Fig.

1.1. The layers are presumed to be in perfect thermal contact with the film region

initially at a uniform temperature T0 (caused by rapid laser energy absorption) and

bulk region at zero temperature. The problem is easiest stated using a dimensionless

temperature θi(x, t) defined as as

θi(x, t) =
Ti(x, t)

T0

, i = film, bulk (1.2)

with Ti referring to the temperature of the film or bulk, T0 referring to the initial

temperature, x is referring to depth, and t is referring to time. We can formulate

the problem of the change in temperature past time 0 (when the laser strikes the

sample) as
∂2θfilm
∂x2

=
1

αfilm

∂θfilm(x, t)

∂t
0 < x < L (1.3)

and
∂2θbulk
∂x2

=
1

αbulk

∂θbulk(x, t)

∂t
L < x (1.4)

where αfilm and αbulk are the thermal diffusivity constants associated with the film

and bulk respectively, and L is the point where the film and bulk meet. The bound-

ary conditions for this problem are

∂θfilm
∂x

∣∣∣
x=0

= 0 (1.5)

θfilm(L, t) = θbulk(L, t) (1.6)

kfilm
∂θfilm
∂x

∣∣∣
x=L

= kbulk
∂θbulk
∂x

∣∣∣
x=L

(1.7)

θbulk(x→∞, t)→ 0 (1.8)

where kfilm,bulk are the thermal conductivities. The conditions of the film and bulk

at time 0 are

θfilm(x, 0) = 1 0 < x < L (1.9)
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θbulk(x, 0) = 0 L < x (1.10)

At this point, the Laplace transformation is applied both to the model equations and

boundary conditions, to generate ordinary differential equations that can be solved

for the changes in temperature. The resulting equations and boundary conditions

are
d2θ̄film(x, s)

dx2
=

1

αfilm
[sθ̄film(x, s)− 1] (1.11)

d2θ̄bulk(x, s)

dx2
=

1

αbulk
sθ̄bulk(x, s) (1.12)

dθ̄film
dx

∣∣∣
x=0

= 0 (1.13)

θ̄film(L) = θ̄bulk(L) (1.14)

kfilm
dθ̄film
dx

∣∣∣
x=L

= kbulk
dθ̄bulk
dx

∣∣∣
x=L

(1.15)

θ̄bulk(x→∞)→ 0 (1.16)

where θ̄i is the Laplace transform of the normalized temperature θ and s is the

Laplace transform of the depth position x. Applying the boundary functions these

resulting equations, the solutions for these ODEs are

θ̄film(x, s) =
1

s
− 1− γ

2s

e−σ(L−x) + e−σ(L+x)

1− γe−2σL
0 ≤ x < L (1.17)

θ̄bulk(x, s) =
1 + γ

2s

e−σµ(x−L) − e−σ(2L+µx−µL)

1− γe−2σL
L < x (1.18)

where

σ ≡
√

s

αfilm
(1.19)

γ ≡ β − 1

β + 1
(1.20)

β ≡ kfilm
kbulk

µ. (1.21)

µ =

√
αfilm
αbulk

(1.22)

The inverse Laplace transform pairs,
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F̄ (s) F (x)

1
s

1

1
s
e−k
√
x k ≥ 0 erfc( k

2
√
x
)

can now be applied to find the classical model for the temperature profiles,

θfilm(x, t) ≡ 1−1− γ
2

∞∑
n=0

γn
{
erfc

[
(2n+ 1)L− x

2
√
αfilmt

]
+ erfc

[
(2n+ 1)L+ x

2
√
αfilmt

]}
0 < x < L

(1.23)

θbulk(x, t) ≡
1 + γ

2

∞∑
n=0

γn
{
erfc

[
2nL+ µ(x− L)

2
√
αfilmt

]
− erfc

[
(2n+ 2)L+ µ(x− L)

2
√
αfilmt

]}
L < x

(1.24)

where the term [1− γexp(−2σL)] was expanded in a binomial series before perform-

ing the inverse transform.

1.2.3 Example of the classical heat conduction result

To model the experimental results considered in this thesis, the film is set to be 100

nm Cr film directly on top of bulk GaAs. An initial laser fluence of 14.88 mJ/cm2

is used to provide the initial temperature jump in the film,

T0 =
F

CfilmLρfilm
(1.25)

where F is the absorbed laser fluence, Cfilm is the specific heat of the film, L is the

length of the film, and ρfilm is the mass density of the film. All constants used in

the thermal diffusion calculation are shown in Tables 1.1 and 1.2. Results are shown

in Fig. 1.1. Although only four time points are shown in this figure, the complete
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thermal profile (to a depth of 10 µm) was calculated at 10,000 depth points for each

of the 753 time points recorded in the experiment, ranging from 30 ps to 3.37 µs .

GaAs Thermal Properties
Quantity Symbol Value Unit

Mass Density ρbulk 5320 kg/m3

Specific Heat Cbulk 330 J/(kg·K)
Thermal Diffusivity αbulk 3.10×10−5 m2/s

Thermal Conductivity kbulk 55 W/(m·K)

Table 1.1: Values used for calculating thermal transport in the Gallium Arsenide
bulk substrate. Note that α = k/ρC.

Cr Thermal Properties
Quantity Symbol Value Unit
Thickness L 1×10−7 m

Mass Density ρfilm 7190 kg/m3

Specific Heat Cfilm 460 J/(kg·K)
Thermal Diffusivity αfilm 3.3521×10−5 m2/s

Thermal Conductivity kfilm 111 W/(m·K)

Table 1.2: Values used for calculating thermal transport in the Cr film.

1.3 Nanoscale thermal transport and the phonon mean free path

Microscopically, heat is transferred by quanta of vibrational energy called phonons.

Phonons are treated using a kinetic model, analogous to the kinetic theory of gasses.

In the kinetic model of gasses, energy is transferred by collisions between individual

gas molecules, which occur on a characteristic collision time that depends on the

density and temperature of the gas. This characteristic collision time can also

be thought of as an average length between collisions, termed the mean free path

(MFP). For a phonon gas, like a gas of molecules, the repeated exchange of energy

following many collisions results eventually in a Maxwell-Boltzmann distribution of

energy at equilibrium, and permits the definition of a temperature. The difference

between these microscopic and macroscopic regimes can be seen in Fig. 1.3
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Intuitively, heat is transferred faster by phonons that have larger MFPs. The

Maxwell-Boltzmann distribution implies that there is an broad spectrum of phonon

energies at finite temperature. Intuitively, the longer MFP phonons should conduct

heat faster (longer MFPs means heat will travel farther before coming to a stop).

Constraining a new phonon population to have a restricted energy spectrum might

therefore be expected to alter thermal conductivity. In the experiment studied in

this thesis, this restriction of phonon spectrum is accomplished by heating only a

thin metal film, thereby limiting the production of long wavelength (and therefore

low energy and large MFP) phonons, since the film cannot support vibrational modes

(phonons) that are larger than its physical size.

Considerable theoretical efforts have been undertaken to understand how restricting

the available thermal transport channels by limiting phonon spectra alters thermal

conductivity [3]. One example calculation [20] is shown in Fig. 1.2, which shows

longer phonon scattering lengths are required to reach thermal conductivities ap-

proaching bulk values.

To date, none of this depth dependence has been directly observed; the ultimate

goal of this work is to perform temperature depth profile measurements to compare

with those given in Fig. 1.1 and eventually more sophisticated models that can

account for finite size effects, such as the Lattice Boltzmann Model [2].
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Figure 1.2: A calculation of thermal conductance vs. length, with each curve rep-
resenting a different channel length (channel length is the width of the graphene
nanoribbon that the phonon MFP travels along). Red circles have a channel length
of 5 nm, black triangles a channel length of 4 nm, green squares a channel length of
3 nm, red triangles a channel length of 2 nm, and blue circles a channel length of 1
nm. The dashed line is unit slope. Taken from Aksamija (2017).
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Figure 1.3: Pictured above are examples of fourier (top) and ballistic heat transport,
as we would expect to see in our experimental setup. Notice that in the case of
fourier heat transport, L is longer than the phonon MFP, whereas L is about the
same length as the phonon MFP is the case of ballistic heat transport.
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CHAPTER 2

Benchmarking diffraction calculations

2.1 Chapter introduction

The first major project of this thesis was checking a new x-ray diffraction calcula-

tion program (TRXD) against an existing set of tools (GID SL). Tracking thermal

transport throughout a crystal requires making not just a single, high-resolution

recording of an x-ray diffraction pattern, but instead recording an entire sequence

of such patterns. For phenomena such as thermal transport which cover many orders

of magnitude in time (ps to µs), a large number of individual diffraction patterns

must be analyzed in order to stitch together a stop-frame animation of the tempera-

ture profile evolution. This requires a new, efficient, program;TRXD was developed

by DePaul University for this purpose. Here I explain the purpose ofTRXD and

benchmark its results against a standard software package, GID SL.

2.2 X-ray diffraction as a temperature probe

When x-rays of wavelength λ are incident upon a crystal with lattice spacing d,

significant x-ray reflected intensity is found only when the incident angle Θ with

respect to the lattice planes satisfy the condition

nλ = dsin(Θ) (2.1)

where n is the order number of the diffraction peak. This is known as the Bragg Law

of Diffraction. Taking the differential of Bragg’s Law yields a method for measuring
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small relative changes in lattice spacing ∆d/d, or strain,

∆d

d
= −∆Θcot (ΘB) (2.2)

where ∆Θ is a small angular shift away from the Bragg angle ΘB that exactly

satisfies Bragg’s Law. For materials with a linear thermal expansion coefficient αt,

the change in position of a diffraction peaks may be used to calculate a temperature

change ∆T ,

∆T = −∆Θ

αt
cot (ΘB) . (2.3)

2.3 Dynamical diffraction

Bragg’s Law is a consequence of Kinematic diffraction theory, which is the appro-

priate method applied when dealing with a small, short range order crystal that

is imperfect. In the kinematic approximation, each cell in the crystal is treated as

being independent, the x-rays are treated as plane waves, and the diffracted electric

field amplitude can be found from

Ediff = EiF
∑
L

e2πiG·AL , (2.4)

where Ediff is the diffracted wave, Ei is the incident wave, F is the structure vector,

G is the reciprocal lattice vector, A is a unit vector, and L refers to each individual

unit cell. In one dimension, the condition for maximum diffracted electric field

reduces to Bragg’s Law. Within the kinematic approximation, the amplitude of the

diffracted electric field can be decreased as a result of photoelectric absorption.

Calculating diffraction from crystals that are larger and more uniform (or ”perfect”)

requires the use of a more involved theory called dynamical diffraction. Crucially,

dynamical diffraction does not make the assumption that all of the cells in our crystal

are independent. When we use the Darwin-Prins model of dynamical diffraction

[21], there is a range of angles where the reflected intensity is relatively close to the

incident intensity, and the diffraction peaks are no longer delta-functions near ΘB.
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This relative reflection may be angularly asymmetric. The finite width is due to the

extinction effect, in which dynamical diffraction theory predicts that near strong

reflections, electric field is reduced as energy is reflected outwards rapidly as the

beam penetrates into a material. This results in a reduced number of crystal periods

and limits the exactness with which lattice spacing can be precisely determined

by measurement at one point. Despite this complexity, however, careful analysis

of the diffraction peak lineshape can be used to extract depth-dependent lattice

information, since the diffracted electric field varies throughout the crystal up to

this extinction depth.

2.4 Dynamical diffraction calculations

A standard way of calculating x-ray diffraction peak lineshapes from strained crys-

tals in the dynamical diffraction regime is using the GID SL codes [22, 23]. Unfor-

tunately these are closed-source, server-based programs that do not lend themselves

to solving thousands of diffraction peaks for each sample studied, as required by

time-resolved studies. Furthermore, the ”SL” designation indicates that original

development was for ”superlattices”, or periodic arrangements of strained crystals

that are fabricated, rather than for smooth strain profiles generated by temperature

gradients.

To meet this need, DePaul University began the development of an open-source,

efficient, portable software package namedTRXD that is maintained in a public

depository and is written in the MATLAB programming language [24]. It uses an

alternative algorithm to the one used by GID SL, first described in [15], but with

an adaptive step size in depth that allows the code to handle rapidly changing

strain profiles while retaining computational accuracy. The underlying calculations

are written in matrix form and are vectorized by treating each ∆Θ individually.

Additional computational efficiency is found by using logical array operations to

perform square root operations in the complex plane. An outline of how TRXD



25

Figure 2.1: Data analysis and modelling procedure. We begin by putting our in-
formation into TRXD (timepoints, angular ranges for rocking curve calculations,
material constants, and laser fluence), which produces strain profiles that are used
in turn to find the rocking curves expected from the classical model. Next the
centroids are compared to the rocking curve data collected before time zero, which
is used to determine the average temperature change using the thermal expansion
coefficient.

works can be found in Fig. 2.1

2.5 Code benchmarking

Several different comparisons were made between TRXD and GID SL, both for

bulk GaAs with the same reflection order and at the same x-ray energy of 10 keV

used in experiments. The output of each code was formatted as a rocking curve,

or the result that would be obtained as a perfect crystal is slowly rocked along

Θ near the Bragg diffraction peak, while the peak of the total diffracted intensity

was recorded as a function of angle. Benchmarks included unstrained GaAs, or

∆d/d = 0 everywhere, and various uniform strain levels, or ∆d/d = constant. Both
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codes were run independently, and the results manually imported and overlapped.

No disagreement was found for GaAs at 10 keV, or for the similar semiconductors

Ge, Se, or InSb also used in the larger study at this x-ray energy.

To pull down results from the GID SL server efficiently, a script was written in

MatLAB (see Appendix) that could take an arbitrary depth-dependent strain profile,

such as one generated by the classical thermal diffusion model demonstrated in Fig.

1.1, and break it down into small strain layers for GID SL to calculate. Although

helpful in getting the codes to behave similarly, it proved to be very time-intensive

for the server since a large number of discrete strain points are needed to recapitulate

the smooth strain profile calculated by application of the Fourier Law.

Instead, a different approach was taken: to see if TRXD ’s adaptative step size

technique could handle the abrupt change of a single sharp buried strain level,

a situation that GID SL was designed to handle. Fig 2.2 shows the result of a

calculation of a strain step-function where ∆d/d = 10−4 over the first 2 µm of the

surface, with the remainder of the bulk crystal unstained. The unstrained rocking

curve is shown for reference, and was identical for both curves. TRXD shows the

overall rocking curve slightly shifted, an effect which is not understood, but which

does not concern us as the shift is small enough to be negligible. The shape however

is otherwise identical. Fig. 2.3 shows the same result, but on a logarithmic intensity

scale.

In addition to quantitative agreement, the results agree with expectations. The

unstrained rocking curve calculation peaks near the calculated Bragg angle of 26.02

degrees, with an intensity just below unity due to a small amount of photoelectric

absorption. The curve is narrow, with an intrinsic width near one millidegree. In

the strained crystal curves, the largest peak is due to the same unstrained substrate,

which is present within the x-ray probe depth of a few microns. This peak is only

slightly distorted, but reduced in intensity. The large secondary peak shifted to

smaller angles corresponds to a positive strain. The peak separation agrees with
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Figure 2.2: Linear scale comparison ofTRXD and GID SL for a test case of 0.01%
uniform strain over the first 2 µm of depth in GaAs [004] reflection at 10 keV. The
unstrained crystal result is shown for reference.
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Figure 2.3: Linear scale comparison ofTRXD and GID SL for a test case of 0.01%
uniform strain over the first 2 µm of depth in GaAs [004] reflection at 10 keV. The
unstrained crystal result is shown for reference.
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the differential form of Bragg’s Law. Finally, the fringes (more clearly visible in the

logarithmic plot) are due to interferences between the two distinctly strained layers,

with their periodicity given by the strain within our 2 µm depth of our GaAs.

This level of agreement between the new, DePaul-developed TRXD and the widely

used code GID SL demonstrate thatTRXD can be used for analysis of x-ray rocking

curves for the [004] reflection in GaAs at 10 keV.
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CHAPTER 3

Comparison to experiment

3.1 Chapter introduction

The second major project of this thesis was comparing rocking curves calculated

by the new software TRXD with experimental data. This chapter reviews how the

data was collected, describes the data reduction process, and demonstrates the use

of a Voigt profile to match the angular resolution of experiments with the dynamical

diffraction simulation for comparison.

3.2 Time-resolved x-ray diffraction experiment

Data was collected prior to when I joined the research group by members of Dr.

Landahl’s research group and collaborators, using beamline 7ID of the Advanced

Photon Source at Argonne National Laboratory. Details of the data collection ap-

proach are shown in Fig. 3.1, taken from [14]. Monochromatic 10 keV synchrotron

X-rays (blue) pass through a scattering foil on their way to a sample which is rocked

in small steps across a small angular range near a Bragg peak. The proportional

mode Avalanche Photodiode (APD) collects all x-rays from the diffraction curve,

and has its signal averaged and recorded by an oscilloscope. The x-rays are pro-

duced in 100 ps long bunches separated by 153 ns, and synchronized to an external

50 fs amplified laser pulse (red) that has a pulse repetition frequency of 1 kHz. The

laser triggers the oscilloscope acquisition, which averages for 1000 laser shots before

saving an APD trace. The timing delay between the laser and x-rays can be arbi-

trarily adjusted. The laser also strikes the sample (not shown), focused to ≈ 0.1
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Figure 3.1: Data collection for time-resolved diffraction measurements used in this
thesis. See the text for full description; taken from Williams (2011).

cm2 to overlap the x-ray spot size of ≈ 50 µm (Vertical) × 500 µm (Horizontal) on

the ≈ 1 cm2 sample. Usually a scattering foil is used to generate a time-resolved

normalization signal by producing a signal that reproduces the uneven fill pattern of

the synchrotron; this typical approach was not used in this data set due to the need

to record very long time-series to follow diffusion process. A different normalization

process using prior bunches with the proportional mode APD was used instead.
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Figure 3.2: A flowchart picturing how data was extracted (code is attached in the
Appendix). From a set of desired time delays, a range of angles covering a rock-
ing curve are collected with x-ray bunches both before and after the laser strikes
the sample. Intensities are extracted from oscilloscope traces using SLM and then
normalized using the same x-ray bunch from the preceeding storage ring revolution.
These intensities are plotted against the rocking curve angular range to give line-
shapes that will be compared to those calculated using a Fourier Law model and
TRXD. A compact representation of the data is made by calculating the centroid
shift from the rocking curves that we can use to find the average temperature change
of the bulk material region probed by the x-rays.
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3.3 Data reduction

An outline of this section can be found in Fig. 3.2. Oscilloscope traces were recorded

for 151 angular points, from 27.189 degrees to 27.3090 degrees in 1 millidegree steps

across the Bragg peak (27.2489 degrees at 10 keV) at each time delay. An example

oscilloscope trace is shown in Fig. 3.3. Each x-ray pulse creates a negative voltage

(≈ -35 mV in this case), and overshoots to a positive voltage (≈ +10 mV in this

case) before the next pulse. The synchrotron storage ring was in the standard 24

bunch fill pattern: each 100 ps duration x-ray bunch is separated by 153 ns, with

the total revolution time being 3.68 µs.

On the edges of the rocking curve, the x-ray intensity will be much smaller. Fig.

3.4 shows an oscilloscope pattern at nearly 1000 times smaller x-ray intensity.

Each oscilloscope trace was acquired by averaging for 1,000 laser shots, or one sec-

ond. For each averaged oscilloscope record, 10,000 samples were taken across just

over two storage ring revolutions, which would be 48 bunches in 7.36 µs. This

means there was approximately one sample per nanosecond, or 150 samples per

x-ray bunch. An example of three consecutive x-ray bunches is shown in Fig. 3.5

with each individual oscilloscope sample represented as a point. The x-ray bunches

recorded are much longer than their 100 ps duration, due to the limited bandwidth

of the APD and the oscilloscope.

The Advanced Photon Source synchrotron operates normally in a ”top up” mode

where the individual bunches are routinely filled with more charge to make up for

scattering losses. This refilling is done to maintain average beam current stability,

but results in significant bunch-to-bunch current fluctuations. This is evident in

the oscilloscope trace in Fig. 3.3 which shows considerable variability between each

bunch. This is the purpose of acquiring at least two complete storage ring revolu-

tions: the x-ray intensity in a given bunch does not change in a single revolution,

so the earlier revolution can be used to normalize away these bunch intensity fluc-



34

1 2 3 4 5 6 7 8

Time ( s)

-40

-30

-20

-10

0

10

20

D
e

te
c
to

r 
re

s
p

o
n

s
e

 (
m

V
)

Figure 3.3: Avalanche Photodiode (APD) detector response to just over two storage
ring rotations (the data was taken twice - once with and once without the laser
heating our sample) in the standard 24 bunch operating mode. This data was
recorded following diffraction from a laser-excited sample, near the peak of the
Bragg diffraction peak.
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Figure 3.4: APD response from just over two storage ring rotations, but at low
intensity far away from the Bragg diffraction peak.
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Figure 3.5: APD response from only 3 bunches, showing individual oscilloscope
samples as points. Approximately one sample is taken every nanosecond, with 153
ns between x-ray bunches in the standard 24 bunch mode of the APS.
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Figure 3.6: APD response from two consecutive storage ring rotations overlapped.
The later revolution is shown in red, the earlier pre-laser revolution is in blue. The
laser strikes the sample, altering x-ray diffraction intensity just before the fourth
bunch. Thermal recovery is observed over several µs as the red and blue curves
approach each other.

tuations. This is illustrated in Fig. 3.6 which shows the exact sample oscilloscope

trace as Fig. 3.3, but with the second set of 24 bunches translated earlier in time

by one ring revolution. The earlier bunches are in blue and the later bunches are

superimposed in red. Although the total pattern looks noisy, in fact the first 3

bunches are seen to overlap nearly perfectly. The laser strikes the sample after the

third bunch, and so the remaining bunches see a difference in x-ray intensity. It is

this comparison method that allows for very small changes in x-ray intensity, and

therefore very small changes in x-ray rocking curve position (and therefore Bragg

angle shift and ultimately temperature changes) to be recorded.
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The next data reduction step is extracting an x-ray intensity from the trace of each

bunch. The APD pulses are created by charges generated by the absorption of x-rays

in the detector, which is then amplified via both internal processes (avalanching)

and external electronic high-speed amplifiers. Therefore, with a fixed time response,

either measuring the pulse height or area under each curve should give a measure-

ment of x-ray intensity. The changing overshoot (recovery) of the proportional mode

detector makes this difficult. Therefore the research group has been developing a

new analysis method based on Shape Language Modeling (SLM), demonstrated in

Figs. 3.7-3.10. Note that the inverse of the raw data shown previously has been

taken in these plots for clarity (so that each x-ray bunch now goes up with intensity).

SLM uses constrained piecewise continuous cubic spline interpolation to model ar-

bitrarily shaped data, and is available as a MatLAB package [25]. As shown in Fig.

3.7 for higher x-ray intensity data samples (blue circles), ”knot” locations (vertical

green dashed lines) are chosen as fixed locations where the cubic splines are joined.

Additional constraints are applied in this SLM, such as requiring monotonic rising

behavior before the peak and falling behavior following the peak. The SLM curve

(red line) therefore provides an appropriately smoothed empirical fit to the data,

allowing the minimum and maximum peak height to be extracted while using the

entire sample set across the peak.

The utility of this approach is demonstrated in Fig. 3.8, which is from an x-ray

bunch recorded at a lower intensity region of the rocking curve. Selecting just the

minimum and maximum of the data in this region is sensitive to noise at these low

signal levels, and subtracting the extrema would result in an overestimate of x-ray

intensity. Fig. 3.9 shows the ability of SLM to extract x-ray intensities that are

only 40 µV in height, implying that a dynamic range of over 3 orders of magnitude

can be obtained in this time-resolved measurement when compared with Fig. 3.7.

Finally, Fig. 3.10 shows that the SLM data extraction method can begin to fail

when the intensity gets low enough, with the x-ray intensity likely over-estimating

differences between a peak and signal that may not actually exist.
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Figure 3.7: Fitting the inverted APD response (blue points) to a single x-ray bunch
at relatively high x-ray intensity using SLM (red line). Knot locations where cubic
splines are tied together are shown as dashed green lines.
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Figure 3.8: Fitting a the inverted APD response (blue points) to a single x-ray
bunch at relatively low x-ray intensity using SLM (red line). Knot locations are the
green dashed lines.
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Figure 3.9: Fitting the inverted APD response (blue points) to a single x-ray bunch
at very low x-ray intensity using SLM (red line). Knot locations are the green dashed
lines. High noise levels would cause overestimation of extrema difference without
SLM-assisted data smoothing.
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Figure 3.10: Fitting the inverted APD response (blue points) to a single x-ray bunch
at vanishingly low x-ray intensity using SLM (red line). Knot locations are the green
dashed lines. SLM likely causes overestimation of a signal that is buried in noise.
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3.4 Convolution with instrument resolution

The dynamical diffraction peak shapes calculated using either TRXD or GID SL

represent an ideal experimental situation where the incident x-ray beam has no

energy spread or angular spread, and the unstrained GaAs substrate is truly perfect.

All of these effects add blurring to the rocking curves. To account for the loss

in resolution, each calculated rocking curve is convolved with a normalized Voigt

profile,

Imeas(Θ) =

∫ ∞
−∞

V (Θ′)Icalc(Θ−Θ′)dΘ′ + I0 (3.1)

where Icalc(Θ) is the calculated rocking curve intensity from TRXD, I0 is a constant

offset to compensate for the overestimation of extremely small signals due to SLM

as described in Fig. 3.10, and Imeas(Θ) is the anticipated measured rocking curve

following convolution with the instrument response function described as a Voigt

curve V ,

V (Θ) =

∫ ∞
−∞

G(Θ′)L(Θ−Θ′)dΘ′ (3.2)

which is itself a convolution of a Lorentzian lineshape,

L(Θ) =
γ

π (Θ2 + γ2)
(3.3)

with a Gaussian lineshape,

G(Θ) =
e−Θ2/(2σ2)

σ
√

2π
. (3.4)

The Lorentzian width, γ, Gaussian width, σ, and fixed offset, I0 are all free parame-

ters chosen to overlap the calculations for unstrained data with the measurement of

the unstrained crystal sample, taken from the x-ray bunch before the laser strikes the

sample, i.e. when t < 0. The success of the Voigt profile in matching the experiment

to the data is shown in Fig. 3.11, and is subsequently applied to all other strained

rocking curves, prior to intensity normalization. A best fit to data was found with

γ = 0.35 mdeg, σ = 1.45 mdeg, and I0 = 0.5% of the maximum intensity. These

are reasonable values given that the angular step size taken in the experiment was
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only 1.0 mdeg, corresponding to the smallest angular step size that could be repeat-

ably performed by the diffraction instrument. A function for efficiently convolving

rocking curves with this instrument response is included in the Appendix. Future

work may include modifying the Voigt profile with an asymmetric Lorentzian profile

to better match the data. The success of TRXD in modeling unstrained x-ray

diffraction data for this experiment indicates that study of thermal transport using

the same data reduction and instrument resolution methods should be valid.
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Figure 3.11: TRXD unstrained rocking curve theoretical calculation (dashed line),
the Voigt profile instrument resolution function (dotted line), and the theoretical
calculation convolved with the instrument resolution (solid line) compared with
unstrained [400] GaAs rocking curve measurement at 10 keV (circles).
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CHAPTER 4

Agreement and discrepancy with classical theory

The centroid of the diffraction peaks at each measured time delay was determined

for both the classical thermal film model and the data, and subtracted from the

measured centroid of the unstrained crystal (Bragg diffraction peak). A single free

parameter, the absorbed laser fluence, was adjusted to match experiment

with data. The results of the calculation are shown overlapped with the data in

Fig 4.1. Data is collected before the laser strikes the sample (when t < 0) as a

control, and is found to have zero shift from the unstrained measurements.

The behavior seen in Fig. 4.1 can mostly, but not entirely be explained by the

classical thermal film model of Eq. 1.24. The first few tens of ps cannot be accurately

observed, due to the x-ray bunch duration of 100 ps which would blur out the earliest

and fastest movement of heat into the substrate. Although the temperature at the

film/substrate interface is initially very high, as seen at 1 ns in Fig. 1.1, it has

not diffused very far into the substrate and therefore only a small fraction of the x-

rays within the penetration depth experience a diffraction peak shift, so the average

centroid shift at first is small. This increases rapidly as the heat continues to flow

into the x-ray probe depth, shifting the peak to lower angles in agreement with Eq.

2.3. After about 10 ns, the peak average lattice expansion is reached as the heat

begins to flow out of the x-ray probe depth, and the surface of the crystal begins

to slowly cool. The first several microns of the substrate have nearly reached the

original temperature by 3.5 µs, when data collection ends. The crystal will have

completely recovered before the next laser pulse re-heats the sample in 1 ms.

The theoretical curves show a very similar cooling rate past 100 ns. The small differ-
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Figure 4.1: Classical thermal film model rocking curve centroids (calculated using
TRXD, black line) and data (red circles) for a 14.88 mJ/cm2 absorbed laser fluence
on 100 nm thick Cr deposited on bulk GaAs at 10 keV. The top figure is linear in
time, the lower figure is on a logarithmic time scale. The inset in the top figure
shows data and model near t = 0. Temperature shifts are calculated from centroid
shifts using Eq. 2.3.
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ences observed may be due to the neglect of other thermal dissipation mechanisms

not included in the model, such as lateral heat conduction (only a 1D model is

used), or radiative heat off the surface. Unsurprisingly, the classical Fourier Law of

heat transfer is found to qualitatively and quantitatively describe the data at long

timescales, or when the heat has already spread over a macroscopic distance. The

values of thermal conductivity for GaAs are well established, and this measurement

is in agreement.

There is significant disagreement however at times below 100 ns. First, in order

to match the long-timescale cooling, the maximum laser fluence had to be raised

about 20% over value needed to reach the peak lattice displacement observed. This

is most clear in the logarithmic time (lower) plot in Fig. 4.1, which shows a measured

maximum negative centroid shift of -4 mdeg, but a corresponding simulation value

of -4.5 mdeg. Second, the maximum angular shift occurs significantly earlier for the

model than for the data. This is also clear from the inset in the upper figure, which

shows a difference of close to 10 ns between theory and experiment.

This data, along with confidence in the TRXD simulation tool gained

from the earlier chapters of this thesis, provides clear evidence for the

central hypothesis of nanoscale thermal transport described in the first

chapter: that heat conducts slower at short distances than in bulk materi-

als. It takes longer to transmit from the 100 nm thick Cr film into the substrate than

would be expected by classical theory, but after a few ns it behaves as predicted by

Fourier the half-millimeter thick GaAs substrate. This observation confirms quanti-

tatively the one made by the research group in 2007. Their main result is duplicated

in Fig. 4.2 [11].

Notably, the heat impulses also arrive later in the data than in the simulation for

the 2007 result, and also require a similarly higher laser fluence to match the peak

position. This is remarkable given that the entire rocking curve shape was estimated

from a single data point taken at the half-maximum of the diffraction curve, and
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Figure 4.2: Previously published results by Highland et al., 2007 using time-resolved
x-ray diffraction to study a 100 nm metallic film on GaAs. The figure shows the
time evolution of the average temperature of layer as determined from shifts of the
diffraction peak, see Eq. (12) of Highland. The dashed lines are the evolution of
the weighted average temperature of the buried layer predicted by a solution to the
diffusion equation using the values of probe layers fabricated from InGaAs alloys of
246 nm, 161 nm, and 126 nm on top of the GaAs substrate but below the film. Dots
are data, not from centroids, but deduced from a single data point located at the
half-maximum of the rocking curve. Dashed lines are a classical thermal transport
model, and the solid line was a two-channel model developed to describe the dataset.
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that dynamical diffraction theory was not used in the interpretation of the result –

only three separate depth probe heights were used at 246 nm, 161 nm, and 126 nm

below the film. Our results, analyzed with TRXD, are in strong agreement

with this earlier published data and show similar discrepancies with the

Fourier Law.

Dynamical diffraction measurements and calculations however can tell a great deal

more about exactly what happens to the missing heat, which could only be guessed

at in Highland et al.. In that paper, the slowed cooling was attributed to a second

thermal transit channel, containing about 20% of the total thermal energy, and

resulting from ”ballistic” phonon transport, i.e. transport events within a phonon

MFP.

Now, however, we are able to see exactly what the diffraction patterns are at each

measured timepoint, and compare them with a model that uses a benchmarked

dynamical diffraction code to compare them with the detailed result of the classical

simulation. A selection of representative high resolution rocking curve calculations

and measurements are presented in Figs. 4.3 - 4.14 and are discussed in the next

section.

4.1 Observed behavior

The first frame recorded after the laser strikes the sample, shown in Fig. 4.3,

shows only a slight change in x-ray reflectivity that is primarily in the wings of the

diffraction peak. Substantial changes in the diffraction peak shape appear within

the first nanosecond, e.g. Fig. ??. According to the Fourier Law model, the

heat should diffuse into the sample a characteristic diffusion length of LD =
√

4αt.

Using the value of the diffusivity, α, from 1.1, the temperature jump should have

travelled 350 nm in the first 1 ns. This is also demonstrated in the calculated

temperature profile shown in Fig.1.24 as the red curve. However the x-rays are
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Figure 4.3: t = 0 ns diffraction data (red filled circles), classical thermal transport
simulation (red line), and t < 0 data (open blue circles) and simulation (blue line).
t = 0 ns or “time zero” is the earliest data point where a significant difference is
seen in the x-ray data from the proceeding x-ray bunch.
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Figure 4.4: t = 0.5 ns diffraction data (red filled circles), classical thermal transport
simulation (red line), and t < 0 data (open blue circles) and simulation (blue line).
The x-ray data (which is entirely dependent upon the substrate) shows significant
fringes which cannot be explained by the Fourier Law.
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Figure 4.5: t = 1.0 ns diffraction data (red filled circles), classical thermal transport
simulation (red line), and t < 0 data (open blue circles) and simulation (blue line).
Both simulation and data peaks show a shifting and broadening, consistent with
a non-uniform temperature gradient as the heat is just beginning to flow into the
substrate. The Fourier Law simulation shows a greater average temperature than
the data.
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Figure 4.6: t = 5.4 ns diffraction data (red filled circles), classical thermal transport
simulation (red line), and t < 0 data (open blue circles) and simulation (blue line).
This is near the maximum centroid shift predicted by the Fourier simulation.
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Figure 4.7: t = 10.4 ns diffraction data (red filled circles), classical thermal transport
simulation (red line), and t < 0 data (open blue circles) and simulation (blue line).
This is near the maximum centroid shift measured, but after the maximum shift
found in the simulation.
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Figure 4.8: t = 25.4 ns diffraction data (red filled circles), classical thermal trans-
port simulation (red line), and t < 0 data (open blue circles) and simulation (blue
line). This is past the point of maximum peak shift for both the simulation and
measurement, and just as cooling is starting.
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Figure 4.9: t = 48.8 ns diffraction data (red filled circles), classical thermal trans-
port simulation (red line), and t < 0 data (open blue circles) and simulation (blue
line). The calculated and measured peaks are beginning to narrow, indicating that
temperature is becoming more homogenous throughout the substrate surface.



58

27.24 27.245 27.25 27.255

 (degrees)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 I

n
te

n
s
it
y

98.8 ns

(a)

27.2 27.22 27.24 27.26 27.28 27.3

 (degrees)

10
-4

10
-3

10
-2

10
-1

10
0

N
o

rm
a

liz
e

d
 I

n
te

n
s
it
y

98.8 ns

(b)

Figure 4.10: t = 98.8 ns diffraction data (red filled circles), classical thermal trans-
port simulation (red line), and t < 0 data (open blue circles) and simulation (blue
line). Cooling continues as the centroid shift reduces.
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Figure 4.11: t = 252.2 ns diffraction data (red filled circles), classical thermal trans-
port simulation (red line), and t < 0 data (open blue circles) and simulation (blue
line). The strained and unstrained rocking curves now have similar shapes and
widths, indicating that the probed length the substrate is at a uniform, but still
elevated temperature.
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Figure 4.12: t = 498.9 ns diffraction data (red filled circles), classical thermal trans-
port simulation (red line), and t < 0 data (open blue circles) and simulation (blue
line). Agreement between the Fourier theory and measurement is now very close.
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Figure 4.13: t = 1499.1 ns diffraction data (red filled circles), classical thermal
transport simulation (red line), and t < 0 data (open blue circles) and simulation
(blue line). The temperature difference is now a uniform 5 degrees C.
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Figure 4.14: t = 3249.4 ns diffraction data (red filled circles), classical thermal
transport simulation (red line), and t < 0 data (open blue circles) and simulation
(blue line). By the latest timepoints recorded, the agreement between the Fourier
Theory and measurement is almost as good as for the unstrained rocking curves.
The strain is completely uniform throughout the probed crystal depth.
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probing an extinction depth of over 2000 nm, meaning that only one fifth of probed

volume is strained. Therefore, the Fourier Law would predict a strong double-peaked

curve, corresponding two a thin strained layer near the surface and then the larger

underlying bulk volume which remains unaffected at these times. When these early

strain profiles are converted into diffraction peak shapes by TRXD, they do indeed

show a double-peak which slowly merges with the main peak as time continues. By

25 ns, the Fourier Law predicts a single, significantly broadened peak as the strain

continuously decreases all the way out to the x-ray extinction depth of 1.7 µm. This

is seen in the simulation curves of Figs. 4.4 - 4.8.

However, the actual measured diffraction peaks completely disagree with calculation,

indicating the the Fourier Law does not properly predict the shape of the temper-

ature profile at t < 25 ns. Instead, the data initially shows symmetric fringes, im-

plying both an expansion and a compression of GaAs. This previously undiscovered

behavior is discussed in the next chapter. Given the disagreement about diffraction

peak shape, it is no surprise that the calculated centroid peak shifts and average

temperature of the GaAs as seen in Fig. 4.1 also disagrees with measurement at

these times.

Once the heat impulse has travelled throughout the probe depth, we see that the

Fourier Law begins to behave more qualitatively like the abservations. The merged,

broadened peak begins to narrow beginning at 100 ns (Fig. 4.10) as the strain profiles

become uniform over the entire probed volume. By 1500 ns the laser-excited crystal

has the same diffraction peak width as the initially unstrained crystal (Fig. 4.13,

indicating a uniform but elevated tempearture that is also in quantitative agreement

with the Fourier Law prediction. The experiment is now well within the regime of

Fourier Law validity, as cooling of the probed volume continues via classical thermal

diffusion as the heat flows into the unmeasured crystal bulk (Fig. 4.14. The crystal

wafer is 500 µm thick, implying that it would take over 1 ms for heat to reach the

rear side of the wafer. By this time, the next pulse of the 1 kHz repetition rate laser

has hit the front surface with the metallic film, repeating the experiment.
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CHAPTER 5

Discussion, summary, and outlook

5.1 New information on nanoscale thermal transport

The observation of modulations (indicating hot spots) at early timescales in the

diffraction patterns (e.g. Fig. 4.4) is unexpected. A surface plot of the early dy-

namics is shown in Fig. 5.1, and it shows that the feature appears quickly and then

decays. This is contrary to our expectation of the feature continuing to propagate at

the speed of sound in GaAs (the anticipated speed of ”ballistic phonons”). I suggest

that these are nanoscale hotspots, and that they may be the failure mechanism of

some nanoscale electronic devices. Importantly, they would not have been noticed

in the previous x-ray study of nanoscale thermal transport [11], which only exam-

ined a single point on the diffraction peak rocking curve and interpreted data only

using kinematic diffraction theory. Engineering around these inherent and transient

“defects” in otherwise “perfect” crystal due to fundamental phonon behaviors will

require a better understanding of their properties, which the techniques developed

in this thesis can provide.

5.2 Thesis summary

In this document, we have benchmarked a new code specifically written for time-

resolved studies, TRXD, against an existing tool for performing x-ray dynamical

diffraction on strained crystals, GID SL. We have then proceeded to validate TRXD

against experimental lineshapes for a 100 nm GaAs bulk by convolving our TRXD

results with voigt function. We found that the discrepancies between our experi-
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Figure 5.1: X-ray diffraction data showing the transient appearance of fringes which
are stationary, but decay slowly in the first few nanosecond after laser excitation.
This provides experimental evidence for non-uniform, non-propagating temperature
distributions within semiconductor substrate.
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mental results and Fourier Theory matched those of earlier work, suggesting heat

transfers slower at short times and distances. Additionally, the data set we used

contains the first structural data showing the appearance of non-uniform strain in

a previously uniform crystal due to nanoscale thermal transport.

5.3 Outlook

Going forward, there are several ways this research can be improved or expanded

upon. First, the data set used contains experimental data for lineshapes other

than our 100 nm GaAs bulk with chromium film - TRXD should be tested against

this additional data. This includes 100 nm, 200 nm, and 400 nm Cr films on not

just GaAs, but also the bulk semiconductor materials InSb, Ge, and Si. Next,

general methods for inverting dynamical diffraction data to calculate strain profiles

(and therefore temperature profiles) should be implemented using TRXD, e.g. [16]

and [17]. Additionally, the most recent theoretical models for nanoscale thermal

transport, e.g. Lattice Boltzmann Models [2], should be tested against these new

validated data sets and diffraction calculations. Finally, we will seek to determine

the exact temperature depth profile and extract the phonon mean free path spectra

directly from structure.
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APPENDIX A

MATLAB codes

Below we will include the MATLAB code used to calculate the lineshape broadening

and thermal film modeling presented in this thesis. The full set of codes for TRXD

are available at [24].

1 % TRXD.m

2 % Program to calculate Time-Resolved X-Ray Diffraction

3 % By Eric Landahl, DePaul University Physics Department, ...

elandahl@depaul.edu

4 % First written December 13, 2016

5 % Revised by EL 1.9.2017 to add unstrained amplitude output

6 % Revised by EL 1.16.17 to handle benchmarking to Sergey's GID

7 % Improved accuracy by fixing ∆ and final step interpolation ...

1/19/2017

8 % Corrected signs on p 0i, p 0r, p Hi, p Hr to work with X0h ...

database 1/20/17

9 % Based on previous work by Sooheyong Lee (KRISS) and G. Jackson ...

Williams (LLNL)

10 % Revised by JG 7.25.20 - added new inputs for thermalfilm.m to ...

work.

11 % num times MUST be set to 50 - code will not work otherwise

12 %

13 % INPUTS:

14 % model strain model, selected from the following list:

15 % thermalFilm Gaussian solution to prompt surface ...

temperature rise

16 % crystal determines x-ray and strain properties, ...

chosen from:

17 % GaAs
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18 % Si

19 % Ge

20 % InSb

21 % reflection diffraction vector [h k l], i.e. [hkl] chosen from:

22 % [0 0 4]

23 % cut surface normal vector [h k l], i.e. (hkl) chosen ...

from:

24 % [0 0 1]

25 % energy x-ray energy in keV

26 % fluence absorbed laser fluence in mJ/cmˆ2

27 % angle in degrees, one of the following:

28 % a vector angles to be calculated, relative to the Bragg angle

29 % a value a total range of angles, from which a vector is ...

generated

30 % 0 a default is used

31 % time in seconds, one of the following:

32 % a vector times to be calculated, relative to time-zero

33 % a value a final time, from which a vector of times is ...

generated

34 % 0 a default is used, based on the model

35 % L thickness of the film

36 %

37 % OUTPUTS:

38 % A X-ray scattering amplitude array, returned as ...

A(time, angle)

39 % A0 unstrained crystal scattering amplitude

40 % time a vector of times

41 % angle a vector of angles calculated, absolute, in degrees

42 %

43 % SAMPLE Usage:

44 % [A A0 time angle Strain z] = TRXD ('thermalFilm', 'Al', 'Si', ...

[0 0 4], [0 0 1], 10, 1, 0, 0, 2e-7)

45

46

47 function [A A0 time angle Strain save z] = TRXD (model, film, ...

crystal, reflection, cut, energy, fluence, angle, time, L)
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48 more off; % Turn on scrolling

49

50 %% Include subdirectories in path

51 addpath('main','include','strain functions','data');

52

53 %% Some constants that can be changed to speed things up when ...

using defaults

54 num times = 103;

55 num angles = 400;

56 time f = 2.5e-9; % in seconds

57 angle width = 2e-2; % in degrees

58

59 %% Check inputs

60

61 if nargin 6= 10

62 fprintf('Incorrect number of input arguments\n')
63 nargin

64 return

65 end

66

67 if (energy < 7) | (energy > 14)

68 fprintf('Energy out of range\n')
69 energy

70 return

71 end

72

73 if reflection 6= [0 0 4]

74 fprintf('Only [0 0 4] reflection is supported now.\n')
75 reflection

76 end

77

78 if cut 6= [0 0 1]

79 fprintf('Only [0 0 1] surface cut is supported now.\n')
80 cut

81 return

82 end
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83

84 % Determine diffraction parameters

85

86 % Calculate assymetry angle; should be zero

87 phi = acos(dot(reflection/norm(reflection),cut/norm(cut)));

88 if phi > 1e-6

89 fprintf ('The assymetry angle is not zero.\n')
90 phi

91 return

92 end

93

94 % Load X0h data

95 if strcmp(crystal,'GaAs')

96 X0h = load ('GaAs400.dat');

97 ID = 1; % ID number for crystal data

98 elseif strcmp(crystal,'InSb')

99 X0h = load ('InSb400.dat');

100 ID = 2;

101 elseif strcmp(crystal,'Si')

102 X0h = load ('Si400.dat');

103 ID = 3;

104 elseif strcmp(crystal,'Ge')

105 X0h = load ('Ge400.dat');

106 ID = 4;

107 else

108 fprintf('Crystal needs to be either Si, GaAs, Ge, or InSb.\n')
109 crystal

110 return

111 end

112

113 % Interpolate X0h data

114 % Note that X0h(:,1) are the energies in keV

115 p 0r = -abs(interp1(X0h(:,1), X0h(:,2), energy, 'spline', ...

'extrap'));

116 p 0i = abs(interp1(X0h(:,1), X0h(:,3), energy, 'spline', 'extrap'));

117 p Hr = -abs(interp1(X0h(:,1), X0h(:,4), energy, 'spline', ...
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'extrap'));

118 p Hi = abs(interp1(X0h(:,1), X0h(:,5), energy, 'spline', 'extrap'));

119 ∆ = interp1(X0h(:,1), X0h(:,6), energy, 'spline', 'extrap');

120 tB deg = interp1(X0h(:,1), X0h(:,7), energy, 'spline', 'extrap');

121 thetaB= tB deg*pi/180; % Sergey Si, Bragg angle in radians

122 lambda= energy*1.23984193E-11; % convert energy in keV to ...

wavelength in meters

123

124 % Assemble params arrray containing parameters for the crystal ...

diffraction

125 params(1) = p 0r + 1i*p 0i;

126 params(2) = p Hr + 1i*p Hi;

127 params(3) = thetaB;

128 params(4) = phi;

129 params(5) = ∆;

130 params(6) = lambda;

131

132 % Assemble opts array containing options for adaptative depth ...

stepping

133 tol = 1e-4; % tolerance. Higher value for more speed and less ...

precision

134 dz min = 1e-10; % Minimum step size in meters

135 dz max = 1.1e-8; % Maximum step size in meters

136 f = 5; %Shift factor for convergence

137

138 opts(1) = tol;

139 opts(2) = dz min;

140 opts(3) = dz max;

141 opts(4) = f;

142

143 % Calculate extinction length

144 gamma0 = sin(thetaB+phi);

145 gammaH = sin(thetaB-phi);

146 Lext = lambda*sqrt(abs(gammaH)*gamma0)/(pi*abs(p Hr));

147

148 %% Calculate time array
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149 if time == 0

150 time = time f; % set default maximum time delay to default

151 end

152 if (length(time)==1)

153 dt =time; % save for external file function

154 time = time/num times:time/num times:time;

155 end

156

157 %% Calculate angular array

158 if (angle == 0)

159 angle = angle width; % set default angular width to 10 mdeg

160 end

161 if (length(angle)==1)

162 angle = (0:angle/num angles:angle)-0.9*angle/2;

163 end

164

165 angle = thetaB + angle*pi/180; % Convert angle to radians and ...

add Bragg Angle

166

167 if strcmp(model,'thermalFilm')

168 [longitudinal trans sheer time out z] = thermalFilm (film, ...

crystal, fluence, time, 5.1*Lext, L);

169 elseif strcmp(model,'strainFile')

170 z = load('depth file.txt');

171 time out = load('time file.txt');

172 longitudinal = load('strain file.txt');

173 trans = 0*longitudinal;

174 sheer = 0*longitudinal;

175 elseif strcmp(model,'strainFile1D') % strains just at one time

176 z = load('depth file.txt');

177 time file = load('time file.txt');

178 time out = time file(fluence); % No time specified, just ...

strain at one time

179 all strain = load('strain file.txt');

180 longitudinal = all strain(floor(fluence),:); % load only one ...

column
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181 trans = 0*longitudinal;

182 sheer = 0*longitudinal;

183 time=time out;

184 elseif strcmp(model,'benchmark')

185 clear time;

186 time = 1;

187 time out = 1;

188 dz = 5.1*Lext/10000; % 10,000 depth points out to 5.1*Lext

189 z = dz*(1:10000);

190 trans = 0.*z; % no transverse strain

191 sheer = 0.*z; % no sheer strain

192 %longitudinal = 0.*z;

193 longitudinal = 1e-4 * (z≤2e-6); % Simple strain model

194 else

195 fprintf('Not a valid model\n')
196 return

197 end

198

199 % Need to add a single timepoint test for comparisson with ...

Sergey's GID

200 % Otherwise seems to work 12/28/16 EL

201

202 for m = 1: length(time)

203 fprintf('Evaluating rocking curve at %e s.\n',time out(m))

204 if time(m) == time out(m) % if the time doesn't need to be ...

remeshed

205 st1(m,:) = longitudinal(m,:);

206 st2(m,:) = trans(m,:);

207 st3(m,:) = sheer(m,:);

208 else % remesh time if necessary

209 st1(m,:) = interp1(time out,longitudinal,time(m), 'spline', ...

'extrap');

210 st2(m,:) = interp1(time out,trans,time(m), 'spline', 'extrap');

211 st3(m,:) = interp1(time out,sheer,time(m), 'spline', 'extrap');

212 end

213 Strain in = [st1(m,:)' st2(m,:)' st3(m,:)']; % Evaluate strain ...
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at each time

214 [X X0 err Steps Strain out] = WieAdapt (Strain in, z, angle, ...

opts, params);

215 A0 = X0.*conj(X0); % Unstrained crystal intensity

216 A(m,:) = X.*conj(X); % Intensity Amplitude

217 Strain save(m,:,:) = Strain out(:,:);

218 % x = 1:10000;

219 % strainsave = sprintf('strain%d.png',m);

220 %

221 % figure

222 % plot(x, Strain out(:,:))

223 % saveas(gcf,strainsave)

224 end

225

226 if strcmp(model,'benchmark')

227 % Keep angle in absolute radians

228 angle = (angle)*180/pi; % Convert angle back to degrees ...

relative to Bragg

229 else

230 angle = (angle)*180/pi; % Convert angle back to degrees ...

relative to Bragg

231 end

232

233 figure

234 plot(angle,A)

235 xlabel('Angle')

236 ylabel('Intensity')

237

238 % rang1 = (-60:0.3:60);

239 % rang2 = (-60:0.2308:60.2308);

240 % rang3 = (-60:1:60);

241 %

242 % phi = rang1 * (pi/360);

243 %

244 % res = exp( -(phi.ˆ2)/(den));

245 %
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246 % convol = conv(A,res);

247 %

248 % plot(rang3,rocking/max(rocking))

249 % hold on

250 % plot(rang2,convol)

251 % xlabel('Angle')

252 % ylabel('Normalized Intensity')

253 % legend('Experimental','Theoretical')

254

255

256 % T = [angle; A0];

257 %

258 % fileID = fopen('tabledata.txt','w');

259 % fprintf(fileID,'%6s %12s\n','angle','intensity');
260 % fprintf(fileID,'%6.2f %12.8f\n',T);
261 % fclose(fileID);

262

263 %hold on

264

265 %plot(Output.Angle,Output.Intensity)

1 %This script will run a loop comparing the theoretical and ...

experimental

2 %rocking curves obtained from TRXD.

3 %

4 %

5 %

6 %

7 %Variables

8 % n The number of iterations we want to run the script for

9 % RoCur The experimental rocking curve data we are ...

interested in

10 % control The TRXD results for the data we are interested in

11 % Ang The angles for our experimental rocking curve data

12 % std The denominator for the exponential in the gaussian
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13 % Time The time table for our experimental rocking curve data

14 % a The asymmetry factor for the asymmetrical lorentzian

15

16 function TRXDloop(n,RoCur,Ang,std,a,model, film, crystal, ...

reflection, cut, energy, fluence, angle, time, L, ...

gaussianwidth, lorentzianwidth, offset)

17 %run TRXD

18 [A A0 time angle Strain save z] = TRXD (model, film, ...

crystal, reflection, cut, energy, fluence, angle, time, L);

19

20 %surfacedata = [];

21

22 %this for loop allows the comparison function to be run as ...

many times

23 %as needed without having to manually change inputs multiple ...

times

24

25

26 for c = 1:n

27 %create the save names for the plots

28 svnmlin = sprintf('lintimestamp%d.png',c);

29 svnmlog = sprintf('logtimestamp%d.png',c);

30

31 %the comparison function

32 [convol] = ...

comparison(RoCur(:,c),A(c,:),std,svnmlin,svnmlog,Ang(1,c),Ang(121,c),Ang(:,c),time(1,c),a);

33

34 %surfacedata(n,:) = convol;

35

36 end

37

38 %figure

39 %surf(surfacedata,'edgecolor','none')

40

41 end

42
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43

44 function [convol] = ...

comparison(rocur,control,den,linname,logname,rangb,range,ang,time,a)

45

46 %convert sample data tables to arrays

47 beginning = table2array(rangb);

48 finish = table2array(range);

49 rocking = table2array(rocur);

50 angles = table2array(ang);

51

52

53

54 %create ranges based off of angles for the sample. rang is for ...

plotting

55 %the resolution function, rangconvol is for plotting the convolution

56 rang = (beginning:0.3:finish);

57 rangconvol = (beginning:0.15:finish);

58

59 %convert range of angles to radians

60 phi = rang * (pi/180);

61

62 %laser resolution function

63 %res = exp( -(phi.ˆ2)/(den));

64 % gamma = (2*60)./(1 + exp(a*phi));

65 % res = (2./(pi*gamma))./(1 + 4*(phi./gamma).ˆ2);

66

67

68

69 %convolve theoretical rocking curve with function used to test laser

70 %resolution

71 convol = conv(control,res);

72

73

74

75 %for troubleshooting - most common error so far seems to be ...

lengths not
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76 %matching

77

78 % convol/max(convol)

79 % res/max(res)

80 % control/max(control)

81

82 % length(rangconvol)

83 % length(convol)

84 % length(res)

85

86 % length(rocking)

87 % length(angles)

88

89 %create and save linear figure comparing theoretical and ...

experimental

90 %rocking curves

91

92 % figure

93 % plot(rang,res)

94

95 figure

96 plot(angles,rocking/max(rocking))

97 hold on

98 plot((rangconvol-5.55),convol/max(convol))

99 %xlim([-5 5])

100 xlabel('Angle')

101 ylabel('Normalized Intensity')

102 legend('Experimental','Theoretical')

103 title(['Timestamp ', num2str(time), ' seconds'])

104 saveas(gcf,linname)

105

106 %create and save logarithmic figure comparing theoretical and ...

experimental

107 %rocking curves

108 figure

109 semilogy(angles,rocking/max(rocking))
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110 hold on

111 semilogy((rangconvol-5.55),convol/max(convol))

112 %xlim([-5 5])

113 ylim([1e-3 1])

114 xlabel('Angle')

115 ylabel('Normalized Intensity')

116 legend('Experimental','Theoretical')

117 title(['Timestamp ', num2str(time), ' seconds'])

118 saveas(gcf,logname)

119

120 end

1 function [temperature strain] = shift2temp(thetaShift, ...

thetaBragg, crystal);

2 % determine average temperature shift from average Bragg peak shift

3 % Eric Landahl, June 25, 2021

4 % INPUTS

5 % thetaShift Bragg angle shift IN DEGREES

6 % thetaBragg Bragg angle OM DEGREES

7 % crystal String of crystal abbreviation, e.g. 'Si'

8 % OUTPUT

9 % temperature Average temperature change in deg K

10 % strain unitless, ∆-d / d (d is lattice spacing)

11 % REQUIRES

12 % sampledata

13 % EXAMPLE USAGE

14 % [temperature strain] = shift2temp(-1e-3,27.24,'GaAs')

15 % should return 5.9 deg K temperature increase, stain of ...

3.4e-5

16 % OTHER USAGE

17 % Calculate strain/temperature to check thermal expasion ...

coef. alpha t

18 % ex: strain/temperature = 5.73e-6 1/K for example above

19

20 % Convert to radians
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21 thetaShift = thetaShift*pi/180;

22 thetaBragg = thetaBragg*pi/180;

23

24 sampledata % load material properties

25 ID = find(strcmp({sample.name}, crystal)==1);

26 alpha t = sample(ID).thermalExpansion.val; % 1/K

27

28 strain = - thetaShift * cot(thetaBragg);

29 temperature = strain/alpha t;

1 %JimmyFigs.m

2 % Making extra figures for J. Grammich MS Thesis

3 % E. Landahl, 6-25-21

4 %

5 % REQUIRES

6 % dataLoader.m must have already been run to save workspace ...

of data and

7 % simulations

8 % shift2temp.m needed to calculate temperature shifts from ...

angle shifts

9 %

10 clear all;

11 close all;

12 load('GaAs 100nm data.mat'); % Load entire workspace

13

14 %% . OLD STUFF, IGNORE

15 % blur = 72;

16 % A = smoothdata(AA,2,'gaussian',blur); % Convolve with ...

experimental angular resolution

17 % A0 = smoothdata(AA0,'gaussian',blur);

18

19 %theta0 = theta0 - 0.0005; % Account for shift between theory ...

and data

20

21 clear A
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22 clear A0

23

24 f = AA0; % unstrained simulation result

25 gamma = 0.00035; % Cauchy width of instrument in degrees

26 sigma = 0.00145; % Gaussian width of instrument in degrees

27 g1 = (1/(sigma*sqrt(2*pi)))*exp(-0.5*(dtheta./sigma).ˆ2); % Gaussian

28 g2 = (gamma/pi)./(dtheta.ˆ2 + gammaˆ2); % Cauchy / Lorentzian

29 g = conv(g1,g2,'same'); % Voigt

30 g = g/max(g);

31 h = conv(f,g,'same'); % to compare to measurement

32 h = h + .005; % add offset

33 h = h/max(h);

34 g1 = (1/(sigma*sqrt(2*pi)))*exp(-0.5*(dtheta./sigma).ˆ2); % Gaussian

35 g2 = (gamma/pi)./(dtheta.ˆ2 + gammaˆ2); % Cauchy / Lorentzian

36 g = conv(g1,g2,'same'); % Voigt

37 g = g/max(g);

38 h = conv(f,g,'same'); % to compare to measurement

39 h = h + .005; % add offset

40 h = h/max(h);

41

42 A0 = h;

43

44 for j = 1: length(newTime)

45 f = AA(j,:);

46 g1 = (1/(sigma*sqrt(2*pi)))*exp(-0.5*(dtheta./sigma).ˆ2); % ...

Gaussian

47 g2 = (gamma/pi)./(dtheta.ˆ2 + gammaˆ2); % Cauchy / Lorentzian

48 g = conv(g1,g2,'same'); % Voigt

49 g = g/max(g);

50 h = conv(f,g,'same'); % to compare to measurement

51 h = h + .005; % add offset

52 h = h/max(h);

53 A(j,:) = h;

54 end

55

56 %theta0 = theta0-.0005;
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57

58 %% Centroid shifts from calculations

59 center0 = centroid(dtheta,A0); %A0 is calculated unstrained ...

rocking curve

60 for i = 1:length(newTime)

61 centerShiftCalc(i) = 1000*(centroid(dtheta,A(i,:))-center0);

62 end

63

64 %% This figure just shows the calculation results

65 figure(3);clf;hold on

66 plot(newTime,centerShiftCalc,'-')

67 xlabel('Time (ns)')

68 ylabel('Cetroid Shift Calculated (mdeg)')

69 %title('GaAs with 100 nm Cr coating')

70 legend(gca,'off')

71 ax = gca;

72 ax.FontSize = 16;

73 hold off;

74

75 %% Add calcs to linear centroid shift plot

76 % figure(1);hold on

77 % plot(newTime,centerShiftCalc,'.r','LineWidth',2)

78 % saveas(1,['¬/Documents/Jimmy/figures/LinSim+Data.png'])
79 % saveas(1,['¬/Documents/Jimmy/figures/LinSim+Data.fig'])
80 % saveas(1,['¬/Documents/Jimmy/figures/LinSim+Data.eps'])
81 % hold off

82 %

83 % %% Add calcs to log centroid shift plot

84 % figure(2);hold on

85 % semilogx(newTime,centerShiftCalc,'.r','LineWidth',2)

86 % saveas(2,['¬/Documents/Jimmy/figures/LogSim+Data.png'])
87 % saveas(2,['¬/Documents/Jimmy/figures/LogSim+Data.fig'])
88 % saveas(2,['¬/Documents/Jimmy/figures/LogSim+Data.eps'])
89 % hold off

90

91 %% Simulation surface plots
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92 figure(6);clf; hold on;

93 surf(dtheta+theta0,newTime,A);

94 shading interp;

95 ylim([0 max(timePos)]);

96 xlim([27.239 27.255])

97 xlabel('Theta (degrees)')

98 ylabel('Time (ns)')

99 title('100 nm Cr film on GaAs Simulation')

100 ax = gca; ax.FontSize=16;

101 saveas(6,['¬/Documents/Jimmy/figures/LinSim.png'])
102 saveas(6,['¬/Documents/Jimmy/figures/LinSim.fig'])
103 saveas(6,['¬/Documents/Jimmy/figures/LinSim.eps'])
104 hold off

105

106 figure(7);clf; hold on;

107 surf(dtheta+theta0,newTime,log(A));

108 ylim([0.048 5]); shading interp;

109 xlabel('Theta (degrees)')

110 ylabel('Time (ns)')

111 title('100 nm GaAs Simulation (Log Scale)')

112 ax = gca; ax.FontSize=16;

113 saveas(7,['¬/Documents/Jimmy/figures/LogSim.png'])
114 saveas(7,['¬/Documents/Jimmy/figures/LogSim.fig'])
115 saveas(7,['¬/Documents/Jimmy/figures/LogSim.eps'])
116 hold off

117

118 %% Plots at particular timepoints

119 % Hint: k = find(abs(timePos-5) < 0.05 to find index k near 5 ns

120

121 k0 = 1; % Before time zero

122 timek0 = newTime(k0);

123 % figure(8);clf;hold on

124 % plot(theta,On(k0,:)/max(On(k0,:)),'bo')

125 % plot(dtheta+theta0,A0/max(A0),':b')

126 % text(27.24,.9,[num2str(timek0,'%.1f') ' ns'],'FontSize',16)

127 % xlabel('\theta (degrees)')



84

128 % ylabel('Normalized Intensity')

129 % xlim([27.239 27.255])

130 % ax = gca; ax.FontSize=16;

131 % saveas(8,['¬/Documents/Jimmy/figures/Unstrained LinRock.png'])

132 % saveas(8,['¬/Documents/Jimmy/figures/Unstrained LinRock.eps'])

133 % saveas(8,['¬/Documents/Jimmy/figures/Unstrained LinRock.fig'])

134 % hold off;

135 % figure(9);clf;

136 % semilogy(theta,On(k0,:)/max(On(k0,:)),'bo');hold on;

137 % semilogy(dtheta+theta0,A0/max(A0),':b')

138 % text(27.19,.5,[num2str(timek0,'%.1f') ' ns'],'FontSize',16)

139 % xlabel('\theta (degrees)')

140 % ylabel('Normalized Intensity')

141 % ax = gca; ax.FontSize=16;

142 % saveas(9,['¬/Documents/Jimmy/figures/Unstrained LogRock.png'])

143 % saveas(9,['¬/Documents/Jimmy/figures/Unstrained LogRock.eps'])

144 % saveas(9,['¬/Documents/Jimmy/figures/Unstrained LogRock.fig'])

145 % hold off;

146

147 k05 = 10; % 0.5 ns;

148 k1 = 21; % 1 ns

149 k5 = 64; % 5 ns

150 k10 = 71; % 10 ns

151 k25 = 92; %25 ns

152 k50 = 104; % 50 ns

153 k100 = 124; % 100 ns

154 k250 = 163; % 250 ns

155 k500 = 209; % 500 ns

156 k750 = 258; % 750 ns

157 k1000 = 305; % 1 us

158 k1250 = 351; % 1.25 us

159 k1500 = 399; % 1.5 us

160 k1750 = 446; %1.75 us

161 k2000 = 493; % 2 us

162 k2250 = 541; % 2.25 us

163 k2500 = 588; % 2.5 us
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164 k2750 = 636; % 2.75 us

165 k3000 = 683; % 3 us

166 k3250 = 729; % 3.25 us

167

168

169 k = [k0 k05 k1 k5 k10 k25 k50 k100 k250 k500 k750 k1000 k1250 ...

k1500 k1750 k2000 k2250 k2500 k2750 k3000 k3250];

170 timek = newTime(k);

171 is = 118; % index shifter for data vs simulation

172 thetaBmp = -0.001;

173 for i = 1:length(k)

174 figure(7+i);clf;hold on;

175 plot(theta+theta0-thetaBmp-centerOff(k(i)+is),On(k(i)+is,:)/max(On(k(i)+is,:)),'ro','MarkerFaceColor','r')

176 plot(theta+theta0-thetaBmp-centerOff(k(i)+is),Off(k(i)+is,:)/max(Off(k(i)+is,:)),'bo')

177 plot(dtheta+theta0,A(k(i),:)/max(A(k(i),:)),'-r','LineWidth',2)

178 plot(dtheta+theta0,A0/max(A0),':b','LineWidth',2)

179 text(27.24,.9,[num2str(newTime(k(i)),'%.1f') ' ...

ns'],'FontSize',16)

180 xlabel('\theta (degrees)')

181 ylabel('Normalized Intensity')

182 xlim([27.239 27.255]);

183 ax = gca; ax.FontSize=16;

184 saveas(7+i,['¬/Documents/Jimmy/figures/' ...

num2str(timek(i),'%.1f') 'ns ''LinRock.png'])

185 saveas(7+i,['¬/Documents/Jimmy/figures/' ...

num2str(timek(i),'%.1f') 'ns ''LinRock.eps'])

186 saveas(7+i,['¬/Documents/Jimmy/figures/' ...

num2str(timek(i),'%.1f') 'ns ''LinRock.fig'])

187 end

188

189

190

191 for i = 1:length(k)

192 figure(29+i);clf;

193 semilogy(theta+theta0-thetaBmp-centerOff(k(i)+is),On(k(i)+is,:)/max(On(k(i)+is,:)),'ro','MarkerFaceColor','r');hold ...

on;
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194 semilogy(theta+theta0-thetaBmp-centerOff(k(i)+is),Off(k(i)+is,:)/max(Off(k(i)+is,:)),'bo');

195 semilogy(dtheta+theta0,A(k(i),:)/max(A(k(i),:)),'-r','LineWidth',2)

196 semilogy(dtheta+theta0,A0/max(A0),':b','LineWidth',2)

197 text(27.205,.5,[num2str(newTime(k(i)),'%.1f') ' ...

ns'],'FontSize',16)

198 xlabel('\theta (degrees)')

199 ylabel('Normalized Intensity')

200 xlim([27.2 27.3]);

201 ylim([1e-4 2]);

202 ax = gca; ax.FontSize=16;

203 saveas(29+i,['¬/Documents/Jimmy/figures/' ...

num2str(timek(i),'%.1f') 'ns ''LogRock.png'])

204 saveas(29+i,['¬/Documents/Jimmy/figures/' ...

num2str(timek(i),'%.1f') 'ns ''LogRock.eps'])

205 saveas(29+i,['¬/Documents/Jimmy/figures/' ...

num2str(timek(i),'%.1f') 'ns ''LogRock.fig'])

206 end

207

208

209 %% Surface plots

210 figure(4);clf; hold on;

211 surf(theta,timePos,OnPos);

212 shading interp;

213 ylim([0 max(timePos)])

214 xlim([27.239 27.255])

215 xlabel('Theta (degrees)')

216 ylabel('Time (ns)')

217 title('100 nm Cr film on GaAs Data')

218 ax = gca; ax.FontSize=16;

219 hold off

220

221 figure(5);clf; hold on;

222 surf(theta,timePos,log(OnPos)); caxis([-11 -2.7]);

223 zlim([-11 -2.7]); ylim([0.048 5]); shading interp;

224 xlabel('Theta (degrees)')

225 ylabel('Time (ns)')
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226 title('100 nm GaAs Data (Log Scale)')

227 ax = gca; ax.FontSize=16;

228 hold off

229

230

231 temperature = shift2temp(centerShift/1000, theta0, 'GaAs');

232

233 %% Linear Plot

234 figure(1); clf; hold on;

235 yyaxis left

236 h1 = plot(time,centerShift,'ro')

237 h2 = plot(newTime,centerShiftCalc,'-k','LineWidth',2)

238 xlabel('Time (ns)')

239 ylabel('Centroid shift (mdeg)')

240 yyaxis right

241 h3 =plot(time,temperature,'Marker','none','LineStyle','none')

242 ax = gca;

243 ax.YDir = 'reverse'

244 ylabel('Temperature shift (K)')

245 ax.YAxis(1).Color = 'k';

246 ax.YAxis(2).Color = 'k';

247 ax.FontSize = 16;

248

249 % Inset

250 bx = axes('Position',[.5 .2 .3 .3])

251 hold on;

252 plot(time,centerShift,'ro')

253 plot(newTime,centerShiftCalc,'-k','LineWidth',2)

254 xlim([-10 50]);

255 bx.FontSize = 16;

256 bx.TickLength = [0.02 0.02];

257 bx.LineWidth = 1;

258

259 hold off

260

261 %% Log Plot
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262 figure(2); clf;

263 yyaxis left

264 h1 = semilogx(time,centerShift,'ro');

265 hold on;

266 h2 = semilogx(newTime,centerShiftCalc,'-k','LineWidth',2)

267 xlabel('Time (ns)')

268 ylabel('Centroid shift (mdeg)')

269 yyaxis right

270 h3 = ...

semilogx(time,temperature,'Marker','none','LineStyle','none')

271 ax = gca;

272 ax.YDir = 'reverse'

273 ylabel('Temperature shift (K)')

274 ax.YAxis(1).Color = 'k';

275 ax.YAxis(2).Color = 'k';

276 ax.FontSize = 16;

277 hold off

278

279

280 %% Plots for trouble shooting (not saved)

281 %

282 % is = 119; % index shifter for data vs simulation

283 %

284 % for i = 1:length(newTime)

285 % k(i)=i;

286 % figure(200);clf;hold on;

287 % ...

plot(theta+theta0-thetaBmp-centerOff(k(i)+is),On(k(i)+is,:)/max(On(k(i)+is,:)),'ro','MarkerFaceColor','r')

288 % ...

plot(theta+theta0-thetaBmp-centerOff(k(i)+is),Off(k(i)+is,:)/max(Off(k(i)+is,:)),'bo')

289 % plot(dtheta+theta0,A(k(i),:)/max(A(k(i),:)),'-r')

290 % plot(dtheta+theta0,A0/max(A0),':b')

291 % text(27.24,.9,[num2str(newTime(k(i)),'%.1f') ' ...

ns'],'FontSize',16)

292 % xlabel('\theta (degrees)')

293 % ylabel('Normalized Intensity')
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294 % xlim([27.239 27.255])

295 % ax = gca; ax.FontSize=16;

296 % title(num2str(centerShift(i)));

297 % hold off;

298 %

299 % figure(201);clf;

300 % ...

semilogy(theta+theta0-thetaBmp-centerOff(k(i)+is),On(k(i)+is,:)/max(On(k(i)+is,:)),'ro','MarkerFaceColor','r');hold ...

on;

301 % ...

semilogy(theta+theta0-thetaBmp-centerOff(k(i)+is),Off(k(i)+is,:)/max(Off(k(i)+is,:)),'bo');

302 % semilogy(dtheta+theta0,A(k(i),:)/max(A(k(i),:)),'-r')

303 % semilogy(dtheta+theta0,A0/max(A0),':b')

304 % text(27.19,.5,[num2str(newTime(k(i)),'%.1f') ' ...

ns'],'FontSize',16)

305 % xlabel('\theta (degrees)')

306 % ylabel('Normalized Intensity')

307 % ax = gca; ax.FontSize=16;

308 % title(num2str(centerShift(i)));

309 % hold off;

310 % i

311 % jnk = input('Press Enter to Continue')

312 % end

313 %
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