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Abstract: 

 Didymium iridis is a cosmopolitan species of plasmodial slime mold consisting of two 

distinct life stages. Haploid amoebae and diploid plasmodia feed on microscopic organisms such 

as bacteria and fungi through phagocytosis. Sexually compatible haploid amoebae act as gametes 

which when fused embark on an irreversible developmental change resulting in a diploid zygote. 

The zygote can undergo closed mitosis resulting in a multinucleated plasmodium. Little is known 

about changes in gene expression during this developmental transition. Our principal goal in this 

study was to provide a comprehensive list of genes likely to be involved in plasmodial 

development. We performed suppressive subtractive hybridization to create cDNA libraries 

enriched for zygote or plasmodial specific genes. The cDNA libraries were then cloned and 

sequenced. The sequences were used to search against GenBank gene databases to identify 

related sequences and characterized proteins. We have compiled a list of candidate genes likely 

to be involved in the amoebae-zygote transition and have arranged them by their known or 

predicted function. Genes related to cytoskeletal structure, cell signaling, ubiquitin-proteasome 

pathways, mitochondrial inheritance, and DNA binding proteins were of particular interest due 

their possible role in this developmental transition. Selected gene sequences were also tested for 

differential expression by dot blot and RT-PCR. 
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Introduction: 

 Didymium iridis belongs to the kingdom Amoebozoa in the phylum Mycetazoa. This 

phylum includes the plasmodial slime molds including its well-studied relative, Physarum 

polycephalum (Fiore-Donno et al. 2008). Plasmodial slime molds, or myxomycetes, are found in 

virtually every ecosystem in the world (Stephenson and Stemphen 2000). Myxomycetes are 

unified by their atypical life cycle which features a haploid amoebal cell stage, as well as a 

multinucleated diploid plasmodial stage. Both stages are free-living and found commonly in soil 

and leaf litter. Sexually compatible haploid amoebae, or genetically identical diploid plasmodia, 

can undergo cell fusion resulting in a multinucleated plasmodium (Collins 1976).   

 The purpose of this study was to identify genes that are expressed shortly after haploid 

amoebae fuse to form a diploid zygote. Zygotes quickly develop into multinucleated plasmodia 

and as a result have many plasmodia-specific genes activated during this timeframe. (Turnock et 

al. 1981, Sweeney et al. 1987, Bailey 1995, Walter et al. 2013.) During zygote formation a 

variety of cellular activities occur which include an extended cell cycle, reorganization of 

cytoskeletal components, and extensive cell growth (Bailey et al. 1992). Also within early zygote 

development uniparental mitochondrial inheritance occurs where the zygote actively degrades 

one parental mitochondrial type while retaining and propagating the other (Silliker and Collins 

1988, Moriyama et al. 2005). The extreme differences in cell structure between amoebael and 

plasmodial stages must require many stage-specific genes that are differentially transcribed at 

each distinct stage of the life cycle.  

 D. iridis was chosen for this study due to its ease of culturing in laboratory settings, as 

well having access to heterothallic strains showing a high mating efficiency and a near equal 

contribution of mitochondrial inheritance within progeny (Silliker et al. 2002). Relatively few 
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studies have focused on zygote development in D. iridis or other myxomycetes. Previous studies 

done in P. polycephalum have identified plasmodial-specific genes (T’Jampens et al. 1999, 

Solnica-Krezel et al. 1995, Bailey et al. 1999, Murray et al. 1994, Pinchai et al. 2006, Walter et 

al. 2013); this experiment focused on generating an enriched cDNA library of genes expressed 

very early during zygote development compared to the P. polycephalum studies which generated 

cDNA libraries at a later timepoint in plasmodial development (Turnock et al. 1981, Uyeda and 

Kohama 1987, Bailey et al. 1987, Sweeney et al. 1987). Previous studies also used an apogamic 

mutant strain of P. polycephalum which undergoes cell fusion between genetically identical 

haploid amoebae to form a haploid plasmodia. This mutant is a laboratory phenomenon and 

while it contains many benefits, it does not represent the natural ecology of myxomycetes. 

Heterothallic mating of D. iridis wild type strains may be a better way to represent the natural 

developmental processes of these organisms. 

 In this study we identified a list of genes expressed early during zygote development. 

Using suppressive subtractive hybridization, we created cDNA libraries enriched for zygote and 

plasmodial specific genes which we then cloned, sequenced, and characterized. Questions posed 

by this study include: What kind of genes are expressed early within the amoebal-plasmodial 

transition?  Can nucleases involved in mitochondrial inheritance in D. iridis be identified? Will 

genes involved in plasmodial development, a stage unique to the myxomycetes, be found only 

within this group or will they have homology to genes in the Amoebazoa or other organisms? 
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Review of Literature: 

Organism of study: Didymium iridis 

The class of myxomycetes are common in virtually every ecosystem as predators of 

microorganisms (Collins and Betterley 1982). They share characteristics of both fungi and 

animals and as a result have been classified under a separate phylum, Mycetozoa (Fiorre-Donno 

et al. 2008). Their animal-like phagocytic feeding patterns make them of ecological significance, 

as they feed on many bacterial and fungal species (Collins and Betterley, 1982). The most 

conspicuous life stage of these organisms is their multinucleate cell mass, or plasmodium. This is 

a feature unique to the myxomycetes. In this life stage, the organism’s nuclei and organelles 

divide without cell partitioning. This has made myxomycetes a topic of interest to cell cycle and 

cancer researchers (Walker et. al 2017). A plasmodium is formed when two mating competent 

amoebae or swarm cells fuse together to form a zygote. Genetically identical zygotes or 

plasmodia can fuse with each other or individually enlarge to form a multinucleate mass (Collins 

1976). Under certain conditions plasmodia will form spore-bearing fruiting bodies by meiosis 

which appear similar to that of fungi. The spores are spread primarily by wind dispersal and 

germinate into haploid amoebae or swarm cells (Frederick 1990). A schematic of the life cycle is 

pictured in figure 1. D. iridis belongs to the order Physarales which includes the model organism 

Physarum polycephalum. A great deal of research regarding myxomycetes has focused on D. 

iridis and P. polycephalum due to their relative ease of cultivation in laboratory settings (Collins 

and Betterley 1982, Walker et. al 2017). 
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Figure 1. Life cycle: Introductory Mycology 1996 C.J. Alexopoulos, C. W. Mims, and M. 

Blackwell 
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Cell cycle and cytoskeletal rearrangement in P. polycephalum: 

 P. polycephalum is the most studied myxomycete in terms of plasmodial development; in 

particular with regards to the extended cell cycle and cytoskeletal rearrangement within zygotes. 

Much of this is due to the ability to culture apogomic (non-sexual fusion) and npf (non-

plasmodia forming) mutants that are unavailable in other myxomycete species. D. iridis and P. 

polycephalum share a relatively close evolutionary relationship and many key characteristics 

such as: life cycle, plasmodial development, cytoskeletal rearrangement, and organelle 

inheritance patterns. Therefore, it is likely that homologous gene expression regulates these 

functions. 

 P. polycephalum features an extended cell cycle with a prolonged G2 phase upon haploid 

cell fusion; this results in extensive cell growth not seen in amoebal stages (Bailey et al. 1987, 

Bailey et al. 1992, Burland et al. 1993). A variety of genes and proteins (mostly cytoskeletal) 

have been shown to differ between the amoebal and plasmodial cell stages (Bailey 1995, Walter 

2013). Zygotes grow to roughly twice the size of typical amoebae before proceeding to mitosis 

and as a result have a higher rate of protein synthesis than at any other point in the life cycle 

(T’Jampens et al. 1999). During this extended cell cycle, zygotes lose abilities unique to amoebal 

stages such as open mitosis and the ability to transform into a flagellated cell. An increase of 

tubulin production shortly before and during mitosis has been observed in P. polycephalum and 

is suggested to be involved in mitotic spindle formation (Laffler 1987).  Zygotes gain abilities 

unique to plasmodia such as somatic fusion with other plasmodia and the ability to ingest 

myxomycete amoebae (Bailey et al. 1992). It has been estimated that as much as 5% of P. 

polycephalum genes are specific to either amoebae or plasmodia stages respectively (T’Jampens 

et al. 1999). This suggests a great deal of intracellular signaling and gene expression must take 
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place in a relatively short period of time to initiate the extensive cellular reorganization of both 

internal and external cell structure.  

 Perhaps the most significant changes in gene expression during plasmodial formation is 

in regard to the cytoskeleton composition and organization.  Actin proteins are expressed at a 

high rate during the extended cell cycle and may provide the plasmodia with structural stability 

or specificity. Various actin-binding proteins such as profilin, tubulin, and fragmin have isotypes 

that are expressed in either amoebae or plasmodia. For example, in P. polycephalum, amoebae 

possess α3-tubulin isotype while plasmodia possess β2-tubulin isotype (Bailey 1995). It is 

unclear how the different tubulin isotypes change the function of the cytoskeleton, however it is 

interesting to note that three stage-specific cytoskeletal proteins have been identified and could 

represent one of many stage-specific proteins involved in cytoskeletal composition between 

haploid amoebae and diploid plasmodia.  

 Another actin binding molecule fragmin has different isotypes that are differentially 

expressed in amoebae and plasmodia; fragmin P is expressed in plasmodia and fragmin A in 

amoebae. Fragmin proteins function by binding actin molecules in the cytoskeleton creating an 

actin-fragmin kinase complex. Upon formation of this complex the kinase domain become 

activated furthering other downstream phosphorylation targets (T’Jampens et al. 1997, 

T’Jampens et al 1999). Due to fragmin’s stage specificity and kinase activity it is a good 

candidate to be involved in plasmodial development and possibly cytoskeletal reorganization.  

Other cytoskeletal proteins such as myosin have also been involved in cytoskeletal 

reorganization and plasmodial development. Myosin proteins are expressed continually 

throughout the life cycle of myxomycetes (Murray et al. 1994). It is unknown if stage-specific 

myosin isotypes exist in D. iridis but can be inferred due to the reliance of many plasmodial 
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specific traits on myosin proteins. For example, myosin proteins have been identified to be 

involved in cytoplasmic streaming (movement of fluid within the cell) as well as locomotion in 

the plasmodia (Murray et al. 1994). Both processes are unique to the plasmodia cell stage and 

would likely be initiated early during zygote development.   

 

Mitochondrial inheritance mechanisms: 

 In eukaryotes there is a trend toward uniparental inheritance, where one parental 

mitochondrial DNA persists while the other is lost (Sato and Sato 2013). This phenomenon is 

evolutionarily favored across taxa due to an increased metabolic efficiency (Gray et al. 1999) 

and a reduction of incompatibility between nuclear and mitochondrial genomes (Eberhard 1980). 

This is accomplished by many different mechanisms (Breton and Stewart 2015). Gamete 

formation occurs in some animals and plants where mitochondria of the sperm or pollen is 

actively destroyed by ubiquitin proteins prior to zygote formation (Sato and Sato 2013, Yu et al. 

2017). Autophagy of mtDNA post fertilization is a method utilized by Caenorhabditis elegans, 

among others (Sato and Sato 2013). Fish such as Oryzias latipes engage in mtDNA degradation 

both pre and post fertilization (Sato and Sato 2013). Other mechanisms, as seen in many fungal 

species, include dilution methods where one parent’s mtDNA type is virtually nonexistent by 

selective replication of the other mtDNA (Barr et al. 2005). Biparental inheritance can also 

occur, although it is uncommon. Some species of fungi exhibit this with little to no adverse 

implications (Barr et al. 2005). In fact, it is speculated that low rates of biparental inheritance can 

clear out deleterious mutations within an organism's genome by recombination and can therefore 

benefit genetic integrity of the population (Hadjivasiliou et al. 2013).  
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Mitochondrial inheritance mechanisms in D. iridis and P. polycephalum: 

 Mitochondrial inheritance within myxomycetes has been an area of research for decades. 

Due to their unique life cycle they possess a novel and somewhat enigmatic mechanism for 

controlling mitochondrial inheritance. P. polycephalum and D. iridis are the most commonly 

studied myxomycetes with regard to mitochondrial inheritance and although their patterns of 

inheritance tend to vary somewhat, the molecular mechanisms for accomplishing uniparental 

inheritance appear to be very similar. The mechanism involves selective degradation (Kawano et 

al. 1987); the destruction of mtDNA from one parental cell with retention of the other and is 

achieved within 5 hours of zygote formation (Moriyama et al. 2005, Moriyama et al. 2009). 

DAPI staining of mitochondrial DNA revealed almost identical results when carried out with 

both P. polycephalum and D. iridis suggesting a conserved mechanism. The driving force behind 

selective degradation is carried out by nucleases. Evidence of nucleases have been uncovered in 

P. polycephalum (Moriyama et al. 2005) and can be inferred to be present in D. iridis as well 

(Silliker and Collins 1988, Silliker et al. 2002).  

P. polycephalum has a definitive hierarchy in which a dominant mating type allele 

determines the mtDNA type that is retained within zygotes (Moriyama et al. 2003). This is 

determined by the matA allele located within the organism’s nuclear genome. There are 14 matA 

alleles discovered so far, each with a predictable hierarchical inheritance pattern when mated 

with another compatible amoebae or swarm cell (Moriyama et al. 2003). D. iridis on the other 

hand does not show evidence of a hierarchical mitochondrial DNA donor system. However, D. 

iridis and P. polycephalum almost exclusively show uniparental mitochondrial inheritance 

(Moriyama et al. 2010, Silliker et. al 2002).  
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Myxomycetes have three factors that make them much different from other eukaryotes in 

terms of accomplishing uniparental inheritance of the mitochondria. First, they are isogamous, 

meaning the gametes are of the same size (Silliker and Collins 1988). Most animals utilize 

gamete size disparity to determine which will be the mitochondrial donor such as a large egg and 

small sperm cells. Second, myxomycete gametes fuse completely and proceed to closed mitosis 

without any subsequent cell division while other isogamous organisms, like yeast, divide 

repeatedly (Barr et al. 2005). This means that although there is initially biparental inheritance 

within myxomycetes, one parental mtDNA must be actively degraded within a relatively short 

time period to achieve uniparental inheritance. In comparison, yeast essentially dilute out one 

mtDNA population by cell division and mitochondrial segregation to achieve uniparental 

inheritance (Barr et al. 2005). Third, myxomycetes contain a multiple-sex mating system and 

cannot rely on a binary mating system to determine which cell will be the mitochondrial donor. 

The elements of isogamous fusion, lack of cell partitioning, and multiple mating types result in a 

novel mechanism of mitochondrial inheritance which has been proposed to be carried out by 

nucleases employed by the donor gamete.  

 

Ubiquitin-proteasome system: 

 The ubiquitin-proteasome system is a highly conserved pathway amongst eukaryotes and 

is the primary system for protein catabolism. Ubiquitin serves as a molecular tag which is 

recognized by proteasome complexes, it is used as a marker to initiate the degradation of 

misfolded and unneeded proteins within the cell by proteasome complexes and autophagic 

organelles. The ubiquitin-proteasome system serves as the principal method for cellular 

proteostasis, or homeostasis of protein molecules (Zientara-rytter and Subramani 2019). 
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Ubiquitin molecules are 76 amino acids in length and are ligated onto proteins in both monomers 

and polymers (Nandi et al. 2006). The frequency at which ubiquitin molecules are ligated onto a 

protein is thought to determine the protein’s fate. For example, mono-ubiquitin tags can initiate 

endocytosis and histone modification whereas polyubiquitination often results in the recruitment 

of degradative protein complexes and autophagy (Nandi et al. 2006). By nature, this system 

works in close tandem with organelles such as autophagic lysosomes, vacuoles and endoplasmic 

reticulum (Zientara-rytter and Subramani 2019). Despite the high conservation of the ubiquitin 

ligases across taxa (in particular E1 and E2 ligases), the diversity of proteasome complexes and 

the expression levels of these complexes can vary dramatically between organisms and cell types 

(Morozov and Karpov 2018). Different cells can harbor different populations of proteasome 

molecules which vary in substrate preference. Proteasome populations within a cell are fluid and 

can change by environmental and genetic factors (Morozov and Karpov 2018). For instance, 

mice use modified ubiquitin-proteasome proteins shortly after fertilization to recognize and 

degrade paternal mitochondrial DNA in the zygote (Sato and Sato 2013); while other uses of the 

ubiquitin-proteasome system can include cellular communication, as some proteasomes secrete 

products into extracellular vesicles (Morozov and Karpov 2018).  

 

 An expanding hypothesis supports the concept that in addition to cellular proteostasis, the 

ubiquitin-proteasome system can have implications on other processes such as protein 

modification, cellular signaling and gene expression through the activation of transcription 

factors (Nandi et al. 2006). There are an estimated 5 x 10
15

 different proteasome substrate 

preferences (Morozov and Karpov 2018) implying that the specificity of ubiquitin-proteasome 

proteins is extremely high, particularly within E3 ligases (Nandi et al. 2006). There have been 
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hundreds of genes identified which encode E3 ligases in comparison to tens of genes encoding 

E2 ligases and only a few genes encoding E1 ligases (Nandi et al. 2006). This suggests that E3 

and E2 ligases are needed to provide specificity of substrates while E1 ligases may have more 

general substrate preference. In addition to the diversity of substrate preferences, there exists 

many molecules which can alter the regulation and function of the ubiquitin-proteasome complex 

such as inhibitors and activators which can bind to proteasome complexes and alter both 

substrate preference and catalytic activity (Morozov and Karpov 2018). The role ubiquitin 

proteasome proteins play during plasmodial development is currently unknown but it could have 

an augmented function in general proteostasis. 

 

Signal transduction in myxomycetes: 

 Considerable cell signaling research involving myxomycetes has been related to P. 

polycephalum’s ability to sporulate in response to light flashes and its ability to propagate toward 

food sources and/ or chemoattractants (de Lacy Costello and Adamatzky 2014). At the cellular 

level, many studies have been dedicated to plasmodia’s ability to synchronize nuclear events 

such as cell cycle arrest and cellular movements by intracellular transport known as cytoplasmic 

streaming (Walker et al. 2017). As a result, much of the published work on myxomycetes signal 

transduction involves the plasmodia’s ability to respond to external stimuli and its capability to 

transport signals within a multinucleated cell (Alim et al. 2017, Walker et al. 2017). A recent 

study using P. polycephalum as a model organism analyzes the learning capabilities within 

unicellular plasmodia; long term habituation and recognition of deterrents are believed to be a 

result of extensive signal transduction (Bousard et al. 2018). Sporulation transcriptomics reveal 

extensive remodeling of signaling pathways during the plasmodia-sporangium transition 
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suggesting distinct signaling pathways are present within each stage of the life cycle (Barrantes 

et al. 2012, Glöckner and Marwan 2017). A relatively limited amount of information has been 

uncovered in terms of signal transduction as it relates to developmental pathways such as the 

amoebae-plasmodial transition. 

 Despite the lack of specific knowledge concerning myxomycetes signal transduction, 

these organisms appear to use many of the same pathways as other protists. G-proteins act as 

membrane receptors which initiate transcriptional and enzymatic modifiers through the use of 

signaling molecules such as cyclic NMP’s (Heidel et al. 2011). One of the differentiating factors 

between signal transduction in the myxomycetes and others in the amoebozoa kingdom is their 

use of extensive cellular communication to synchronize nuclear division in a multinucleated 

plasmodia. Myxomycetes contain a higher number of genes that encode signaling proteins than 

their amoebal ancestors (Schaap et al. 2015). This can likely be attributed to their augmented life 

cycle compared to free living soil amoebae which don’t have amoebal-plasmodial developmental 

pathways. The increase in signaling proteins may also be attributed to the plasmodia’s necesity 

to initiate environmental responses within its multinucleated cell (Schaap et al. 2015). 

 Recent metagenomic analyses of the P. polycephalum genome have revealed new 

insights into signal transduction for myxomycetes. Such insights are especially useful when 

comparing the myxomycete signaling system to evolutionarily related taxa. Schaap et al. 2015 

discovered many interesting findings related to myxomycete signaling by comparing genomic 

analyses of P. polycephalum to the cellular slime mold Dictyostelium discoideum and the 

amoebae Acanthamoebae castellani. Some of the major findings of this research were that P. 

polycephalum has a higher number of signaling molecules compared to the other two groups. 

These include a higher diversity of G-proteins, kinases, and cyclic nucleotide signals. There also 



13 
 

appears to be a significant amount of diversity within the alpha subunits of P. polycephalum G-

proteins compared to the two other taxa, which can also be associated with the unique life cycle 

of myxomycetes and is perhaps an integral part of plasmodial development. More information is 

needed on specific G-protein functions within the myxomycetes to conclusively decode their 

individual protein functions. Similarly, G-proteins in the cellular slime molds tend to be more 

divergent while downstream targets and signaling molecules tend to be more conserved 

suggesting that G-proteins may provide novelty within species in the Mycetazoa phylum (Heidel 

et al. 2011). P. polyecephalum also displays roughly five times the amount of sensor histidine 

kinases/ phosphatases than A. castellani and D. discoideum; it is believed that the increase in 

these proteins are related to enzymatic or transcriptional activity and could play a significant role 

in plasmodial development (Schaap et al. 2015). Signal transduction within myxomycetes 

remains somewhat enigmatic and requires more biochemical testing in order to properly 

determine the roles different proteins play in plasmodial development and gene transcription; 

however, the presence of extensive signaling genes could be responsible for the alternate 

developmental pathways that are not seen in other related taxa. 

 

Suppressive subtractive hybridization: 

 Subtractive hybridization combined with PCR can selectively amplify gene fragments 

unique to a cell type. This is referred to as suppressive subtractive hybridization, or SSH. In this 

method mRNA is extracted from two related cell types and converted to cDNA. The cDNA is 

first digested using Rsa I restriction enzyme to limit fragment size and to create blunt ends. One 

population of cDNA gets two different adapter sequences ligated onto the ends of the cDNA 

fragments and is referred to as the tester while the alternate cDNA population without adapters is 
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referred to as the driver. Mixtures of tester cDNAs are allowed to hybridize with unligated driver 

which have roughly 5 times the frequency of representation compared to tester. Shared fragments 

between the two cDNA libraries hybridize with each other while gene fragments unique to the 

tester populations get exponentially amplified using primers specific to the two adapter 

sequences. This results in a subtracted cDNA library containing gene products unique to one cell 

type (Diatchenko et al. 1996). An illustration of this mechanism can be seen in figure 2. 
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Figure 2. SSH schematic: taken from evrogen.com/technologies/SSH 
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Methods: 

Strains and cultivation - The strains selected for this study were laboratory cultures belonging to 

the A1 Central American mating series (Clark et al 1991). These isolates were provided by Dr. 

Jim Clark who obtained them from the Collins mating type testers collection (Collins and 

Betterley 1982). Both Pan 2-44 (mating type A
7
) and Hon 1-7 (mating type A

1
) were selected 

due to their high mating efficiency (Silliker et al. 2002). Haploid amoebae were maintained in 

liquid axenic culture, peptone-glucose-yeast (PGY) and supplemented with heat killed bacteria 

(HKB) described in (Silliker et al. 1988). Both zygotes and plasmodia were formed by 

combining equal amounts of liquid haploid cultures onto half strength corn meal agar (CMA/2) 

solidified in cell culture flasks.  

 

Determination of mating/collection time point – One challenge of this study was obtaining 

zygote mRNA which could then be subtracted from the amoebae and plasmodia cell stages. Due 

to the extreme similarities between zygotes and amoebae in size and overlap in development it is 

virtually impossible to gather mRNA from a culture containing only zygotes. Instead a mixture 

zygotes and amoebae were harvested at a time point in which the highest number of uninucleated 

zygotes were observed. Pilot studies consisting of frequent cell observations were conducted to 

determine the ideal time point for collecting zygote mRNA. Equal amounts of haploid Hon 1-7 

and Pan 2-44 cultures at 10
6
 amoebae/ml were spread onto a CMA/2 agar in tissue culture flasks. 

At time points between 0 and 24 hours, 1 ml of the mating mixture was placed into a 

microcentrifuge tube and spun at 2,000 RPM for 2 minutes. The supernatant was removed, and 

the pellet was resuspended in 50 µl of Page’s solution and gently vortexed; 10 µl of the 

resuspended solution was then spread onto a glass slide and the number of zygotes found within 
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7 minutes were tallied. The observations were performed using a phase contrast microscope 

under 1000x magnification. Zygotes were determined by morphological differences such as a 

larger cell size and larger nucleus size relative to haploid cells (Ross 1967). Zygote and amoebae 

images can be seen in figures 3 and 4.  

 

 

 

Figure 3. Microscopic analysis: Image of an amoebae (left) and a zygote (right) taken 

approximately 18 hours post mating. Cell types distinguished by morphological differences in 

shape and the size of the nucleus. Scale bar represented by arrows is 50 µm. 
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Figure 4. Plasmodia formation: Images of plasmodia formed roughly 6 days post mating. Left 

image shows the plasmodia to scale on a standard 100mm x 15mm petri plate while the right 

image is a closer image. Scale bar represented by arrows in 15 mm. 

 

 

mRNA isolation. – Isolation of amoebal mRNA and zygote mRNA followed standard protocol 

using the Dynabeads kit (Qiagen, Oligotex Handbook 2012). The specifications used were that 

of standard mammalian cells. Due to constraints within methodology, zygote mRNA was 

isolated from a mixture of amoebal cells and young zygotes and was taken roughly 18 hours after 

mating. Isolation of plasmodia mRNA followed standard protocol using the New England 

Biolabs Oligo d(T) magnetic bead isolation kit (NE Biolabs, Magnetic mRNA Isolation Kit, 

2018).  

 

Generation of cDNA/ purification and amplification of unique transcripts – Prior to cDNA 

synthesis, mRNA extracted from D. iridis was suspended at a higher concentration 

approximately 2.5 µg/ µl. From the mRNA extracted, cDNA was generated using Takara’s 

SMARTer cDNA synthesis kit (Clontech Laboratories inc. SMARTer™ PCRcDNA Synthesis 
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Kit User Manual, 2014). The cDNA libraries were then used in Suppressive Subtractive 

Hybridization which followed that of Clontech® PCR-Select™ cDNA Subtraction Kit protocol 

(Clontech Laboratories inc. PCR-Select™ Bacterial Genome Subtraction KitUser Manual, 

2016). A significant deviation from the protocol included replacing all phenol-chloroform 

extractions with Takara’s zymoclean DNA purification spin columns. This increased the purity 

and yield of our samples. There was a total of two subtractions; zygote subtracted with amoebae 

cDNA (sub1; figure 5) and zygote subtracted with plasmodia cDNA (sub2; figure 6). Sample 

images of our RSA digestion and ligation efficiency gels can be found in appendix A.  

 

 

 

Figure 5. Subtraction 1 (Zp-A). Subtracted cDNA libraries are depicted by Venn diagrams 

where the left image shows our unsubtracted zygote cDNA library containing zygote, amoebae 

and plasmodia cDNA. The cDNA shared between the zygote and amoebae cDNA libraries are 

subtracted away to leave zygote and plasmodia cDNA. 

 

 

 

Zygote                              Amoebae Zygote                               Amoebae 
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Figure 6. Subtraction 2 (Za-P). Subtracted cDNA libraries are depicted by Venn diagrams 

where the left image shows our unsubtracted zygote cDNA library containing zygote, amoebae 

and plasmodia cDNA. The cDNA shared between the zygote and plasmodia cDNA libraries are 

subtracted away to leave zygote and amoebae cDNA. 

 

 

TOPO cloning – Approximately 50 ng of subtracted cDNA was placed into a salt solution and 

mixed with [1/5] pCR 4 or 2.1 plasmids. The TOPO reaction occurred at room temperature for 

30 minutes before being placed on ice. The TOPO reaction mix was then pipetted into a vial of 

TOP 10 OneShot cells and incubated on ice for another 30 minutes to allow plasmid uptake 

followed by a 30 second 42°C heat shock. The solution was placed back onto ice and 250 µl of 

SOC media was added to the transformation vial (Invitrogen, One Shot® TOP10 Competent 

Cells, 2013). The transformation mix was then placed on a shaker in a 37°C incubator for one 

hour before being spread onto a selection plate containing LB media and ampicillin (100 µg/ ml). 

The LB/ampicillin plates were incubated overnight, and the resulting colonies were isolated.  

 

Mini preps of E. coli colonies – A single colony was transferred from a selection plate to culture 

tube containing LB broth and 50 µg/ ml ampicillin. The cultures were incubated overnight at 

37°C and shaken at 200 RPM. Sufficient growth was determined by an increased turbidity. 

Approximately 2 ml of grown culture was transferred into a microcentrifuge tube and spun at 

Zygote                             Amoebae Zygote                              Amoebae 
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max speed for 2 minutes to create a pellet. The plasmids were purified using Takara’s Mini-prep 

Nucleo-Plasmid kit following standard protocol (Clontech Laboratories inc. Plasmid DNA 

purification User manual NucleoSpin® Plasmid EasyPure, 2014). 

 

Restriction digest screening – Following plasmid purification, a portion of each sample was 

digested with Eco RI restriction enzyme to verify against false positives, each sample was run 

onto a 1% agarose gel. A typical digest when imaged consisted of a sharp band around 4,000 bb 

representing the vector and at least one other band around 100-1,000 bP representing the inserted 

gene fragment. A sample image can be seen in figure 7.  

 

  
 

Figure 7. Miniprep from zygote-plasmodia subtraction sample: Various clones were digested 

with Eco RI restriction enzyme to verify successful transformation prior to DNA sequencing. A 

thick band can be seen at 4,000 bp which represents the cleaved vector DNA while other bands 

represent D. iridis insert DNA.  Only clones containing insert DNA were chosen for further 

analysis. 

 

 

Lane (top) Clone # DNA 

1 343 

2 344 

3 345 

4 1 kb+ marker 

5 346 

6 348 

Lane (bottom)  

1 349 

2 350 

3 352 

4 1 kb+ marker 

5 353 

6 354 

4 kb 

4 kb 

0.5 kb 
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DNA sequencing setup – Following restriction digest screening, 150 ng of DNA was used along 

with 320 pmol T7 primer, 1.5 µl [5X] Sequencing Buffer, 1.0 µl Big Dye Terminator version 3.1 

sequencing reagent in a final volume of 10 µl. The reaction tubes were placed into a 

thermocycler for 25 cycles (96°C for 10 seconds, 50°C for 5 seconds, 60°C for 4 minutes). 

Following the sequencing reaction, samples were precipitated by adding 40 µl Na/EtOH solution 

and incubated at room temperature for 15 minutes. They were then centrifuged at max speed for 

20 minutes at 4°C. The supernatant was removed, and pellet was washed with 250 µl of 70% 

EtOH and centrifuged on max speed for 5 minutes at 4°C. The supernatant was removed again, 

and reaction tubes were aspirated at room temperature before being dried under vacuum 

centrifugation for 2 minutes. Dry pellets were resuspended in 15 µl Hi Dye solution and heated 

to 95°C for 2 minutes in a dry bath and then cooled before DNA sequencing. The samples were 

vortexed and stored in the freezer until being placed in the DNA sequencer.  

 

DNA sequencing – All samples were sequenced at DePaul University using an Applied 

Biosystems 310 DNA sequencer. The sequencer utilizes the Sanger sequencing method which 

synthesizes DNA fragments with a mixture of dNTP’s and fluorescently tagged ddNTP’s which 

terminate further polymerase activity (Sequencher, 2019).  

 

BLAST searches and protein characterization – Sequence data was analyzed using sequencher 

software. Open reading frames (ORF) were identified and then converted into protein sequences 

using ExPasy (Bionformatics, Swiss Institute of, 2019). Candidate ORF’s were uploaded into 

NCBI’s Genbank database and searched BLASTp with no database constrictions. Nucleotide 

sequences were searched using BLASTn without any constrictions and BLASTx which was 
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constrained to amoebozoan and mycetozoan databases. Matches containing the lowest E values 

were selected while matches with E values higher than 10
-3

 were omitted (Altschul et al. 1990). 

 

DIG labelling and detection – Probes used in Southern and dot blots were labeled and detected 

according to the protocol from the DIG Labeling and detection kit provided by Roche (Roche 

inc. DIG DNA Labeling and Detection Kit, 2004). An additional step was added onto the 

labelling protocol to remove unincorporated nucleotides. Following the DIG DNA labelling step, 

4 M LiCl, EtOH and herring sperm DNA was added to the solution before it was frozen at 80°C 

for 30 minutes. The DIG-labeled samples were then pelleted by centrifugation at 21,460 x g, 4°C 

for 30 minutes before being resuspended into TE buffer. The probes for the southern blot 

consisted of differentially expressed genes profilin A (amoebae gene) and fragmin P (plasmodia 

gene). The probes for the dot blots consisted of amoebal cDNA, plasmodial cDNA, subtracted 1 

(zygote minus amoebae cDNA) and subtracted 2 (zygote minus plasmodia cDNA). A labeling 

efficiency test was performed in order to confirm each of the labeled probes had a sufficient level 

of DIG labeled nucleotides incorporated within the DNA fragments which can be seen in the 

appendix B. 

 

Southern blot – Southern blots were made using bi-directional blotting to confirm the success of 

subtraction generated from the SSH procedure from the protocol of Smith and Summers, 1980. 

The lanes consisted of unsubtracted tester (amoebae + plasmodial cDNA) sub. 1 (zygote + 

plasmodial cDNA) and sub. 2 (zygote + amoebae cDNA). The probes consisted of DIG labeled 

fragmin P and profilin A; DNA from fragmin P and profilin A genes were also added as a 

positive control for each blot. Each lane had approximately 0.4 µg of DNA.  
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DNA dot blot – To give us a better indication of differential expression between cell types, four 

DNA dot blots were created. Each blot consisted of the same clone DNA spot patterns probed 

with a different DIG-labelled probe. One 1 µl drops (10 ng/µl) were spotted onto positively 

charged nylon membranes. Cloned DNA at a concentration of 100 ng/ µl was diluted; 1 µl DNA 

in 9 µl of denaturation solution (4 M NaOH and 100 mM EDTA) and then incubated at room 

temperature for ten minutes prior to spotting. Once all the samples were added to the membrane 

the DNA was fixed using a DNA crosslinker. The membranes were then hybridized and detected 

using the DIG Labeling and detection kit protocol provided by Sigma Aldrich (Roche, 2004).  

 

RT-PCR - RT-PCR was performed using the protocol from Invitrogen RT-PCR kit (Invitrogen, 

SuperScript™ III One-Step RT-PCR System with Platinum™Taq DNAPolymerase, 2016). 

mRNA from amoebae, zygote (containing some amoebae) and plasmodia were used as template 

while primers were specifically designed to flank the sequences of each clone. The presence or 

absence of a PCR product along with the intensity of the band correlates to how abundant the 

genes are within a population of mRNA.   
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Results and discussion: 

 

Determination of timepoint selection: 

 Haploid strains were spread in equal amounts onto a CMA/2 agar cell culture flask. The 

strains Hon 1-7 and Pan 2-44 were chosen due to a previous study which provided evidence for a 

fast mating time and a near equal mitochondrial donation in progeny (Scheer and Silliker 2006). 

The agar culture flasks were allowed to incubate at room temperature for 18 hours. This 

timepoint was chosen because it yielded the highest number of zygote cells without containing 

any observed microplasmodia which consist of 2 or more nuclei per cell (figure 8).  

 
Figure 8. Time point selection: The number of zygotes were counted for 7 minutes under 1000x 

magnification. The number of replicates varied between different timepoints where hours 0, 2 

and 4 have n=7; hour 6 has n=5, hour 8 has n=6, hour 10 has n=1 and hour 18 has n=2. 

 

 

Southern blot analysis: 

 Southern blot were conducted to confirm successful subtractions. Evidence of successful 

subtraction 1 would be indicated by removal of amoebal genes, in this case profilin A. This 

would show hybridization in the unsubtracted DNA lane but not in any others. Evidence of a 

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16 18

# 
o

f 
Zy

go
te

s 
 c

o
u

n
te

d
 in

 7
 m

in
u

te
s 

Time since mating (hrs) 



26 
 

successful subtraction 2 would be indicated by the lack of hybridization of profilin A in the sub. 

2 lane while a hybridization of fragmin P in all of the experimental lanes (figure 9).  

Unsubtracted tester sub. 1 contained genes from amoebae, zygote and plasmodia. Sub. 1 

contained genes from zygote and minimal plasmodia subtracted with amoebal cDNA which will 

be referred to as Zp(-A). Sub. 2 contained genes from zygote and minimal amoebae subtracted 

with plasmodial cDNA which will be referred to as Za(-P). The probes chosen were fragmin P 

and profilin A, both of which are expressed at distinct stages in the D. iridis life cycle 

(T’Jampens et al. 1999) making them useful probes to identify differential expression. DNA 

from fragmin P and profilin A were also loaded onto the blot as positive controls. 

 Upon detection with the fragmin P probe, bands appeared in all the lanes except for the 

lane containing profilin A, indicating that there are plasmodial genes present in all three 

experimental samples. This was expected as all of the libraries used contained zygote genes 

which are essentially early plasmodia genes. Upon detection with the profilin A probe, bands 

appeared only in the unsubtracted tester cross 1 and profilin A lanes. This was also expected 

because the unsubtracted sample contained cDNA from amoebae and zygote stages before being 

subtracted with amoebae. The disappearance of amoebal genes from unsubtracted cross 1 to 

subtracted 1indicated a successful subtraction by the removal of an amoebae specific genes. 
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Figure 9. Southern blot of differentially expressed genes: A southern blot was performed in 

duplicate yielding consistent results; the best blots were included in this report. The left blot was 

probed with DIG labeled fragmin P while the right blot with DIG labeled profilin A. The 1kb 

marker in the fragmin P blot reacted with the probe along with the experimental subtractions. 

Reaction with the marker is likely due to cross reaction between the fragmin P cloning vector 

and the vector sequences in the marker. This is not uncommon and does not have any bearing on 

our results. 

 

Overview of Clone characterization:  

 A total of 200 clones were sequenced yielding 183 contigs with reliable sequence 

accuracy. These 183 contigs were analyzed for homology matches and searched against the 

Genbank gene database while contigs with fewer than 100 bp or contigs that had no detectable 

open reading frames (ORFs) were omitted from analysis. The clones were broken into categories 

based on their known or predicted protein function and can be seen in Table I. Hypothetical 

proteins are clones that matched sequences within the Genbank database but did not have a 

function associated with them while unknown function denotes clones that did not match 

anything in the database.  

 

 

 

Lane 

(left) 

Clone DNA 

1 1 kb marker 

2 Unsubtracted 

tester Zpa 

3 Tester sub. 

1; Zp(-A) 

4 Tester sub. 

2; Za(-P) 

5 Fragmin P 

6 Profilin A 

Lane 

(right) 

Clone DNA 

1 Unsubtracted 

tester Zpa 

2 Tester sub. 

1; Zp(-A) 

3 Tester sub. 

2; Za(-P) 

4 1 kb marker 

5 Fragmin P 

6 Profilin A 

Probe: Fragmin P                     Probe: Profilin A 
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Table I: Overview of clones broken by cellular function 

Cellular function # of clones found 

Cytoskeleton 12 

Mitochondrial Inheritance 4 

Ubiquitin-Proteasome 9 

Signal Transduction 22 

Hypothetical Proteins 15 

Metabolic/ housekeeping 68 

Unknown 53 

 

 

Cytoskeleton proteins:  

 Various cytoskeletal proteins were uncovered from our subtractions, in particular proteins 

involved in the cytoskeletal makeup or composition. These proteins can be seen in Table II. 

Differentially expressed cytoskeleton proteins were expected to be found based on previous 

literature (Bailey et al. 1992). It is interesting to note that many of these proteins showed a high 

degree of similarity to unrelated organisms, indicating a high level of conservation. Fragmin P 

(clone #33) was the only characterized protein we uncovered that has been experimentally 

studied in myxomycetes (T’Jampens et al. 1997). Interestingly enough, this protein did not 

appear to have stage specific expression in the dot blots but does in the Southern blots. One 

explanation could be that the fragmin domain is highly conserved between fragmin P 

(plasmodial specific) and fragmin A (amoebae specific). This would generate a signal from every 

probe used in our experiments as they all contain some isotype of fragmin. Upon characterization 

through the GenBank database, clone #33 did in fact match both fragmin P and fragmin A but 

was identified as fragmin P based on the subtraction (amoebae subtracted away) as well as a 

lower E value associated fragmin A. Nevertheless, it is likely this gene represents fragmin P 

which hybridizes to both isoforms of fragmin. The same concept can be said about isoforms of 

profilin hybridizing with our profilin A probe. 
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 Previous studies have identified various cytoskeletal isotypes that are stage specific in P. 

polycephalum. Our dot blot results do not support stage specific expression of the tested 

cytoskeletal proteins in D. iridis. Both cytoskeleton structural and organization proteins appear to 

be continuously expressed between both the amoebae and plasmodial stages. This was a surprise 

due to evidence for differential expression of cytoskeletal proteins found in P. polycephalum 

(Bailey et al. 1992).  

 Two explanations for the continuous expression observed in the dot blot data is that the 

cytoskeletal proteins are the same across cell stages or that the probe does not differentiate 

between different isoforms due to a high level of conservation. If the genes encoding plasmodial 

and amoebal cytoskeletal proteins are very similar, then one isoform would hybridize with its 

counterpart despite being differentially expressed. This was believed to be observed in both the 

fragmin P and profilin A genes blotted. It is possible that the cytoskeletal proteins we blotted 

could have given rise to false positives if the sequence similarity between the isotypes in 

amoebae and plasmodia is high. Also, it is possible that the organizational composition may 

change between amoebal and plasmodial stages and not be truly differentially expressed. For 

example, the ratio of a given cytoskeletal protein may change between the stages despite being 

expressed in both. This would yield a continuous expression in a dot blot regardless of whether 

the compositional makeup of the cytoskeleton is changing.  

 Lastly, a final explanation for the lack of differentiation could be that cytoskeletal 

proteins are encoded by the same genes between amoebae and plasmodial cell stages but could 

contain post translational modifications that distinguish between the two isotypes. This would 

mean genes like profilin or fragmin are encoded by the same genes but are modified according to 

the life cycle stage in which the organism is in. It is possible that we isolated stage specific 
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cytoskeletal ORF’s that cross react with its isotype counterpart. This cross reaction would 

explain the continuous expression for genes such as fragmin P which are known to be stage 

specific. 

Table II: Cytoskeletal proteins 

Clone #  

(ORF size) 

Protein shared domain Organism overlapped E value Possible function 

23/ 80 

(461 /464 BP) 

 

Myosin binding protein C Homo sapiens 1e-89 Heart muscle development 

33
i
 

(593 BP) 

actin-binding protein fragmin P Physarum polycephalum 2e-80 Cytoskeletal protein 

73 

(828 BP) 

Beta actin 

(NBD_sugar_kinase_HSP70_actin 

family) 

Didymium squamulosum 4e-154 Cytoskeleton, plasmodia 

development 

77 

(541 BP) 

Actin  Physarum polycephalum 6e-96 Cytoskeleton, plasmodia 

development 

180 

(262 BP)   

CAP-Gly containing linker protein 1 Equus caballus 4e-37 Microtubule rearrangement 

321/ 325/ 360 

(322/ 333/ 322 BP) 

ADP-ribosylation factor 

(ras_superfamily) 

Heterostelium album 2e-55/ 1e-

37/ 4e-54 

GTP domain protein, 

involved in vesicle transport 

and actin remodeling 

324 

(126 BP) 

tubulin polymerization-promoting 

protein family member 3 

Oryzias latipes 4e-12 Cytoskeletal proteins; 

microtubule bundling/ 

formation 

326/ 327 

(311/ 306 BP) 

pericentrin Homo sapiens  4e-95/ 2e-

88 

Mitotic spindle 

organization, possibly 

involved in cell cycle 

progression 
i
 Colors used to represent evolutionary lineages where green is mycetozoan and blue is amoebozoan 

 

Suspected mitochondrial inheritance proteins: 

 Our initial goal was to uncover genes involved in mitochondrial inheritance which based 

on observation, exert their effect in the zygote (Moriyama et al. 2005, Moriyama et al. 2010). 

Among the genes we expected to uncover were nucleases, DNA packaging proteins and shuttle 

proteins involved in the transport of nucleases into the mitochondria (Itoh et al. 2011). Of the 

proteins with characterized functions, we identified two strong and one weaker candidate to be 

involved in mitochondrial inheritance. These can be seen in Table III. Our dot blots suggest that 
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clones #148 and #174 have a strong bias toward zygote gene expression based on their relative 

intensities to the subtracted probes versus the amoebae and plasmodial probes. Due to the lack of 

genetic information available on selective degradation of mtDNA in myxomycetes the proteins 

deemed as suspected in mitochondrial inheritance cannot be conclusively attributed to be 

involved in this mechanism. These proteins do however offer an intriguing possibility for the 

uniparental inheritance of myxomycete mtDNA. 

 Lysis protein E/ scaffolding protein D was uncovered in overlapping clones #148/209 

within the first subtracted library. Both lysis protein E and scaffolding protein D had nearly 

identical matches on BLASTp which is why they are both included in the characterization of 

clones #148 and #209. Lysis protein E was identified as a viral protein which functions to inhibit 

enzymatic activity of lipid synthesis. It is used by viruses to inhibit bacterial membrane synthesis 

and induce lysis of the cell (Uniprot P03639, 2019). Scaffolding protein D’s typical function is to 

pack viral DNA into mature capsids, indicating that it may have DNA binding and packaging 

abilities (Uniprot P69487, 2019). With respect to mitochondrial inheritance in myxomycetes, it is 

possible these proteins could have analogous functions to package mtDNA or inhibit lysis of 

mitochondrial membrane. 

 Another candidate for selective degradation of mtDNA is replication-associated protein A 

represented by clone #174. This protein has a zinc finger motif and possesses both DNA binding 

and endonuclease activity. When bound to dsDNA this protein can prevent hydrolysis from 

nuclease activity making it a strong candidate for both selective degradation and preservation of 

mtDNA (Uniprot P03631, 2019). In theory, this clone represents a protein capable of performing 

selective degradation by cleaving unwanted mtDNA and proliferating desirable mtDNA by 

protecting it from hydrolytic endonuclease activity.  
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 Lysis protein E, scaffolding protein D (clones #148/209) and replication associated 

protein A (clone #174) may represent novel myxomycete genes generated through viral 

horizontal gene transfer. Similar processes of horizontal gene transfer have been identified from 

viral to bacterial genomes (Lekunberri et al. 2017), involving a study which provides evidence of 

the transfer of antibiotic resistance genes from virus to bacteria. Myxomycetes are exposed to 

bacteriophages naturally by ingesting infected bacteria which could expose the organism to many 

viral genomes. Due to the differences in life strategies between myxomycetes and viruses it 

should be concluded that the proteins likely do not have the exact same functions in the two 

organisms. It is possible that D. iridis may have acquired genes from viral DNA which over time 

evolved to carry out selective degradation of mtDNA.    

Table III: Suspected mitochondrial inheritance proteins 

Clone #  

(ORF size) 

Protein shared domain Organism overlapped E value Possible function 

7 

(283 BP) 

Ribonuclease E (RNase 

E_G_superfamily) 

Saccoglossus kowalevskii  4e-05 Nuclease activity, cleaves 

ssRNA 

148/ 209 

(177/ 173 BP) 

Lysis protein E, external scaffolding 

protein D 

Xanthomonas citri, 

Numerous enterobactericiae 

phages 

3e-31, 3e-

29 

Induce cell lysis by 

inhibiting lipid synthesis 

174 

(248 BP) 

Replication-associated protein A Escherichia coli 

bacteriophage 

3e-59 Viral DNA replication; 

properties prevent 

hydrolysis by nucleases and 

DNA rep. prevention 

 

 

Ubiquitin-proteasome proteins:  

 A total of 8 proteins involved in the ubiquitin-proteasome pathway were uncovered from 

our SSH crosses and can been seen in Table IV. This was surprising since evidence for ubiquitin-

proteasome proteins have not previously been identified as being involved in zygote or 



33 
 

plasmodial development. Our dot blot experiment revealed 3 of the clones (#88, #332 and #366) 

to have a bias expression in plasmodia or amoebae cell types. It remains unclear if the ubiquitin-

proteasome proteins we obtained are stage specific or if they provide a specialized role in the 

amoebae-zygote transition. 

 One explanation for the increase of ubiquitin-proteasome proteins could be that during 

zygote development there is a need for the cell to recognize and degrade amoebae specific 

proteins. We know based on previous research that roughly 5% of genes are stage specific 

(T’Jampens et al. 1999) indicating that there may exist a plethora of amoebae specific proteins 

no longer needed for the cell. It would be advantageous for the cell to recycle these proteins by 

means of the ubiquitin-proteasome pathway. 

 Another explanation for the increase of ubiquitin-proteasome proteins could simply be in 

correlation to an increase of protein synthesis in general. Roughly 1 in 4 proteins synthesized are 

done so incorrectly and therefore get tagged for degradation (Zientara-Rytter and Subramani 

2019). During the zygote’s extended cell cycle there is a higher rate of protein synthesis than at 

any other point within its life cycle (Turnock et al. 1981). This suggests an increase in protein 

synthesis occurs during zygote development. The sheer increase in protein synthesis could 

indicate a functional need for the increase in ubiquitin-proteasome protein synthesis to mitigate 

improper folding of various other proteins synthesized at this stage.   
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Table IV: Ubiquitin-proteasome proteins 

Clone #  

(ORF size) 

Protein shared domain Organism overlapped E value Possible function 

63
i
 

(684 BP) 

Ubiquitin 4 (Ubq_superfamily) Physarum polycephalum 6e-149 Proteostasis 

88 

(528 BP) 

Ubiquitin 4 (ubq superfamily) Physarum polycephalum 8e-60 Ubiquitin proteasome 

pathway 

144 

(235 BP) 

Ankyrin repeat and SOCS box 

containing-8 

Homo sapien 0.0 – 

1e-180 

Ubiquitination/ protein 

degradation 

151/ 195 

(257/ 344 BP) 

SAM-dependent methyl transferase 

(AdoMet_MTases_superfamily) 

Acidobacteria bacterium 2e-39/ 

4e-50 

Methyl transfers/ 

ubiquitination probably 

153 

(254 BP) 

Histidine kinase Candidatus Fermentibacteria 3e-32 Signal transduction 

164 

(354 BP) 

26s proteasome regulatory sub unit 4 

homolog A-like 

Chenopodium quinoa 3e-71 Degrades misfolded/ 

ubiquitinated proteins 

197 

(187 BP) 

Ubiquitin-ligase like protein Tilletiopsis washingtonensis  3e-39 Involved in UBQ pathway, 

possible transfer or 

recruitment of UBQ ligase 

332 

(127 BP) 

BTB/POZ domain containing protein   Acanthamoeba castellanii 3e-12 Likely acts as a substrate 

specific adapter to E3 

ubiquitin ligase 

366 

(508 BP) 

Cullin 3 Dictyostellium discoideum 2e-92 Involved in ubiquitin 

protein ligase binding   
i 
Colors used to represent evolutionary lineages where green is mycetozoan and blue is amoebozoan 

 

Signal transduction proteins: 

 An irreversible developmental switch occurs during zygote formation which allows for 

the transformation of haploid amoebae into diploid zygotes. Plasmodia form from subsequent 

rounds of mitosis or by the fusion of other genetically identical zygotes or plasmodia. During the 

amoebae-plasmodia transition, the cell must be able to regulate changes in gene expression in a 

relatively short amount of time. The cell uses intracellular signal transduction to turn on 

plasmodial specific developmental pathways and turn off amoebae specific pathways.  

 Little is known about signal transduction in myxomycetes as it pertains to zygote 

development. We tested 11 signal transduction genes in our blots and observed 7 appearing to 

show a biased expression toward zygote or plasmodial cell types. The genes consisted of GTPase 
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domain proteins, transmembrane proteins, kinase domain containing proteins and other signal 

transduction elements (see table V). 

 We uncovered two transcription factors in our subtractions and tested them on our dot 

blots; this included sry-box protein 9 (clone #314) and tetrapeptide repeat homeobox (clone 

#171/ 189). Neither of the transcription factors showed a biased expression toward a cell stage 

based on our dot blot data. This did not meet predictions, as we expected to uncover plasmodial 

specific transcription factors. One explanation for the low number of transcription factors 

uncovered could be that transcription factors, when expressed, are done in low levels making 

them challenging to find. It is probable that transcription factors responsible for the amoebal-

plasmodial transition exist but were not found in this study.  

Table V: Signal transduction proteins/ transcription factors 

Clone #  

(ORF size) 

Protein shared domain Organism overlapped E value Possible function 

150
i
 

(336 BP) 

LIM-type zinc finger-containing 

protein/ arrestin domain-containing 

protein 

Dictyostellium discoideum 3e-40 Signal transduction, vacuole 

organization 

159 

(308 BP) 

hexose phosphate transport system 

regulatory protein 

Planoprotostelium 

fungivorum 

 

7e-27 Transmembrane protein 

involved in signaling 

166 

(196 BP) 

GPN-loop GTPase 2 Cavenderia fasciculata 1e-18 GTPase activity 

167 

(150 BP) 

EGF like domain Tieghemostelium lacteum 1e-09 Cell signaling, membrane 

receptor 

171/ 189 

(292/ 292 BP) 

Tetrapeptide repeat homeobox 1 Numida meleagris 7e-06/ 7e-

06 

Encode DNA binding 

proteins/ development 

184 

(436 BP) 

RapGAP/RanGAP domain-containing 

protein 

Heterostelium album  5e-81 GTPase activity activator, 

possibly developmental 

207 

(164 BP) 

S-layer homology domain-containing 

protein 

Paenibacillus agaridevorans  1e-04 Associated with cell wall, 

possibly structure or 

signaling 

208 

(282 BP) 

ras-related C3 botulinum toxin 

substrate 1-like 

Acanthaster planci 2e-60 G-protein activity, signal 

transduction and growth 

211 

(793 BP) 

 

Troponin L1  Homo sapiens 2e-132 Skeletal/ heart muscle 

protein 

215/ 216b 

(337/ 337 BP) 

Armadillo-type protein, Elongation 

factor 3 

Lobosporangium transversal, 

Ortierella verticillata 

9e-16, 7e-

16 

Interacts with DNA and 

usually binds to it or large 

proteins (ex. Helicases, 

ATPases) EF-3 is a protein 
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involved in ribosome 

synthesis 

314 

(250 BP) 

Sry-box protein 9 Eptatretus burger 7e-12 Transcription factor that 

controls many development 

processes 

329 

(142 BP) 

Protein phosphatase 2C domain  Acanthamoeba castellanii 7e-07 Cell signaling/ kinase 

activity 

333 

(275 BP) 

cystathionine-beta-synthase domain-

containing protein 

Acanthamoeba castellanii 8e-15 Regulates enzymatic 

activity 

353 

(109 BP) 

RHS repeat-associated core domain-

containing protein 

Alloactinosynnema album 4e-10 Highly conserved, many 

involved in secreted toxins 

or intercellular signaling 

369 

(113 BP) 

FYN/Yes-like tyrosine-protein kinase Planoprotostelium 

fungivorum 

1e-14 Intracellular signaling/ 

tyrosine kinase activity 

371 

(359 BP) 

protein serine/threonine kinase 

(PKC_like_superfamily) 

Tieghemostelium lacteum 2e-84 Cell signaling which effects 

metabolism, proliferation, 

growth 

386 

(190 BP) 

Rab GDP dissociation inhibitor alpha 

(NADB_Rossman_superfamily) 

 

Cavenderia fasciculata 

 

2e-33 Regulates the GDP/GTP 

exchange of Rab proteins by 

inhibiting dissociation of 

GDP 

390 

(89 BP) 

GCN20-type ATP-binding cassette 

protein GCN3, putative 

(SunT_superfamily) 

Entamoeba invadens IP1 1e-04 Transmembrane transporter  

391 

(111 BP) 

putative protein serine/threonine kinase 

(PKc_like_superfamily) 

Cavenderia fasciculate 

 

1e-12 Intracellular signaling 

kinase activity, possible 

cytoskeleton affiliation 

398 

(371 BP) 

sugar-binding protein & RHS repeat-

associated core domain-containing 

protein 

Alloactinosynnema album 

 

8e-07 Intercellular signaling  

i 
Colors used to represent evolutionary lineages where green is mycetozoan and blue is amoebozoan 

 

Proteins with unknown function and hypothetical proteins: 

 Of the 183 contigs characterized into protein ORF’s, 45 either matched only hypothetical 

proteins, or did not match any sequences in GenBank. This yielded 30 individual hypothetical or 

unmatched proteins after assembly of overlapping sequences. Due to the lack of myxomycete 

bioinformatics available about 29% of our sequenced libraries could not be characterized into 

known protein ORF’s despite having high quality sequencing reads. It is interesting to note that 

clones #21/162/178, #188, #194, #312, #313, #340, and #399 only matched hypothetically 

proteins belonging to the mycetozoa phylum or related amoebozoa. These contigs could indicate 

proteins novel to the mycetozoa taxa, as they don’t match any organisms outside of this lineage.  
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 We chose 13 unknown clones to test in our dot blots and limited our inclusion criteria to 

the largest ORF sizes along with matches to mycetozoan organisms. These clones can be found 

in table VI. Of the 13 proteins tested, 7 of them showed a biased expression toward zygote or 

plasmodial cell types (see dot blot analysis discussion). These clones could represent novel 

mycetozoan genes and appear to be regulated during zygote development.  

 

Table VI: Hypothetical proteins 

 
Clone #  

(ORF size) 

Protein shared domain Organism overlapped E value Possible function 

21/ 162/ 178 

(700 BP) 

Hypothetical protein, DOC2 Sphaeroforma arctica, 

Piromyces  

1e-29 “Extracellular serine rich”, 

homolog is Ca
2+

 dependent 

and used in exocytosis 

97
i
 hypothetical protein, 

 SNF2-related domain-containing 

protein 

Cavenderia fasciculate 1e-9, 5e-6 Microtubule organization or 

mitotic process 

188 

(360 BP) 

Hypothetical protein Acanthamoeba castellanii 2e-46 Many hits to myxomycetes, 

possibly specific to the 

phylum 

191 

(186, 178 BP) 

Hypothetical protein Stigmatella aurantiaca, 

burkholdia  

8e-14, 5e-

13 

Both organisms seem to 

have high resistance to 

antibiotics 

194 

(121 BP) 

Hypothetical protein Planoprotostelium 

fungivorum  

3e-04  

215/ 216a 

(337/ 337 BP) 

Hypothetical protein Planoprotostelium 

fungivorum 

3e-21  

312 

(101 BP) 

Hypothetical protein Acytostelium subglobosum  1e-09 - 

313 

(190 BP) 

Hypothetical protein Planoprotostelium 

fungivorum 

4e-03  

399 

(500 BP) 

hypothetical protein 

 

Dictyostelium discoideum  4e-16  

i
 Colors used to represent evolutionary lineages where green is mycetozoan and blue is amoebozoan 
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DNA binding proteins: 

 Three proteins of interest were identified as having DNA binding domains, which are 

valuable in identifying developmentally related genes because they possess key characteristics of 

both nucleases and transcription factors (Table VII). Due to the timing of zygote extraction and 

the nature of DNA binding proteins’ cellular function, these clones represent genes with a high 

probability of plasmodial development functions. It should also be noted that clones #148/209 

are also included as mitochondrial inheritance proteins. This was necessary because the clones 

had two different ORF’s containing low E-values. 

 

Table VII: DNA binding proteins 

 
Clone #  

(ORF size) 

Protein shared domain Organism overlapped E value Possible function 

148/ 209
i
 

(120/ 116 BP) 

DNA Binding protein Salmonella enterica 1e-15, 6e-

15 

DNA binding domain 

345 

(116 BP) 

DNA Binding Protein Pedobacter sp. 1e-15 DNA binding domain 

394/ 401i 

(546 BP) 

RGS-containing protein kinase RCK1  Cavenderia fasciculate 

 

7e-12 Kinase Domain, Zinc Finger 

 
i 
Colors used to represent evolutionary lineages where green is mycetozoan and blue is amoebozoan 

 

Dot blot analysis: 

 Dot blots (figures 10-13) were conducted to determine differential expression between 

plasmodial and amoebal cell types. A clone map is included in Table VIII. The level of intensity 

was scored by four individuals working in the Silliker lab and averaged (Table IX). A value of 0 

represents no signal while values 1-5 represent various intensities with 5 being the strongest 

signal observed on the blot. By using subjective scoring, it was possible to compare differential 

expression between the blots. An assessment for biased gene expression was attributed to 

amoebae, plasmodia or zygote. A clone was scored “n/a” if the intensity was minimal or showed 

no difference between probes. Biased expression was determined based on the relative intensities 
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each gene displayed in the various blots. A strong signal in the subtracted libraries compared to 

amoebae appears biased toward plasmodial or zygote gene expression while relatively consistent 

intensities was determined to be continuously expressed, or n/a. Out of the 48 genes blotted, 21 

appeared to exhibit differential gene expression. These are genes we believe to be expressed 

early during zygote development and could play a role in zygote differentiation and plasmodial 

development.  

 

Figure 10. Dot blot probed with amoebal cDNA: Competent amoebae mRNA was extracted 

and converted to cDNA where it was then labeled and hybridized following the DIG 

hybridization protocol. 

 

 

Figure 11. Dot blot probed with plasmodial cDNA: Plasmodial mRNA was extracted and 

converted to cDNA where it was then labeled and hybridized following the DIG hybridization 

protocol. 
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Figure 12. Dot blot sub 1, Zp(-A) probe: The subtracted library from sub. 1 was digested with 

RSA I for 1.5 hours prior to labelling to remove adapter sequences. The library was then labelled 

and hybridized using the DIG hybridization protocol. Darker clone spots indicate clones enriched 

in the subtracted library. 

 

 

Figure 13. Dot blot sub. 2, Za(-P) probe: The subtracted library from sub. 2 was digested with 

RSA I for 1.5 hours prior to labelling to remove adapter sequences. The library was then labelled 

and hybridized using the DIG hybridization protocol. Darker clone spots indicate clones enriched 

in the subtracted library. 
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Table VIII: Dot blot clone map: 

 1 2 3 4 5 6 7 8 9 10 11 12 

A - #63 #88 #144 #195 #164 #197 #332 #365 #23 #33 #73 

B #97 #171 #180 #184 #314 #324 #326 #17 #150 #7 #148 #174 

C #394 #331 #153 #167 #207 #208 #211 #329 #336 #369 #371 #28 

D #145 #157 #163 #168 #213 #219 #399 #307 #14 #361 #370 #193 

 

Table IX: Consolidated dot blot clone list 

Clone # Pos. Gene Am Zp(-A) Pl Za(-P) Biased Expression 

-
i
 A1 Profilin A  3.25 0 3 0.5 n/a 

63 A2 Ubiquilin 2 2 1 3 0.5 n/a 

88 A3 Ubiquilin 1 0.75 1 2.5 0.5 Plasmodia 

144  A4 Ankrin repeat/ SOCS box 

protein 

2.75 3.5 3 3.25 n/a 

195*
ii

 A5 SAM- dependent methyl 

transferase 

1.75 3.75 2.75 2.25 n/a 

164 A6 26s 41 proteasome 

regulatory subunit 

1.75 2.5 2.75 2.25 n/a 

197 A7 Ubiquitin- ligase like 

protein 

3.5 1.25 2.25 2 n/a 

332 A8 BTB/POZ containing 

protein 

1.75 3.25 1 1.25 Plasmodia 

365 A9 Cullin 3 2.25 1.5 1 1.5 Slight amoebae 

23* A10 Myosin binding protein C 2 3.25 1 2 Plasmodia 

33 A11 Actin-binding fragmin P 5 3.5 1.75 4.25 n/a 

73 A12 Beta actin 1.5 0.25 1.5 2.25 Zygote 

97 B1 NIMA related protein 

kinase 

2 0 1.75 1 n/a 

171* B2 Tetrapeptide repeat 

homeobox 

3 1.25 2.5 3.5 n/a 

180 B3 CAP-Gly containing linker 

protein 

2.25 1.25 3 2.25 n/a 

184 B4 RapGAP/ RanGAP protein 3 1.5 3 2.5 n/a 

314 B5 Sry-box protein 9 3 3.5 3.25 2.75 n/a 

324* B6 Tubulin polymerization-

promoting protein 

2.25 2.75 3.25 2.5 n/a 

326* B7 pericentrin 2 2 3 1.75 n/a 

17 B8 Elongation factor 1 

(control) 

1.25 1.5 1.75 2 n/a 
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150 B9 LIM-type zinc finger 

protein 

1.75 2.75 1.25 1.5 Plasmodia 

7 B10 Ribonuclease E 1 1.75 1.25 1.25 n/a 

148* B11 Lysis protein E/ external 

scaffolding protein D3 

0.75 3 1.5 3.25 Zygote 

174 B12 Replication- associated 

protein A 

0.25 3 1.25 4.25 Zygote 

394* C1 Kinase domain/ zinc finger 

protein 

0.5 0.5 1.5 2.25 Zygote 

331 C2 Inhibits serine proteases/ 

toxin 

1.5 2 1.5 3.25 Zygote 

153 C3 Histidine kinase 0.75 2.25 2 2.5 Zygote/ plasmodia 

167 C4 EGF-like domain protein 1 3.25 2 2.25 Zygote/ plasmodia 

207 C5 S-layer homology domain 

protein 

0.75 5 2.25 2.75 Zygote/ plasmodia 

208 C6 Ras-related C3 1 4.75 2 3 Zygote/ plasmodia 

211 C7 Ras/ GTPase domain 

protein 

1 3.25 1.75 2 Zygote/ plasmodia 

329 C8 Protein phosphatase 2C 

domain 

1 3.25 1.75 2 Zygote/ plasmodia 

336 C9 Rab1 family GTPase 1.75 3.25 1.25 2.25 Zygote/ plasmodia 

369 C10 FYN/Yes-like tyrosine 

kinase 

0.5 2 1 1.5 Plasmodia 

371 C11 Protein serine/ threonine 

kinase 

0 3.25 0.75 4 Zygote 

28 C12 - 0.25 4 1 4.25 Zygote/ plasmodia 

145 D1 - 0.25 0.25 1.75 1 n/a 

157 D2 - 1 1.25 2 3.25 Zygote 

163 D3 - 0.25 1.25 2.5 2.25 Zygote/ plasmodia 

168 D4 - 0.5 1.25 2.75 1.5 Plasmodia 

213 D5 - 1 3 2.5 2.25 Zygote/ plasmodia 

219 D6 - 1.25 2.25 2.75 2 n/a 

199 D7 - 1.25 1 2.5 2 n/a 

307 D8 - 1.25 1 2 2 n/a 

14 D9 - 1.5 2.25 1.75 3 Zygote/ plasmodia 

361 D10 - 1 1.25 1.75 1.75 n/a 

370 D11 - 0.25 0 1 1.25 n/a 

193 D12 - 0.25 3 1 2 Plasmodia 
i 
colors represent different functional groups of the clones where blue is ubiquitin, orange is cytoskeleton, 

yellow is miscellaneous, green is signaling, and purple is unknown. 

ii
 * represents clones that had at least one other clone assembled in a contig.  

Scores are an average of 4 independent analyses done in the Silliker lab.  

 

 The results of the dot blots scoring suggest that some of the genes may be differentially 

expressed but not all. Further testing such as RT-PCR should be done to determine differential 
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expression of these clones. Characterization based on database searches includes clones not 

included within the dot blots as well as ones that were represented. After characterization, 

protein homologs were grouped according to their known or predicted cellular function. The 

groups include developmental and cytoskeletal, mitochondrial inheritance, ubiquitin-proteasome, 

signal transduction, DNA binding and unknown. Clones related to metabolic, housekeeping or 

miscellaneous functions have been omitted from the results and discussion section. Appendix C 

contains a complete list of the ORFs analyzed.  

 

RT-PCR: 

 To verify differential expression, we performed an additional assay with clones that 

yielded no matches to the Genbank database. Three mRNA libraries were selected as templates 

to be tested with RT-PCR using primers designed specifically to flank the sequences of each 

clone. The mRNA libraries used were amoebae, zygote (containing some amoebae and 

plasmodia), and plasmodia. The differences of band intensity seen in the PCR products is 

associated with the level of gene expression seen at each stage for a particular clone (figures 14 

and 15). Clones #14, 58, and 213 showed a strong signal in all libraries, indicating that they 

represent genes expressed in multiple stages within the D. iridis lifecycle. Clone #50 displays a 

weak signal in amoebal, a weaker signal in zygote and a strong signal in plasmodial. This 

suggests a knockdown during the amoebae-zygote transition. This can also indicate the gene is 

important in plasmodial function. It is possible that this gene is expressed continuously but has 

an augmented use within plasmodia. Such myosin proteins could function in flagella motor 

proteins in amoebae and cytoplasmic streaming proteins in plasmodia.  
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 Clone #145 shows a weak signal within amoebal library, a strong signal within the zygote 

library, and a weak signal in plasmodial suggesting that it may encode a gene involved in the 

amoebae-plasmodia transition. Clone #163 shows a strong signal in amoebael libraries, no signal 

in zygote and a weak signal in plasmodial; this suggests that this gene may be knocked down 

during the amoebae-plasmodia transition due to its absence in the zygote library. Likewise, clone 

#168 also shows a strong signal in amoebae, no signal in zygote, and a weak signal in plasmodia. 

The PCR products between plasmodial and amoebal libraries however are different sizes. This 

may suggest that clone #168 may belong to a gene with multiple isotypes between the two cell 

stages. Such distinction between isotypes is not uncommon in myxomycetes as many 

cytoskeletal proteins contain distinct amoebal, plasmodial, or sporulation isotypes (Bailey et al. 

1995, Barrantes et al. 2012, T’Jampens et al. 1999). If the gene associated with clone #168 has 

conserved sequences between the amoebae and plasmodia isotypes then one could expect to see 

slightly different product sizes like we observe.  

 Clone #193 shows a strong signal in both amoebae and zygote libraries and a weak signal 

in plasmodia. This clone likely represents an amoebal gene that gets knocked down during or 

shortly after zygote development. Likewise, this clone contains an additional band within the 

plasmodia PCR products indicating it may also contain an isotype for both amoebae and 

plasmodia. 

 Limitations of our RT-PCR setup should be mentioned due to the ambiguity of our 

results. Since the zygote mRNA was not subtracted it contained genes from amoebae, zygote and 

plasmodial stages. Future experiments should include subtracted zygote cDNA libraries to obtain 

a more accurate depiction of zygote-specific genes. 
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Figure 14. RT-PCR (1): Each lane represents a different mRNA population exposed to primers 

associated with a particular clone. Smears near the bottom of the lanes indicate primer dimers 

and are not indicative of a positive PCR product. 

 

 

  

 

Figure 15. RT-PCR (2): Each lane represents a different mRNA population exposed to primers 

associated with a particular clone. Smears near the bottom of the lanes indicate primer dimers 

and are not indicative of a positive PCR product. 

 

 

 

Lane 

(top) 

Clone # 

(mRNA) 

Lane 

(bot.) 

Clone # 

(mRNA) 

1 1 kb+ 1 1 kb+ 

2 #14 (A) 2 #168 (A) 

3 #14 (Z) 3 #168 (Z) 

4 #14 (P) 4 #168 (P) 

5 #145 (A) 5 1 kb+ 

6 #145 (Z) 6 #193 (A) 

7 #145 (P) 7 #193 (Z) 

8 1 kb+ 8 #193 (P) 

9 #163 (A) 9 #213 (A) 

10 #163 (Z) 10 #213 (Z) 

11 #163 (P) 11 #213 (P) 

12 1 kb+ 12 1 kb+ 

Lane Clone # 

(mRNA) 

1 #50 (A) 

2 #50 (Z) 

3 #50 (P) 

4 1 kb+ 

5 #58 (A) 

6 #58 (Z) 

7 #58 (P) 

1    2   3   4    5    6    7   8    9  10  11  12 

  1   2    3    4    5   6   7 
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Conclusion: 

  

 The zygote cell stage represents a pivotal and understudied time point in the myxomycete 

life cycle. It is within this stage that an irreversible developmental transition from haploid 

amoebae into diploid plasmodia occurs. Changes in cytoskeleton composition, cellular signaling, 

and protein translation are coupled with mitochondrial DNA degradation, and nuclear DNA 

proliferation; all occurring simultaneously in a relatively short time period. Understanding this 

developmental transition is critical to discovering novel myxomycete genes related to plasmodial 

development. We have identified genes involved in cytoskeletal composition and rearrangement, 

cell signaling, ubiquitin-proteasome pathway proteins, and other DNA binding proteins 

potentially involved in mitochondrial inheritance or transcription. We have also identified genes 

involved in metabolism, housekeeping and miscellaneous functions that can be seen in appendix 

C. These proteins may be useful in other myxomycete studies. Many follow up experiments can 

be conducted using data gathered from this study including biochemical protein analysis, gene 

expression assays, RT-PCR, and RNA interference studies.  
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Appendix A: 

 

 

Figure 1. RSA digestion from zygote-amoebae subtraction sample: Following cDNA 

generation, our cDNA libraries were cut using the restriction enzyme RSA-I in order to obtain 

smaller DNA fragments. Successful digestion was indicated by smaller DNA fragments seen in 

the post RSA samples. 

 

 

 

 
 

 

Figure 2. Ligation efficiency from zygote-amoebae subtraction sample: DNA was ligated 

with specific adapters for SSH and the efficiency of the ligation was analyzed using PCR 

followed by gel electrophoresis. Primers specific to the adapters were used in lanes 1, 3, 6 and 8 

(PCR Primer 1) while primers located within transcripts were used in lanes 2, 4, 7 and 9. The 

profilin A gene was chosen based on previous data suggesting a high abundance in amoebae cell 

types. The G3PHD primers were provided with the kit and are flanking a gene known to be 

contained within transcripts in the control DNA. This image verifies a successful ligation of 

subtracted samples and an unsuccessful ligation of control samples. 

Lane DNA 

1 Tester pre RSA 

2 Tester post RSA 

3 1 kb marker 

4 Driver pre RSA 

5 Driver post RSA 

6 Control pre RSA 

7 Control post RSA 

Lane DNA Primers 

1 Driver PCR 1, Pro A up 

2 Driver Pro A up/ down 

3 Driver PCR 1, Pro A up 

4 Driver Pro A up/ down 

5 1kb marker - 

6 Control PCR 1, G3PHD 3’ 

7 Control G3PHD 3’, G3PHD 5’ 

8 Control PCR 1, G3PHD 3’ 

9 Control G3PHD 3’, G3PHD 5’ 

10 1kb marker - 

1        2        3       4        5       6       7 

1    2    3    4     5    6    7     8    9    10 
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Appendix B: 

 

 

 
 

Figure 1. DIG labelling efficiency: Labeled probes were blotted onto a nylon membrane and 

tested for adequate incorporation of DIG-labelled nucleotides. Row are subtracted 1, subtracted 

2, amoebae and plasmodia (top to bottom). Dilutions from left to right are (1:1, 1:10, 1:100, 

1:1,000, 1:10,000).  
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Appendix C: 

 

Table I: Complete list of annotated proteins 

 

Clone #  

(ORF size) 

Protein shared domain Organism overlapped E value Possible function 

5
i
 

(545 BP) 

* * * * 

7 

(283 BP) 

Ribonuclease E (RNase 

E_G_superfamily) 

Saccoglossus kowalevskii 

(acorn worm) 

4e-05 Nuclease activity, cleaves 

ssRNA 

10ii
 

(272 BP) 

P
i
rin domain (YhaK_superfamily) Acanthamoeba castellanii 

(amoebae) 

1e-56 DNA clustering, likely 

involved in transcription 

regulation 

14 

(646 BP) 

* * * * 

15 

(475 BP) 

Dehydrogenase/ metabolic 

(NADB_Rossman superfamily) 

Cavenderia fasciculate & 

Dictyostelium discoideum 

(cellular slime molds) 

5e-110 Metabolism 

17 

(392 BP) 

Elongation factor 1 

(Selb_superfamily) 

Clastoderma debaryanum 

(myxomycete) 

1e-77 Ribosome synthesis 

18/ 221iii 

(467/ 472 BP)  

Strictosidine synthase family protein Silene latifolia (flowering 

plant) 

3e-3 

 

Amine lyase that cleaves 

C-N bond and is used in 

alkaloid synthesis 

19 

(446 BP) 

Initiation factor 

(DEXDc_superfamily) 

Arabidopsis thaliana 

(angiosperm) 

9e-84 Ribosome translation 

20 

(706 BP) 

NAD(P)H Quinone oxoreductase 

(PIG3_family) 

Thamnocephalis 

sphaerospora (fungus) 

2e-45 Redox protein 

21/ 162/ 178 

(700 BP) 

Hypothetical protein, DOC2 Sphaeroforma arctica 

(multi-nucleated protist), 

Piromyces (obligate 

anaerobe that lacks mt) 

1e-29 “Extracellular serine 

rich”, homolog is Ca
2+

 

dependent and used in 

exocytosis 

23/ 80 

(461 /464 BP) 

 

Myosin binding protein C Homo sapiens (human) 1e-89 Heart muscle 

development 

24/ 202 

(422 / 608 BP) 

Phosphoketolase 

(XFP_C_superfamily) 

Amycolatopsis, 

(cyanobacteria) 

1e-82, 

2e-11 

Metabolism, lyase 

27 

(348 BP) 

Carboxylic ester hydrolase Cavenderia fasciculata 

(cellular slime mold) 

1e-18 Metabolic, often involved 

in detoxification of toxins 

28/ 50 

(504/ 519 BP) 

* * * * 

33 

(593 BP) 

actin-binding protein fragmin P Physarum polycephalum 2e-80 Cytoskeletal protein 

63 Ubiquitin 4 (Ubq_superfamily) Physarum polycephalum 6e-149 Proteostasis 
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(684 BP) 

65 

(177 BP) 

Pyruvate kinase Dictyostelium discoideum 1e-19 Metabolism 

73 

(828 BP) 

Beta actin 

(NBD_sugar_kinase_HSP70_actin 

family) 

Didymium squamulosum 4e-154 Cytoskeleton, plasmodia 

development 

76 

(413 BP) 

 phosphoribosylformylglycinamidine 

synthase  

Coremiostelium 

polycephalum 

9e-61 Metabolism, purine 

biosynthesis 

77 

(541 BP) 

Actin  Physarum polycephalum 6e-96 Cytoskeleton, plasmodia 

development 

88 

(528 BP) 

Ubiquitin 4 (ubq superfamily) Physarum polycephalum 8e-60 Ubiquitin proteasome 

pathway 

97 hypothetical protein, 

 SNF2-related domain-containing 

protein 

Cavenderia fasciculate 

(cellular slime mold) 

1e-9, 5e-

6 

Microtubule organization 

or mitotic process 

104 

(108 BP) 

Oxidoreductase molybdopterin 

binding domain (SO_family_moco 

superfamily) 

Acanthamoeba castellanii 

(amoebae) 

4e-24 Redox reactions 

111 

(123 BP) 

Glycine cleavage system protein R 

(ACT_superfamily) 

Candidatus 

Thiodiazotropha 

endoloripes (bacteria) 

3e-09 Breaks down glycine, 

located in mito 

139 

(121 BP) 

Cytochrome p450 

 

Pongo abelii (orangutan), 1e-08 Metabolism or drug detox 

140 

(184 BP) 

Extracellular matrix protein B Tieghemostelium lacteum 

(cellular slime mold) 

2e-22 Extracellular matrix 

organization; used by 

cellular slime molds as a 

prestalk protein 

143 

(235 BP) 

Xylulose-5-phosphate 

phosphoketolase 

Candidatus Rubidus 

massiliensis (bacteria) 

4e-25 Metabolism, lyase 

144 

(235 BP) 

Ankyrin repeat and SOCS box 

containing-8 

Homo sapien (human) 0.0 – 1e-

180 

Ubiquitination/ protein 

degradation 

145 

(447 BP) 

* * * * 

147 

(449 BP) 

FHA domain containing protein Acanthamoeba castellanii 

(amoebae) 

3e-69 Involved in cell growth 

regulation in 

mycobacteria and 

Arabidopsis 

148/ 209aiv
 

(177/ 173 BP) 

Lysis protein E, external scaffolding 

protein D 

Xanthomonas citri (gram 

neg. bacteria), Numerous 

enterobactericiae phages 

3e-31, 

3e-29 

Induce cell lysis by 

inhibiting lipid synthesis 

148/ 209b 

(120/ 116 BP) 

DNA Binding protein Salmonella enterica 

(gram neg. bacteria) 

1e-15, 

6e-15 

DNA binding domain 

150 

(336 BP) 

LIM-type zinc finger-containing 

protein/ arrestin domain-containing 

protein 

Dictyostellium 

discoideum 

(cellular slime mold) 

3e-40 Signal transduction, 

vacuole organization 

151/ 195 

(257/ 344 BP) 

SAM-dependent methyl transferase 

(AdoMet_MTases_superfamily) 

Acidobacteria bacterium 

(gram neg. bacteria) 

2e-39/ 

4e-50 

Methyl transfers/ 

ubiquitination probably 

153 

(254 BP) 

Histidine kinase Candidatus 

Fermentibacteria (gram 

pos. bacteria) 

3e-32 Signal transduction 
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157 

(669 BP) 

* * * * 

159 

(308 BP) 

hexose phosphate transport system 

regulatory protein 

Planoprotostelium 

fungivorum 

(Protosteliales) 

 

7e-27 Transmembrane protein 

involved in signaling 

160 

(302 BP) 

Clatherin heavy chain 

(Clathrin_superfamily) 

Acanthamoebae 

castellani (amoebae) 

7e-62 Vesicle coat 

161 

(455 BP) 

DNA Topoisomerase II Physarym polycephalum 3e-96 Cuts DNA strands 

(coiling) 

163 

(709 BP) 

* * * * 

164 

(354 BP) 

26s proteasome regulatory sub unit 4 

homolog A-like 

Chenopodium quinoa 

(angiosperm) 

3e-71 Degrades misfolded/ 

ubiquitinated proteins 

165 

(208 BP) 

Phosphoketolase family protein Streptomyces (gram pos. 

bacteria) 

5e-25 Metabolism 

166 

(196 BP) 

GPN-loop GTPase 2 Cavenderia fasciculata 

(cellular slime mold) 

1e-18 GTPase activity 

167 

(150 BP) 

EGF like domain Tieghemostelium lacteum 

(cellular slime mold) 

1e-09 Cell signaling, membrane 

receptor 

168 

(345 BP) 

* * * * 

170/ 172 

(425/ 425 BP) 

* * * * 

171/ 189 

(292/ 292 BP) 

Tetrapeptide repeat homeobox 1 Numida meleagris (avian) 7e-06/ 

7e-06 

Encode DNA binding 

proteins/ development 

173 

(199 BP) 

Structural maintenance of 

chromosome protein  

Tieghemostelium lacteum 

(cellular slime mold) 

2e-19 housekeeping 

174 

(248 BP) 

Replication-associated protein A Escherichia coli 

bacteriophage (viral) 

3e-59 Viral DNA replication; 

properties prevent 

hydrolysis by nucleases 

and DNA rep. prevention 

175 

(715 BP) 

Mitochondrial gene Plasmodiphora brassicae 

(parasitic plant) 

3e-05 

(nucleoti

de seq) 

Mt product, organism is 

multinucleated and 

infects plants 

177/ 182 / 205/ 

213/ 214/ 217/ 

218/ 219 

(403 BP) 

* * * * 

180 

(262 BP)   

CAP-Gly containing linker protein 1 Equus caballus (horse) 4e-37 (0 

for 

nucleotid

e) 

Microtubule 

rearrangement 

184 

(436 BP) 

RapGAP/RanGAP domain-

containing protein 

Heterostelium album 

(cellular slime mold) 

5e-81 GTPase activity activator, 

possibly developmental 

185 

(518 BP) 

1,4-alpha-glucan branching enzyme Dictyostellium 

discoideum (cellular 

slime mold) 

5e-117 Glycogen synthesis, 

metabolism 

186/ 193 

(734/ 773 BP) 

* * * * 
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187 

(459 BP) 

T-protein complex 1 Calanus helgolandicus 

(copepod) 

1e-07 

(nucleoti

de) 

Involved in protein 

folding 

188 

(360 BP) 

Hypothetical protein Acanthamoeba castellanii 

(amoebae) 

2e-46 Many hits to 

myxomycetes, possibly 

specific to the phylum 

190 

(235 BP) 

Aldo-keto reductase Acanthamoeba castellanii 

(amoebae) 

1e-24 Metabolism, reduces 

aldehyde to alcohol, 

detoxification? 

191 

(186, 178 BP) 

Hypothetical protein Stigmatella aurantiaca 

(myxobacteria), 

burkholdia (pathogen) 

8e-14, 

5e-13 

Both organisms seem to 

have high resistance to 

antibiotics 

192/ 199 

(736/ 761 BP) 

* * * * 

194 

(121 BP) 

Hypothetical protein Planoprotostelium 

fungivorum 

(Protosteliomycetes) 

3e-04  

196 

(554 BP) 

NAD+ dependent glutamate 

dehydrogenase 

Cavenderia fasciculate 

(cellular slime mold) 

2e-111 Carbon/ nitrogen 

metabolism, urea 

production 

197 

(187 BP) 

Ubiquitin-ligase like protein Tilletiopsis 

washingtonensis (fungus) 

3e-39 Involved in UBQ 

pathway, possible transfer 

or recruitment of UBQ 

ligase 

200 

(237 BP) 

Anthranilate 

phosphoribosyltransferase 

Acanthamoeba castellanii 

(amoebae) 

1e-28 Amino acid synthesis by 

transfer of ribose on 

aromatic compounds 

201 

(78 BP) 

phosphatidylinositide phosphatase 

SAC2-like 

Loxodonta africana 

(elephant) 

4e-04 Hydrolyzes phosphoric 

esters, metabolism 

204 

(204 BP) 

* * * * 

207 

(164 BP) 

S-layer homology domain-

containing protein 

Paenibacillus 

agaridevorans (gram neg. 

bacteria) 

1e-04 Associated with cell wall, 

possibly structure or 

signaling 

208 

(282 BP) 

ras-related C3 botulinum toxin 

substrate 1-like 

Acanthaster planci 

(starfish) 

2e-60 G-protein activity, signal 

transduction and growth 

210 

(464 BP) 

* * * * 

211 

(389 BP) 

Ras/GTPase domain containing 

protein 

Dictyostelium discoideum 

(cellular slime mold) 

1e-14 G-protein activity, signal 

transduction 

211 

(793 BP) 

 

Troponin L1  Homo sapiens (human) 2e-132 Skeletal/ heart muscle 

protein 

212/ 220 

(392/ 392 BP) 

* * * * 

213 

(404 BP) 

* * * * 

215/ 216a 

(337/ 337 BP) 

Hypothetical protein Planoprotostelium 

fungivorum (cellular 

slime mold) 

3e-21  
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215/ 216b 

(337/ 337 BP) 

Armadillo-type protein, Elongation 

factor 3 

Lobosporangium 

transversal (fungus), 

Mortierella verticillata 

(fungus) 

9e-16, 

7e-16 

Interacts with DNA and 

usually binds to it or large 

proteins (ex. Helicases, 

ATPases) EF-3 is a 

protein involved in 

ribosome synthesis 

     

301 
(186 BP) 

* * * * 

304 

(476 BP) 

Large ribosomal subunit Physarum polycephalum 1e-92 Protein synthesis 

305 

(740 BP) 

* * * * 

307 

(155 BP) 

 

cystathionine-beta-synthase domain-

containing protein  

Cavenderia fasciculata 

(cellular slime mold) 

3e-06 Regulates enzymatic and 

protein domains 

310 

(187 BP) 

uracil-DNA glycosylase  Acanthamoeba castellanii 

(amoebae) 

2e-04 Removes Uracil’s from 

DNA 

312 

(101 BP) 

Hypothetical protein Acytostelium 

subglobosum (cellular 

slime mold) 

1e-09 - 

313 

(190 BP) 

Hypothetical protein Planoprotostelium 

fungivorum (cellular 

slime mold) 

4e-03  

314 

(250 BP) 

Sry-box protein 9 Eptatretus burger 

(hagfish) 

7e-12 Transcription factor that 

controls many 

development processes 

315 

(345 BP) 

* * * * 

316 

(287 BP) 

* * * * 

317 

(230 BP) 

Adaptin earbinding coat-associated 

protein 2 

Acanthamoeba castellanii 

(amoebae) 

4e-35 Associated with 

transporting proteins or 

ions across the cell 

membrane 

320/ 359 

(343/ 343 BP) 

* * * * 

321/ 325/ 360 

(322/ 333/ 322 

BP) 

ADP-ribosylation factor 

(ras_superfamily) 

Heterostelium album 

(cellular slime mold) 

2e-55/ 

1e-37/ 

4e-54 

GTP domain protein, 

involved in vesicle 

transport and actin 

remodeling 

324 

(126 BP) 

tubulin polymerization-promoting 

protein family member 3 

Oryzias latipes (fish) 4e-12 Cytoskeletal proteins; 

microtubule bundling/ 

formation 

326/ 327 

(311/ 306 BP) 

pericentrin Homo sapiens (human) 4e-95/ 

2e-88 

Mitotic spindle 

organization, possibly 

involved in cell cycle 

progression 

328 

(270 BP) 

* * * * 
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329 

(142 BP) 

Protein phosphatase 2C domain  Acanthamoeba castellanii 

(amoebae) 

7e-07 Cell signaling/ kinase 

activity 

330/ 343 

(307/ 307 BP) 

delta-12 fatty acid desaturase Endogone sp. (fungus) 2e-54/ 

5e-62 

Involved in fatty acid 

synthesis 

331 

(710 BP) 

kazel-type serine proteinase inhibitor Bombus terrestris 

(bumble bee) 

1e-05 Inhibits serine proteases 

and can act as toxin 

332 

(127 BP) 

BTB/POZ domain containing protein   Acanthamoeba 

castellanii (amoebae) 

3e-12 Likely acts as a substrate 

specific adapter to E3 

ubiquitin ligase 

333 

(275 BP) 

cystathionine-beta-synthase domain-

containing protein 

Acanthamoeba castellanii 

(amoebae) 

8e-15 Regulates enzymatic 

activity 

336 

(346 BP) 

Rab1 family GTPase Planoprotostelium 

fungivorum (cellular 

slime mold) 

8e-33 Monomeric G protein; 

signal transduction 

338/ 354a 

(259 BP) 

major histocompatibility complex II 

beta chain-like protein, partial 

Brugia malayi 

(nematode) 

1e-4 Immune cell recognition 

complex 

338/ 354b 

(176 BP) 

ribosomal protein L19 Eimeria necatrix 

(parasitic protist) 

2e-9 Protein synthesis 

340 

(722 BP) 

* * * * 

342 

(211 BP) 

Acetyl-CoA carboxylase Dictyostelium purpureum 

(cellular slime mold) 

5e-19 Fatty acid synthesis 

345 

(116 BP) 

DNA Binding Protein Pedobacter (gram neg. 

bacteria) 

1e-15 DNA binding domain 

346 

(358 BP) 

Pyruvate decarboxylase 

(TPP_enzyme_PYR superfamily) 

Legionella spiritensis 

(gram neg bacteria) 

2e-59 Enzyme that converts 

pyruvate into Acetyl-CoA 

347 

(605 BP) 

cysteine desulfurase mitochondrial 

precursor (AAT_I superfamily) 

Planoprotostelium 

fungivorum 

(protosteiales) 

6e-90 Amino acid transferase, 

important in thiamine 

metabolism 

353 

(109 BP) 

RHS repeat-associated core domain-

containing protein 

Alloactinosynnema album 

(cellular slime mold) 

4e-10 Highly conserved, many 

involved in secreted 

toxins or intercellular 

signaling 

356 

(360 BP) 

* * * * 

361 

(743 BP) 

* * * * 

363 

(306 BP) 

* * * * 

364 

(237 BP) 

* * * * 

366 

(508 BP) 

Cullin 3 Dictyostellium 

discoideum (cellular 

slime mold) 

2e-92 Involved in ubiquitin 

protein ligase binding   

368 

(306 BP) 

* * * * 

369 

(113 BP) 

FYN/Yes-like tyrosine-protein 

kinase 

Planoprotostelium 

fungivorum 

(protosteiales) 

1e-14 Intracellular signaling/ 

tyrosine kinase activity 

370 * * * * 
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(402 BP) 

371 

(359 BP) 

protein serine/threonine kinase 

(PKC_like_superfamily) 

Tieghemostelium lacteum 

(cellular slime mold) 

2e-84 Cell signaling which 

effects metabolism, 

proliferation, growth 

372a 

(246 BP) 

Synaptic vesicle 2-related protein 

(DIOX_N_superfamily) 

Symbiodinium 

microadriaticum 

(dinoflagellate) 

2e-41 Transmembrane 

transporter activity 

372b 

(250 BP) 

2-oxoglutarate (2OG) and Fe(II)-

dependent oxygenase superfamily 

protein 

Klebsormidium nitens 

(green algae) 

4e-33 Citric acid cycle 

metabolism 

376 

(320 BP) 

* * * * 

377 

(285 BP) 

HAT repeat-containing protein  Heterostelium album  

(cellular slime mold) 

3e-06 Components of 

macromolecules involved 

in RNA processing; 

possibly protein-protein 

interactions 

378/ 388 

(221/ 206 BP) 

Trehalosephosphatase 

(PLN02205_superfamily) 

Acanthamoeba castellanii 

(amoebae) 

4e-12 / 

8e-13 

Cleaves phosphate group 

from trehalose-6-

phosphate; involved in 

increased desiccation 

resistance 

379 

(154 BP) 

pre-mRNA-splicing factor cwc2 

 

Cavenderia fasciculate 

(cellular slime mold) 

2e-26 Involved in pre-mRNA 

splicing; needed for cell 

growth and cell cycle 

progression 

386 

(190 BP) 

Rab GDP dissociation inhibitor 

alpha 

(NADB_Rossman_superfamily) 

 

Cavenderia fasciculata 

(cellular slime mold) 

2e-33 Regulates the GDP/GTP 

exchange of Rab proteins 

by inhibiting dissociation 

of GDP 

387 

(356 BP) 

NADPH-cytochrome-P450 

oxidoreductase 

 

Tieghemostelium lacteum 

(cellular slime mold) 

2e-75 Electron transfer from 

NADP to cytochrome 

p450; many downstream 

metabolic processes 

390 

(89 BP) 

GCN20-type ATP-binding cassette 

protein GCN3, putative 

(SunT_superfamily) 

Entamoeba invadens IP1 

(Protazoan reptile 

parasite) 

1e-04 Transmembrane 

transporter  

391 

(111 BP) 

putative protein serine/threonine 

kinase (PKc_like_superfamily) 

Cavenderia fasciculate 

(Cellular slime mold) 

1e-12 Intracellular signaling 

kinase activity, possible 

cytoskeleton affiliation 

392 

(133 BP) 

putative ribosomal protein L38 

(Ribosomal_L38e_superfamily) 

Planoprotostelium 

fungivorum 

 (Protosteliales) 

2e-14 Structural constituent of 

ribosome  

394/ 401 

(546 BP) 

RGS-containing protein kinase 

RCK1  

Cavenderia fasciculate 

(Cellular Slime Mold) 

7e-12 Kinase Domain, Zinc 

Finger 

398 

(371 BP) 

sugar-binding protein & RHS repeat-

associated core domain-containing 

protein 

Alloactinosynnema album 

(Gram positive bacteria) 

8e-07 Intercellular signaling  

399 

(500 BP) 

hypothetical protein 

 

Dictyostelium 

discoideum (slime mold) 

4e-16 Possibly specific to 

mycetazoa  



62 
 

iClone number of clones that contained strong sequence data and open reading frames 

iiColors used to represent evolutionary lineages where green is mycetozoan and blue is amoebozoan 

iiiClones containing overlapping transcripts were included in the same protein characterization and are shown using a /  

ivClones with denotations of “a” or “b” were used when two distinct proteins were identified to having comparably low e values  
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