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Introduction 
 Parasites are an important aspect of ecological communities, because they contribute to 

the overall biodiversity and structure of a community (Poulin, 2010a). The current estimation of 

parasite species indicates that parasites significantly contribute to the biodiversity of a 

community (≈40% of known species, Dobson, et al., 2008). Recent studies suggest that the 

number of existing helminth parasites is double the number of existing vertebrate hosts (Poulin 

& Morand, 2000; Dobson, et al., 2008). Also, parasites can alter community structure and 

function due to the behavioral impacts they have on their hosts (Mouritsen & Poulin, 2005; 

Wood, et al., 2007). Therefore, the study of parasite-host interactions is necessary to understand 

the mechanisms involved in sustaining the structure of natural communities. 

 Acanthocephalans, more commonly referred to as spiny- or thorny-headed worms, are 

trophically transmitted endoparasites (Kennedy, 2006). The taxonomic classification of the 

Acanthocephala has yet to be determined. The Acanthocephala is considered a phylum of its own 

by some researchers (Amin, 2013) and a clade within the Syndermata (syn. Rotifera) by others 

(Smales, 2015). The Acanthocephala includes 1,298 valid species (Amin, 2013; Smales, 2015), 

which are contained in four classes: Palaeacanthocephala (845 species, 65%), Eoacanthocephala 

(255 species, 20%), Archiacanthocephala (189 species, 15%) and Polyacanthocephala (4 species, 

<1%). The Palaeacanthocephala infect amphibians, birds, fishes, mammals, and reptiles as 

definitive hosts. Common definitive hosts for the Archiacanthocephala are birds and mammals. 

The Eoacanthocephala infect fishes and infrequently reptiles and amphibians as definitive hosts. 

Common definitive hosts for the Polyacanthocephala are reptiles and fishes (Amin, 1987). 

 Epizootiology is the spread of parasites through a host population (Nickol, 1985). In 

acanthocephalans, the general cycle of transmission, shown in Figure 1, uses an arthropod 

intermediate host and a vertebrate definitive host (Kennedy, 2006). Mature eggs are expelled 
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from the definitive host into the environment, which are then consumed by an intermediate host. 

Once ingested by the intermediate host the acanthor, or larval stage of the parasite, emerges from 

the egg and progresses through a series of developmental stages. The final stage of development 

(cystacanth) within the intermediate host is infectious to the definitive host. Transmission to a 

definitive host occurs when the predator consumes an intermediate host containing a cystacanth. 

The parasites reach sexual maturity within the definitive host and mature eggs are released into 

the environment by the definitive host where they can be consumed be an intermediate host 

(Nickol, 1985). 

Cystacanth 
               Intermediate host 

 

 

                                                                                   Definitive Host 
                         Egg                                                                           

Figure 1. Schematic diagram of acanthocephalan life cycle 
 

 I examined egg morphology, dispersal, and transmission in acanthocephalan parasites 

using phylogenetic and ecological approaches. I assessed variation in multiple aspects of 

acanthocephalan egg morphology, specifically shape and size, and demonstrated that these traits 

exhibit significant variation among and within classes. I also studied the evolution of egg fibrils 

within the Acanthocephala using the comparative method (Harvey & Pagel, 1991), and 

demonstrated that fibrils are likely homoplasies. Finally, I used laboratory experiments to 

examine factors associated with transmission of the acanthocephalan parasite Acanthocephalus 

dirus (Van Cleave, 1931) to its intermediate host Caecidotea intermedius and demonstrated that 

the presence of egg fibrils appears to favor transmission to the intermediate host through multiple 

routes. 
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CHAPTER 1: Egg morphology as a variable trait in the Acanthocephala 

 
ABSTRACT 

  Eggs of the Acanthocephala vary in morphology among and within taxonomic classes. 

To date, studies examining morphological variation have focused on the number of inner and 

outer membranes present, which can vary between three and five. This study focused on 

variation in multiple aspects of acanthocephalan egg morphology (shape, length, fibril presence, 

and polar prolongation presence) and demonstrated that these traits exhibit significant variation 

among and within classes. Given the diverse ecological factors that different acanthocephalan 

taxa encounter, I propose that some of this variation may be influenced by local selection 

pressures (e.g. habitat type, host biology). Finally, since variation in egg size and shape has been 

used as a trait in taxonomic keys, I examined the relative effectiveness of using egg shape and 

egg size as species identifiers. This analysis revealed that egg shape appears to be a more reliable 

indicator of species identity than egg size. 

 
INTRODUCTION 

 Acanthocephalans are endoparasites that infect arthropods as intermediate hosts and 

vertebrates as definitive hosts and are found in diverse habitats (freshwater, marine, terrestrial) 

throughout the world (Kennedy, 2006). Prior to infecting intermediate hosts, acanthocephalan 

eggs are released into the environment, by the definitive host, where they are transmitted to the 

intermediate host when the host feeds. Given the variation in habitat and host type, it is likely 

that selection pressures associated with these factors have shaped the evolution of egg 

morphology. Consistent with this prediction, several studies show that significant variation in 

egg morphology, specifically shape and size, occurs in acanthocephalans (Marchand, 1984; 
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Peters, et al., 1991; Taraschewski & Peters, 1992; Taraschewski, et al., 1992; Taraschewski, 

2000; Nikishin, 2001). In addition, this type of variation (shape, size, polar prolongation of the 

fertilization membrane) is incorporated into several taxonomic keys (e.g., Van Cleave, 1916, 

1918b, 1919; Amin, 1987; McDonald, 1988; Amin, et al., 2008). 

Despite the type of comparative evidence described above, the potential for egg 

morphology to be a trait that evolves in response to environmental factors has rarely been 

explored in acanthocephalans. Studies addressing this variation have typically focused on 

variation in the number of membranes present, which can vary between three and five 

(Marchand, 1984; Peters, et al., 1991; Taraschewski & Peters, 1992; Taraschewski, et al., 1992; 

Taraschewski, 2000; Nikishin, 2001). I examined the pattern of variation in the shape, size, egg 

fibrils, and membrane polar prolongation of acanthocephalan eggs using a representative sample 

of 165 valid taxa. 

The Acanthocephala includes 1,298 valid species (Amin, 2013; Smales, 2015), which are 

contained in four classes: Palaeacanthocephala (845 species, 65%), Eoacanthocephala (255 

species, 20%), Archiacanthocephala (189 species, 15%) and Polyacanthocephala (4 species, 

<1%). Common hosts that occur in each of the classes are as follows: Palaeacanthocephala – 

amphibians, birds, fishes, mammals, and reptiles; Archiacanthocephala - birds and mammals; 

Eoacanthocephala - fishes and infrequently reptiles and amphibians; Polyacanthocephala - 

reptiles and fishes (Amin, 1987). I reviewed the available literature, including all studies in 

which I could locate dimensions of eggs, to document the pattern of variation in egg shape and 

size, as well as presence of a fibril membrane and polar prolongation of the fertilization 

membrane. 
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MATERIALS AND METHODS 

Defining Aspects of Egg Morphology 

 Egg morphology in acanthocephalans, and other taxa, is typically estimated using 

measures of length and width to describe egg size and qualitative descriptions (e.g. ellipsoid, 

slender) to describe shape. In this study, egg length is measured as the distance between the top 

and bottom apex of the outermost membrane (Figure 1) and egg width is measured at the widest 

part of the egg, which corresponds with the mid-point of egg length (Figure 1). Egg shape is 

determined by the calculation of egg length to egg width ratio (known as an elongation ratio, 

Deeming & Ruta, 2014; or mean eccentricity, Sengupta, et al., 2011). In some cases, there is a 

pinching in of a membrane at both the anterior and posterior ends of the egg, which results in the 

rounding of the membrane at the two ends. This polar prolongation is frequently seen in the 

fertilization membrane of the egg, but has been illustrated in the outermost membrane in a few 

species (see Špakulová, et al., 2011). In addition to size and shape, there is variation in the 

number of membranes present (three to five) and the presence of a fibril membrane in 

acanthocephalan eggs. 

  
Documenting Variation  

 Information on egg shape (and size) of 165 acanthocephalan species was obtained from 

the literature for a representative sample of acanthocephalans. Literature searches were 

conducted with the databases JSTOR, Science Direct, and Biological Abstracts using several 

search terms (e.g., acanthocephalans, life cycle, egg morphology, egg shape, egg fibrils, new 

species) to identify papers that included taxonomic descriptions of any acanthocephalan species. 

In addition, papers cited in other studies that reviewed variation in egg morphology in 

acanthocephalans at a smaller scale were included (Marchand, 1984; Peters, et al., 1991; 
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Taraschewski & Peters, 1992; Taraschewski, et al., 1992; Taraschewski, 2000; Nikishin, 2001). 

For a taxonomic description to be used in the study, measures of both egg length and egg width 

had to be present. Additional information concerning egg morphology (membrane number, shape 

description, presence of fibril membrane, and presence of polar prolongations of the fertilization 

membrane) was also documented. 

To document the pattern of variation in egg morphology, I compared qualitative shape 

descriptions used in the literature and frequency plots of egg shape and size for members of each 

of the classes that contained data (Archiacanthocephala, Eoacanthocephala, 

Palaeacanthocephala). Measures of coefficient of variation (CV) were used to document the level 

of variation within classes. The CV measures variability among different groups accounting for 

the population mean (Gotelli & Ellison, 2013). Using the 165 acanthocephalans, I also 

determined whether there was a relationship between egg length (µm) and egg shape in each of 

the three major classes. 

Given that egg shape descriptions and egg size have been included in taxonomic studies 

of acanthocephalans, I also examined which of the two traits was the more reliable indicator of 

species identity. To achieve this goal, I examined the level of variation in each trait using within-

species comparisons. For this analysis, information from the same study on size and shape in 

multiple populations was identified for three species (Acanthocephalus dirus, Amin, 1984; 

Moniliformis moniliformis, Suriano, et al., 2000; Southwellina hispida, García-Varela, et al., 

2012). For these taxa, I calculated values of the CV for egg length and elongation ratio. I then 

visualized the relationship between the two measures by plotting the CV values for egg length 

against the CV values for elongation ratio. If the two measures are equally viable as species 

identifiers then the plotted values should fall on or close to a line with a slope of 1 (i.e., the 
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within-species variation would be similar within each species). In contrast, if the CV values 

differ between the variables then the plotted values would deviate from the line. Deviations that 

are consistent in direction (e.g., all above the line) indicate that one measure is consistently more 

variable than the other. I also calculated the ratio of CV values (size CV / shape CV) and 

compared these values to an expected value of 1 using a one-sample t-test. 

 
RESULTS 

 I collected information on egg morphology for 165 species, which represents 

approximately 13% of the total number of acanthocephalan species. For the group included in 

this study, there were 126 members of the Palaeacanthocephala (76%), 23 members of the 

Eoacanthocephala (14%), 16 members of the Archiacanthocephala (10%) and no members of the 

Polyacanthocephala (0%). These percentage values are relatively consistent with the distribution 

of species among acanthocephalan classes (see Introduction, Amin, 2013; Smales, 2015). All egg 

morphology information collected, including egg membrane number, average egg length, 

elongation ratio, shape description, presence of fibril membrane and polar prolongation of the 

fertilization membrane, can be seen in Appendix 1. 

 Table 1 summarizes qualitative egg shape descriptions in the Acanthocephala. Of the 165 

species examined, egg shape was described in the literature for 55 species (33%). Within each 

class, shape descriptions were available for 12.5% of the Archiacanthocephala (2/16), 61% of the 

Eoacanthocephala (14/23) and 31% of the Palaeacanthocephala (39/126). Egg descriptions for 

members of the Archiacanthocephala were all ellipsoid, whereas egg descriptions for members 

of the Eoacanthocephala and Palaeacanthocephala varied. Eggs from members of the 

Eoacanthocephala were most frequently described as ‘ovoid’ or ‘oval’. In contrast, eggs from 
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members of the Palaeacanthocephala were most frequently described as ‘fusoid’ or ‘fusiform’ 

(Table 1). 

 Figure 2 shows egg shapes associated with common elongation ratios (Figure 2a) and 

summarizes egg length (µm) and egg shape (elongation ratio) variation in the Acanthocephala 

(Figure 2b). The figure illustrates that there is considerable variation in both shape and size 

among acanthocephalan eggs and that the pattern of variation differs between the two measures 

(Figure 2b). In the Archiacanthocephala, egg shape measurements are clustered together in five 

size classes and have a CV of 0.18. Whereas, egg length measurements in the 

Archiacanthocephala are spread over nine size classes and have a CV of 0.33. In the 

Eoacanthocephala, egg shape measurements span twelve size classes and a CV of 0.27.  

Eoacanthocephalan egg length measures have a CV of 0.49 and are separated in to two different 

clusters with the smaller size cluster having a higher frequency than the larger size cluster. The 

Palaeacanthocephala displays the greatest variation in egg shape with a CV of 0.35. Egg length 

measurements in the Palaeacanthocephala have a CV of 0.35 and the size frequencies appear to 

be bi-modal with the peaks occurring at 70µm and 110µm (Figure 2b). 

 To examine whether there was a relationship between egg size (length, µm) and egg 

shape (ER) in each of the three major classes of the Acanthocephala, I plotted egg size (length, 

µm) versus egg shape (ER) for each species of the three major classes (Figure 3). In the 

Archiacanthocephala, the correlation coefficient for egg size and egg shape was 0.2 (P > 0.05). 

The Eoacanthocephala had the lowest correlation coefficient of the three classes, at -0.11 (P > 

0.05). The correlation coefficient for egg length and egg shape in the Palaeacanthocephala was 

0.46 (P < 0.001). Thus, egg length and egg size were correlated in the Palaeacanthocephala, but 

not in the Archiacanthocephala and the Eoacanthocephala.  
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Figure 1. System used to measure egg size (length, width) and egg shape (elongation ratio = ER). 

For the example shown ER = 3.00. 
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Table 1. Qualitative shape descriptors most frequently used to describe eggs in the 

Acanthocephala. The number of taxa that belong to each class out of the 165 used in this study 

and the numbers of taxa with shape descriptions are indicated. Bold designates the most 

frequently used shape descriptor per class. Species included are representative of the major 

classes of the Acanthocephala (Archiacanthocephala, Eoacanthocephala, and 

Palaeacanthocephala). 

Class No. of 
Taxa (%) 

No. in 
Category Shape Descriptors 

Archi- 16(10) 0 
2 
0 
0 

- Ovoid (oval, elongated oval, elongate ovoid) 
- Ellipsoid (elliptical, ellipsoidal, elongate ellipsoid) 
- Fusoid (fusiform, elongate fusiform, slender fusiform) 
- Other (oblong, elongate, elongated, slender, spindle-shaped) 

    
Eo- 23(14) 7 

3 
2 
2 

- Ovoid (oval, elongated oval, elongate ovoid) 
- Ellipsoid (elliptical, ellipsoidal, elongate ellipsoid) 
- Fusoid (fusiform, elongate fusiform, slender fusiform) 
- Other (oblong, elongate, elongated, slender, spindle-shaped) 

    
Palae- 126 (76) 10 

8 
13 
8 

- Ovoid (oval, elongated oval, elongate ovoid) 
- Ellipsoid (elliptical, ellipsoidal, elongate ellipsoid) 
- Fusoid (fusiform, elongate fusiform, slender fusiform) 
- Other (oblong, elongate, elongated, slender, spindle-shaped) 
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Figure 2. a) Egg shapes corresponding with common elongation ratios, egg length is 

standardized in the image to emphasize shape. Elongation ratios are: A=1.50, B=3.00, C=4.50, 

D=6.00, E=3.60 with polar prolongations. b) Quantitative frequency distribution of egg shape 

(elongation ratio) and egg length (µm) for acanthocephalan taxa (n=165). Species included are 

representative of the major classes of the Acanthocephala (Archiacanthocephala, 

Eoacanthocephala, and Palaeacanthocephala).   
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Figure 3. Relationship between egg size (length, µm) and egg shape (ER) in three classes of the 

Acanthocephala (Archiacanthocephala - 16 species, Eoacanthocephala - 23 species, and 

Palaeacanthocephala - 126 species). Correlation coefficients are reported for each class.  
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 To determine the within-species variation in measures of egg shape and egg length, I 

plotted the CV values for each variable and compared the locations of the plotted values to a 

slope of 1 (dashed line, Figure 4). As can be seen in the figure, values deviated from the dashed 

line in a consistent manner. These values were located above the line indicating that there was a 

higher level of within-species variation in egg length than egg shape. Consistent with this pattern, 

the ratio of CV values differed from the expected value of 1 (one sample t-test, t = 9.2, df= 2, P = 

0.01). Thus, elongation ratio is likely a more robust indicator of species identity than egg length. 

 
DISCUSSION 

 This study is the first to document pattern of variation in multiple aspects of egg 

morphology in the Acanthocephala (Appendix 1). The results obtained indicate that that there is 

considerable variation in both egg shape and size among the major acanthocephalan classes 

(Figure 2). Egg shape and length variation are smallest in the Archiacanthocephala (CV of 0.18, 

0.33 respectively). The greatest variation in egg shape was displayed in the Palaeacanthocephala 

(CV of 0.35), whereas the greatest variation in egg length was displayed in the Eoacanthocephala 

(CV of 0.49). Variation in egg size and shape were correlated in the Palaeacanthocephala but not 

in the Eoacanthocephala or Archiacanthocephala (Figure 3) and members of the 

Palaeacanthocephala are found in a wide variety of aquatic and terrestrial habitats (Nikishin, 

2001). This type of diversity may indicate that local selection pressures influenced the evolution 

of egg morphology in acanthocephalans (Marchand, 1984; Peters, et al., 1991; Taraschewski & 

Peters, 1992; Taraschewski, et al., 1992; Nikishin, 2001). The correlation identified between egg 

length and shape in the Palaeacanthocephala may also indicate that selection has acted in 

different ways in the three classes studied. Future studies are required to determine the relative 

importance of ecological and evolutionary factors to egg shape variation in acanthocephalans. 
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Figure 4. A comparison of within-species variation in egg shape and egg size. Data shown are 

for three species, which represent two classes (Palaeacanthocephala - A. dirus and S. hispida, 

Archiacanthocephala - M. moniliformis). Values above the dashed line indicate greater within-

species variation in one trait. Based on this plot, egg length is consistently more variable than 

egg shape. 
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 This study also revealed that published descriptions of egg shape can be inconsistent. For 

example, eggs with almost identical dimensions are described as elliptical in one study and 

fusiform in another (Acanthocgyris tripathi, 29 x 14.5mm, Rai, 1967; Floridosentis mugilis, 30 x 

15mm, Suriano, et al., 2000). There are also inconsistencies with the terminology used to 

describe egg shape in the Acanthocephala. Shape descriptors like ellipsoid, fusiform, and 

elongate fusiform have been used frequently to describe egg shape in acanthocephalans. In these 

descriptions, fusiform has larger length to width ratios than ellipsoid eggs. All three of these 

descriptors can be applied effectively to the Acanthocephala because the eggs are symmetrical in 

both axes (vertical and horizontal). Another descriptor that is often used is ‘ovoid’ (or ‘oval’), 

which is problematic because it refers to a shape that is near spherical (or globoid) with an 

asymmetry at its short axis (e.g., chicken egg, Paganelli, et al., 1974). Acanthocephalan eggs, 

unlike eggs in several other taxa, are generally symmetrical on both axes (e.g., Uznanski & 

Nickol, 1976; Barger & Nickol, 1998; Amin, et al., 2009; Arredondo & Gil de Pertierra, 2009; 

Amin, et al., 2011, 2014). It should be noted that using egg descriptions and measurements from 

the literature might be imprecise due to different preservation techniques and the egg’s 

developmental stages. Given these constraints, relative measures (egg shape) are more likely to 

be consistent than absolute measures (egg length). 

 In the literature, egg size and shape have been used in combination with other traits, to 

identify acanthocephalans (e.g., Van Cleave, 1916, 1918b, 1919; Amin, 1987; Amin, et al., 2008; 

McDonald, 1988). The analysis of within-species variation in egg size and egg shape shows that 

egg shape is likely a more robust indicator of species identity than egg size because it was less 

variable among populations (Figure 4). Consistent with this relationship, it appears that egg size 

exhibits plasticity in response to host traits (e.g., Amin, 1984). In addition, competition among 
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adult acanthocephalans can influence body size (Dezfuli, et al., 2002), which is correlated with 

egg size (Poulin, et al., 2003). Given this type of variation, I suggest that egg shape (using 

elongation ratio) should be given priority in taxonomic descriptions over egg size in the 

Acanthocephala.
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Appendix I. Egg characteristics of the 165 acanthocephalan species included in the study compiled from the literature**. Egg membrane number was included 
for reference since it is often reported with size measurements. M= membrane number, L= egg length (µm), ER= elongation ratio, F=fibril membrane, P= polar 
prolongation of middle membrane * denotes references that provided original shape description. In 12 of the species shown, data were recovered from studies in 
which synonyms were reported (A. dirus [syns. A. jacksoni, A. parksidei]; C. longilemniscatus [syn. C. peposacae]; D. chandleri [syn. R. tenuicornis]; G. 
medius [syn. R. medius]; I. dimorpha [syn. S. dimorpha]; M. africanus [syn. E. segmentatus]; N. nudus [syn. D. nudus]; O. pardalis [syn. E. pardalis]; P. bazae 
[syn. E. bazae]; P. brevis [syn. A. brevis]; P. bulbocaudatus [syn. E. bulbocaudatus]; P. caspanensis [syn. A. caspanensis]). **Information on P. laevis was 
provided through personal communication with Sophie Labaude. 
Class Genus Species M L ER Shape Description F P Reference(s) 
Archi- Macracanthorhynchus M. hirudinaceus 4 98 1.85 - - - Kates, 1943  
  M. ingens 3 94 1.66 Elliptical - - von Linstow, 1879*; Richardson, 2014 
 Mediorhynchus M. africanus - 87 1.74 - - - Southwell & Macfie, 1925 
  M. centurorum 4 55 1.53 - - - Nickol, 1969, 1977 
  M. colluricinclae - 51.5 1.34 - - - Smales, 2002b 
  M. grandis 4 47.5 1.86 - - - Van Cleave, 1924; Schmidt, 1973a 
  M. orientalis - 53 2.12 - - - Smales, 2002b 
  M. papillosus - 42.5 2.02 - - - Van Cleave, 1918b 
  M. robustus - 38 2.38 - - - Van Cleave, 1918b; Smales, 2002b 
  M. textori - 62.5 1.54 - - - Smales, 2002b 
  M. wardi - 52 1.68 - - - Smales, 2002b 
 Moniliformis M. cestodiformis 4 85 1.73 - - - Van Cleave, 1924 
  M. clarki 4 75 2.42 - - - Van Cleave, 1924; Crook & Grundmann, 1964 
  M. dubius 4 116 2.00 Elliptical - - Moore, 1946* 
  M. moniliformis 4 75 2.42 - - - Van Cleave, 1924 
 Oligacanthorhynchus O. pardalis - 58 1.45 - - - Southwell & Macfie, 1925  
Eo- Acanthogyrus A. tripathii - 29 2.00 Elliptical - - Rai, 1967* 
 Floridosentis F. mugilis - 30 2.00 Fusoid - - Suriano, et al., 2000* 
 Gracilisentis G. gracilisentis - 38 3.80 Spindle-shaped - - Van Cleave, 1919* 
 Neoechinorhynchus N. agilis 4 33.5 2.48 Elliptical - - Van Cleave, 1919* 
  N. australis - 33 3.00 - - - Van Cleave, 1931 
  N. bryanti - 37.2 2.30 Elongate, ovoid - - Smales, 2013*  
  N. crassus - 35 2.50 - - - Van Cleave, 1919 
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Class Genus Species M L ER Shape Description F P Reference(s) 
Eo- Neoechinorhynchus N. cristatus 4 56 2.07 - - - Uglem, 1972 
  N. cylindratus - 50 2.78 - - - Van Cleave 1919, 1921, 1924 
  N. emydis 3 25 1.39 Oval - - Van Cleave, 1919*, 1924*; Hopp, 1954* 
  N. rutili 3 27 1.80 Oval - - Van Cleave, 1919*; Merritt & Pratt, 1964  
  N. saginatus 4 45 2.50 - - - Uglem & Larson, 1969 
  N. schmidti - 36 2.40 Ovoid - - Barger, et al., 2004* 
  N. spiramuscularis - 33.5 4.19 Fusiform - Y Amin, et al., 2014* 
  N. tenellus - 41 2.28 - - - Van Cleave, 1919 
 Octospinifer O. macilentus 3 38.5 2.33 Elliptical - - Van Cleave, 1919; Harms, 1965* 
 Octospiniferoides O. chandleri - 42 3.50 Slender - - Scholz, et al., 1996* 
 Pallisentis P. nagpurensis 3 92 1.92 Oval - - George & Nadakal, 1973* 
  P. panadei - 90 2.02 Elongated oval - - Rai, 1967* 
  P. rexus 4 107 2.55 - - - Wongkham & Whitfield, 2004 
 Paulisentis P. fractus - 41 1.95 Ovoid - - Cable & Dill, 1967* 
 Raosentis R. thapari - 39.5 1.88 - - - Rai, 1967 
 Tanaorhamphus T. longirostris - 27 3.00 - - - Van Cleave, 1919 
Palae- Acanthocephaloides A. propinquus - 57.5 3.83 - - Y Kvach & Oǧuz, 2010 
 Acanthocephalus A. bufonis - 77.5 2.74 Ellipsoidal Y - Smales, 2005* 
  A. caspanensis - 63.75 2.75 - - - Smales, 2007 
  A. clavula - 105 4.57 - - - Amin, et al., 2008* 
  A. correalimai - 63.75 2.77 - - - Smales, 2007 
  A. dirus 4 99 7.33 - Y Y Amin, 1984; Bullock, 1962 
  A. falcatus - 80.5 4.24 Oval - - Amin, et al., 2008* 
  A. lucii - 62.4 6.06 Elongate Fusiform - - Amin, et al., 2011* 
  A. ranae 3 96 5.65 Fusiform - - Van Cleave 1919; Amin, et al., 2008*; 

Heckmann, et al., 2011 
  A. rhinensis - 90 5.45 Slender Fusiform - Y Amin, et al., 2008* 
  A. saopaulensis - 95.7 3.22 Ellipsoidal Y - Smales, 2007* 
  A. saurius - 43 3.31 - - - Smales, 2007 
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Class Genus Species M L ER Shape Description F P Reference(s) 
Palae- Acanthocephalus A. tahlequahensis - 72 5.33 - Y Y Oetinger & Buckner, 1976 
  A. ula - 65 3.25 - - - Smales, 2007 
 Andracantha A. mergi - 47 2.35 Oval - - McDonald, 1988* 
  A. phalacrocoracis - 92 2.00 Oval - - McDonald, 1988* 
 Arhythmorhynchus A. brevis 3 76 3.26 - - Y Van Cleave, 1916, 1918b 
  A. pumiliorostris 3 77 4.28 - - Y Van Cleave, 1916, 1918b 
 Bolbosoma B. capitatum - 136 5.44 Fusiform - Y Pinto, et al., 2004* 
 Cathayacanthus C. spinitruncatus - 64.5 4.45 Oblong - Y Amin, et al., 2014* 
 Centrorhynchus C. albidus - 42 2.10 - - - Lunaschi & Drago, 2010 
  C. asturinus - 55 2.50 - - - Southwell & Macfie, 1925 
  C. chabaudi - 60 2.61 - - - Smales, et al., 2017 
  C. clitorideus - 42.5 2.02 - - - Smales, et al., 2017 
  C. crotophagicola - 50 2.38 - - - Lunaschi & Drago, 2010 
  C. gendrei - 32.5 1.55 - - - Smales, et al., 2017 
  C. guira - 58 2.19 Elongated - - Lunaschi & Drago, 2010* 
  C. kuntzi - 50.5 2.73 - - - Lunaschi & Drago, 2010 
  C. mariauxi - 45 2.05 - - - Smales, et al., 2017 
  C. microcephalus - 57 2.19 - - - Lunaschi & Drago, 2010 
  C. polymorphus - 47 1.81 - - - Lunaschi & Drago, 2010 
  C. sarehae - 52.3 2.11 Ovoid - - Smales, et al., 2017* 
  C. spinosus - 51 2.13 - - - Van Cleave, 1924 
 Corynosoma C. australe - 103.5 3.00 - - - Sardella, et al., 2005 
  C. cetaceum - 162.5 3.19 - - Y Sardella, et al., 2005 
  C. enhydri - 138.5 2.33 - - - Neiland, 1962 
  C. falcatum - 81 3.77 - - Y Van Cleave, 1953 
  C. hadweni - 104 3.78 - - Y Van Cleave, 1953 
  C. longilemniscatus - 66 3.77 - - - McDonald, 1988 
  C. peposacae - 66 3.77 - - - McDonald, 1988 
  C. semerme - 90 4.00 - - - McDonald, 1988 
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Class Genus Species M L ER Shape Description F P Reference(s) 
Palae- Corynosoma C. strumosum - 90 4.74 - - - McDonald, 1988 
  C. sudsuche - 68 2.72 - - - McDonald, 1988 
  C. validum - 103 3.81 - - - Van Cleave, 1953 
  C. villosum - 119 4.25 - - Y Van Cleave, 1953 
 Dollfusentis D. chandleri - 70 5.83 - - Y Van Cleave, 1918a, 1919 
 Echinorhynchus E. coregoni - 71 3.84 - - Y Van Cleave, 1919, 1921, 1924 
  E. gadi 4 76 5.85 - - - Van Cleave, 1924 
  E. lageniformis 4 90 4.50 - Y Y Olson & Pratt, 1971 
  E. salvelini - 140 6.22 - - Y Van Cleave, 1919 
  E. truttae 3 125 5.00 - - Y Awachie, 1966 
 Fessisentis F. fessus 4 117.5 7.12 Elongate - Y Van Cleave, 1931; Nickol, 1972* 
  F. vancleavei 4 75.5 5.39 - - Y Buckner & Nickol, 1978 
 Filicollis F. anatis 3 64.9 3.31 - - - McDonald, 1988 
  F. trophimenkoi - 101 3.11 - Y - McDonald, 1988 
 Filisoma F. indicum - 52.5 3.75 Elliptical - Y Amin, et al., 2014* 
  F. longcementglandatus - 46.5 2.91 Fusiform - Y Amin & Nahhas, 1994* 
 Gorgorhynchoides G. indicus - 95 3.45 Oval - - Bhattacharya & Banerjee, 2003* 
 Gorgorhynchus G. medius - 75 3.13 - - - Van Cleave, 1918a 
 Ibirhynchus I. dimorpha - 98 1.63 - - Y Schmidt, 1973b 
 Isthmosacanthus I. fitzroyensis - 107.5 2.56 - Y Y Smales, 2012 
 Koronacantha K. mexicana - 69 4.60 Elongate Fusiform - Y Monks & Perez-Ponce de Leon, 1996* 
  K. pectinarius - 76.5 3.83 Elongate Fusiform - Y Monks, et al., 1997* 
 Leptorhynchoides L. thecatus 4 87.5 3.89 Spindle-shaped Y Y DeGuisti, 1949*; Barger & Nickol, 1998 
 Neorhadinorhynchus N. nudus - 38.5 3.85 Fusiform - Y Hassanine, 2006* 
 Plagiorhynchus P. allisonae - 142 4.19 - - Y Smales, 2002a 
  P. cylindraceus 3 77.9 2.35 Oval - - McDonald, 1988* 
  P. gracilis 3 65 2.50 Oval - - McDonald, 1988* 
  P. menurae - 124 3.18 - - Y Smales, 2002a 
 Polymorphus P. actuganensis - 113.5 6.31 - - - McDonald, 1988 
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Class Genus Species M L ER Shape Description F P Reference(s) 
Palae- Polymorphus P. cincli - 115.5 5.37 - - - McDonald, 1988 
  P. contortus - 105 6.18 - - - McDonald, 1988 
  P. diploinflatus - 108.5 5.56 - Y - McDonald, 1988 
  P. kostylewii - 125 7.02 - - - McDonald, 1988 
  P. marilis - 111 7.66 - - P Van Cleave, 1939; McDonald, 1988 
  P. meyeri - 102 5.67 - - - McDonald, 1988 
  P. minutus 3 45 3.00 - Y Y Nicholas & Hynes, 1963; McDonald, 1988 
  P. obtusus - 70 3.18 Oblong - Y Van Cleave, 1918b, 1924; McDonald, 1988* 
  P. paradoxus - 112.5 5.63 - - - McDonald, 1988 
  P. phippsi - 125 5.32 - - - McDonald, 1988 
  P. pupa - 136 3.68 Elongate - Y McDonald, 1988* 
  P. spindlatus - 102.5 3.36 Elongate - Y Amin & Heckmann, 1991* 
  P. trochus - 79.5 4.68 - - Y Van Cleave, 1945a 
 Pomphorhynchus P. bulbocolli - 68 6.48 - - - Van Cleave, 1919, 1924 
  P. laevis 3 106.5 5.92 - - Y Labaude, S. (personal communication) 
  P. patagonicus - 196 6.53 - - Y Trejo, 1992 
  P. spindletruncatus - 80 5.71 Fusiform Elongate - Y Amin, et al., 2003* 
  P. tereticollis - 110.5 6.31 - - Y Spakulova, et al., 2011 
 Porrorchis P. bazae - 78 1.90 - - - Southwell & Macfie, 1925 
  P. bulbocaudatus - 60 3.00 - - - Southwell & Macfie, 1925 
 Profilicollis P. altmani 3 65 2.50 Oval - - Perry, 1942; McDonald, 1988* 
  P. arcticus - 140.5 3.96 Elliptical - - McDonald, 1988* 
  P. botulus - 88 2.59 - - - McDonald, 1988 
  P. formosus 3 50 3.13 Elliptical - - Van Cleave, 1918b*; Schmidt & Olsen, 1964  
  P. major - 93 2.70 Elongated Ovoid - - McDonald, 1988* 
 Pseudoacanthocephalus P. caspanensis - 63.75 2.75 - - - Smales, 2007 
  P. lutzi 4 71 2.45 Elliptical Y - Smales, 2007; Arrendondo & Gil de Pertierra, 

2009* 
  P. rhampholeontos - 72 3.00 Ellipsoidal Y - Smales, 2005* 
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Class Genus Species M L ER Shape Description F P Reference(s) 
Palae- Pseudocorynosoma P. anatrium - 106 4.93 - - Y Van Cleave, 1945b; McDonald, 1988 
  P. constrictum - 37.5 3.75 - Y Y Van Cleave, 1918b; Keithly, 1968 
 Rhadinorhynchus R. biformis - 78.2 5.05 - - - Smales, 2014 
  R. cadenati - 72.5 3.92 - - - Amin, et al., 2011 
  R. carangis - 66 4.52 - - - Smales, 2014 
  R. cololabis - 66 5.74 - - - Amin, et al., 2011 
  R. dollfusi - 125 3.85 - - - Amin, et al., 2011 
  R. dorsoventrospinosus - 100 5.00 Fusiform - Y Amin, et al., 2011* 
  R. dujardini - 70 4.12 - - - Amin, et al., 2011 
  R. johnstoni - 72 2.94 Elongate - Y Amin & Nahhas, 1994*; Amin, et al., 2011 
  R. keralensis - 110 3.55 - - - Amin, et al., 2011 
  R. laterospinosus - 62 3.65 - - Y Amin, et al., 2011 
  R. lintoni - 110 5.00 - - - Amin, et al., 2011 
  R. ornatus - 73 3.04 Fusiform - Y Van Cleave, 1918a; Amin, et al., 2009*, Amin, et 

al., 2011 
  R. pelamysi - 68.5 5.48 - - - Amin, et al., 2011 
  R. pichelinae - 59.5 4.72 - - Y Smales, 2014* 
  R. plagioscionis - 110 4.78 - - - Amin, et al., 2011 
  R. pristis 4 95 5.59 - Y Y Van Cleave, 1918a, Amin, et al., 2011 
  R. seriolae - 70.5 5.18 - - Y Amin, et al., 2011; Smales, 2014* 
  R. stunkardi - 135 5.09 - - - Amin, et al., 2011 
  R. trachuri - 73 3.65 - - - Amin, et al., 2011 
 Sclerocollum S. rubrimaris - 51.5 3.43 Fusiform - Y Hassanine, 2006* 
  S. saudi - 24 2.67 Oval to Elongate Y Y Al-Jahadali, et al., 2015* 
 Serrasentis S. sagittifer 4 102 3.19 Elongate Ellipsoid - - Travassos, 1966* 
 Southwellina S. hispida - 79.5 3.12 - - - Schmidt, 1973b; García-Varela, et al., 2012 
 Tegorhynchus T. brevis - 52 4.16 - - Y Monks, et al., 1997 
 Trajectura T. perinsolens - 64.5 4.61 - - - Pichelin & Cribb, 2001 
 Transvena T. annulospinosa - 64 4.00 Fusiform - Y Pichelin & Cribb, 2001* 
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CHAPTER 2: Evolution of egg fibrils in the Acanthocephala: a comparative 

approach 

 
ABSTRACT 

 Acanthocephalans are a diverse group of endoparasites comprised of ~1300 species that 

display an array of egg morphologies. These parasites have a life cycle that starts with free-living 

eggs that are expelled into the habitat, by a vertebrate definitive host, where they are consumed 

by an arthropod intermediate host. Some of these acanthocephalans have egg fibrils, which have 

been proposed to aid in transmission to intermediate hosts. These mechanisms of transmission 

may be associated with the habitat and feeding behavior of the intermediate host. In this study, 

the evolution of egg fibrils in the Acanthocephala was examined using phylogenetic mapping 

(using 18S rDNA). The results displayed five taxa with egg fibrils dispersed throughout the 

Palaeacanthocephala, which likely indicates that egg fibrils evolved independently in each 

species. These findings are consistent with the interpretation that the function of egg fibrils in 

transmission might be specific to each species and with the notion that aspects (behavior, 

morphology) of egg to host transmission are associated with local ecology. 

 
INTRODUCTION 

 Acanthocephalans are tropically transmitted endoparasites found in diverse habitats that 

infect arthropods as intermediate hosts and vertebrates as definitive hosts (Kennedy, 2006). 

Transmission of acanthocephalan eggs to the intermediate host occurs when eggs are expelled 

into the environment by the definitive host where they are consumed by intermediate hosts. 

Given the variety of host types and habitats, acanthocephalans, like other helminths, are 

proposed to vary in their mechanisms of transmission (Nikishin, 2001). For example, eggs of 
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Leptorhynchoides thecatus possess fibrils, which may aid in transmission to the amphipod 

intermediate host by attaching eggs to vegetation in the water column where amphipods feed 

(Uznanski & Nickol, 1976). Eggs of Pallisentis rexus expand in size and become buoyant in the 

water column, which may increase the likelihood that they are encountered by their copepod 

intermediate host (Wongkham & Whitfield, 2004). Other studies have also shown that variation 

in egg morphology may be related to mechanisms of dispersal and transmission to the 

intermediate host (Dezfuli, 1996; George & Nadakal, 1973; Nikishin, 2001; Arredonodo & Gil 

de Pertierra, 2009). Here I used a comparative approach to examine one of these traits (egg 

fibrils) in the Acanthocephala. 

 In acanthocephalans, egg fibrils are long, slender filaments that arise from one of the 

egg’s membranes (Monné & Hönig, 1954). Table 1 provides a summary of information available 

in the literature concerning the anatomy and life cycles of acanthocephalans that possess egg 

fibrils. Fibrils are found most frequently in hosts that reside in aquatic habitats. For example, five 

of the seven taxa presented in the table have aquatic intermediate hosts, while the other two taxa 

have terrestrial intermediate hosts (ants, termites). Within the aquatic taxa, there is variation in 

the type of intermediate host and the microhabitat occupied by the intermediate host. For 

example, some aquatic taxa infect intermediate hosts that feed solely in the water column or 

solely on the sediment, whereas others feed both in the water column and on the sediment. This 

variation in intermediate host microhabitat use may indicate that egg fibrils could aid in 

transmission differently depending on the type of intermediate host. There is also variation in the 

descriptions of egg fibrils. Some taxa are reported to have many, short fibrils, whereas others 

have only two, long fibrils. The variation in number and length of fibrils may indicate that the 

varying types of fibrils could result in different mechanisms of transmission. The variation 
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indicated in Table 1 is consistent with the interpretation that fibrils may have evolved 

independently in each taxon.  

 Diversity in egg fibril occurrence could be due to common ancestry, convergent 

evolution, or a combination of the two (Freeman & Herron, 2001). If fibrils were the result of 

common ancestry, all taxa with fibrils would likely be found clustered together on a phylogeny 

and they would be expected to be similar morphologically. This might indicate that fibrils 

evolved once and have a similar function in all taxa. In the case of convergent evolution, taxa 

with fibrils would likely be found in different areas on a phylogeny and may differ 

morphologically. This might indicate that fibrils evolved independently in each taxon. Finally, a 

combination of evolution due to common ancestry and convergent evolution could occur if a 

phylogeny indicated two or more groupings of taxa with fibrils. For example, if two groupings of 

multiple taxa occur in different areas of the phylogeny it might suggest that fibrils evolved twice. 

This study combined existing molecular and morphological data in the Acanthocephala to 

explore egg fibril evolution in relation to host biology. 

 
MATERIALS AND METHODS 

 To examine the evolution of egg fibrils in the Acanthocephala, I constructed a phylogeny 

based on available molecular data for 32 taxa (31 acanthocephalans, one rotifer outgroup). Table 

2 summarizes specimen information and GenBank (Bensen, et al., 2007) accession numbers used 

to obtain 18S rDNA sequences. The acanthocephalan species included represent the three major 

classes of the Acanthocephala. The 18S rDNA sequences were aligned using Clustal W in 

MEGA version 6 (Tamura, et al., 2013) and resulted in 1,871 characters. The sequences were 

analyzed as a combined rDNA data set. Tree searches were conducted with maximum likelihood 

(ML) using MEGA version 6 (Tamura, et al., 2013). Bootstrap resampling was used to assess the 
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relative reliability of the tree, using 500 bootstrap pseduoreplicates. I used character mapping 

(e.g. Harvey & Pagel, 1991) to examine the evolution of egg fibrils in the Acanthocephala. Data 

on acanthocephalan taxa that displayed fibril membranes were obtained from the published 

literature (Chapter 1, Appendix 1). 

 
 

 

 

Table 1. Sample of acanthocephalan taxa with fibril descriptions and life cycle information.  

Species Fibril Description DH IH  
IH 

Habitat 
IH 

Location 
Rhadinorhynchus 
pristis 

Numerous filaments1 
F Krill AQ WC 

Leptorhynchoides  
thecatus 

Arranged parallel to 
fertilization membrane2 F Amphipod AQ WC/S 

Polymorphus 
minutus 

Many fibrils twisted in 
one direction3 B Amphipod AQ WC/S 

Pseudoacanthocephalus 
lutzi 

Many fibrils on fibrillar 
coat4 

A Amphipod AQ WC/S 

Acanthocephalus 
dirus 

Two, slender tapering 
filaments5 

F Isopod AQ S 

Acanthocephalus 
bufonis 

Fibril layer6 

A Ants, Termites T L 

Pseudoacanthocephalus 
rhampholeontos 

Many fibrils on fibrillar 
coat6 A Ants, Termites T L 

DH= definitive host, IH= intermediate host, F= fish, B=bird, A= amphibian, AQ= aquatic, T= terrestrial, 
WC= water column, S= sediment, L= land 
 
1 Marchand (1984), 2 Uznanski & Nickol (1976), 3 Monné & Hönig (1954), 4 Arredondo & Gil de 
Pertierra (2009), 5 Oetinger & Nickol (1974), 6 Smales (2005) 
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Table 2. Specimen information and GenBank accession numbers for species included in 
phylogenetic tree. Habitat of the species is represented under Hab., where Aqua. represents 
aquatic and Terr. represents terrestrial. * represents the outgroup (rotifer). Host type: B = bird, F 
= fish, M = mammal. 

Hab. Species Family Host (Type) 18S rDNA 
Aqua. *Asplanchna sieboldi Asplanchnidae Not applicable (free-living) AF092434 
 Acanthocephaloides propinquus Arythmacanthidae Gobius bucchichii (F) AY830149 
 Filisoma bucerium Cavisomidae Kphosus elegans (F) AF064814 
 Acanthocephalus dirus Echinorhynchidae Semotilus artomaculatus (F) AY830151 
 Acanthocephalus lucii Echinorhynchidae Perca fluviatilis (F) AY830152 
 Echinorhynchus gadi Echinorhynchidae Macrourus berglax (F) JX014222 
 Echinorhynchus truttae Echinorhynchidae Thymallus thymallus (F) AY830156 
 Koronacantha mexicana Illiosentidae Pomadasys leuciscus (F) AY830157 
 Koronacantha pectinara Illiosentidae Microlepidotus brevipinnis (F) AF092433 
 Floridosentis mugilis Neoechinorhynchidae Mugil cephalus (F)  AF064811 
 Neoechinorhynchus crassus Neoechinorhynchidae Catostomus commersoni (F) AF001842 
 Neoechinorhynchus saginata Neoechinorhynchidae Semotilus artomaculatus (F) AY830150 
 Arythmorhynchus brevis Polymorphidae Nycticorax nycticorax (B) AF064812 
 Corynosoma australe Polymorphidae Phocarctos hookeri (M) JX442168 
 Corynosoma enhydri Polymorphidae Enhydra lutris (M) AF001837 
 Corynosoma magdaleni Polymorphidae Halichoerus grypus (M) EU267803 
 Polymorphus altmani Polymorphidae Enhydra lutris (M) AF001838 
 Polymorphus minutus Polymorphidae Anas platyrhynchos diazi (B) EU267806 
 Polymorphus trochus Polymorphidae Fulica americana (B) JX442173 
 Pseudocorynosoma anatrium Polymorphidae Bucephala albeola (B) EU267801 
 Pseudocorynosoma constrictum Polymorphidae Anas clypeata (B) EU267800 
 Southwellina hispida Polymorphidae Tigrisoma mexicanum (B) EU267807 
 Pomphorhynchus bulbocolli Pomphorhynchidae Cyprinus carpio (F) AF001841 
 Pomphorhynchus laevis Pomphorhynchidae Rutilus rutilus (F) JX014223 
 Pomphorhynchus tereticollis Pomphorhynchidae Morone saxatilis (F) AY423347 
 Leptorhynchoides thecatus Rhadinorhynchidae Lepomis cyanellus (F) AF001840 
 Rhadinorhynchus prisits Rhadinorhynchidae Gempylus serpens (F) JX014226 
 Serrasentis sagittifer Rhadinorhynchidae Platycephalus arenarius (F) JX014227 
 Transvena annulospinosa  Transvenidae  Anampses neoguinaicus (F) AY830153 
Terr. Moniliformis moniliformis Moniliformidae Rattus rattus (M) Z19562 
 Macraacanthorhynchus ingens Oligacanthorhynchidae Procyon lotor (M) AF001844 
 Plagiorhynchus cylindraceus Plagiorhynchidae Turdus migratorius (B) AF001839 
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RESULTS 
 
 The mapping of egg fibril presence for each species included in the molecular-based 

phylogeny is shown in Figure 1. Egg fibrils were present in five species and were dispersed 

throughout the phylogeny, Acanthocephalus dirus, Leptorhynchoides thecatus, Polymorphus 

minutus, Pseudocorynosoma constrictum, and Rhadinorhynchus pristis. All five of these species 

are members of the class Palaeacanthocephala. In cases where there were more than one species 

representing a genus (e.g. Acanthocephalus, Polymorphus, Pseudocorynosoma), presence of egg 

fibrils was only indicated in one species. The phylogeny also indicates that the genera 

Polymorphus and Pomphorhynchus are not monophyletic. García-Varela, et al. (2013) proposed 

that Polymorphus was a polyphyletic genus when studying the evolutionary relationships of the 

family Polymorphidae. The bootstrap values for Pomphorhynchus (100) suggest that it is 

polyphyletic genus although it has not been suggested in previous studies. 

 
DISCUSSION 

 The mapping of egg fibril presence for each species indicated several trends. First, the 

five taxa with egg fibrils are not found clustered together, which suggests that egg fibrils evolved 

independently in each taxon (Figure 1). Second, when more than one species represented a genus 

(e.g. Acanthocephalus, Polymorphus, Pseudocorynosoma) egg fibrils were only present in one of 

the species. This species-level difference is consistent with the interpretation that egg fibrils are 

homoplasies due to convergent evolution. Third, all taxa included in this study with egg fibrils 

are found within the Palaeacanthocephala. This taxonomic class is the most diverse class in 

terms of host type and habitat (e.g., Amin, 1987), which may have influenced the evolution of 

the different egg morphologies. 
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Figure 1. Phylogeny of fibril evolution using available 18S rDNA sequences (GenBank) of three 

of the four classes of the Acanthocephala. Egg fibril presence is indicated in red. Maximum 

likelihood tree (-ln 26,655.29) with branch length scaled to expected substitutions per site. Hab 

indicates habitat (A = aquatic, T = terrestrial). DH indicates the definitive host (B = bird, F = fish, 

M = mammal). 
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 The results of the phylogenetic tree shown in Figure 1 are consistent with trees 

constructed in previous studies (García-Varela, et al., 2002; Verweyen, et al., 2011; García-

Varela, et al., 2013). García-Varela, et al. (2002) constructed a molecular phylogeny including 

19 acanthocephalans, in which egg fibril presence is known for 14 of the species (74%). Only 

one of these species, L. thecatus, possesses egg fibrils (García-Varela, et al., 2002). Verweyen, et 

al. (2011) constructed a molecular phylogeny including 35 acanthocephalans, in which egg fibril 

presence is known for 27 species (77%). Five of these species, the same five shown in Figure 1, 

possess fibrils. The five species are found dispersed within the Palaeacanthocephala, which is 

consistent with Figure 1 (Verweyen, et al., 2011). García-Varela, et al. (2013) constructed a 

molecular phylogeny of the family Polymorphidae including 23 species, in which egg fibril 

presence is known for 15 species. Two of these species, P. constrictum and P. minutus, possess 

fibrils. These two species are separated within the Polymorphidae, which is consistent with the 

conclusions in this study (García-Varela, et al., 2013). Thus, there is evidence of convergent 

evolution for egg fibrils from several different phylogenies. 

 Egg fibrils in the Acanthocephala have been proposed to aid transmission to intermediate 

hosts through multiple mechanisms. These mechanisms include the timing of egg fibril release, 

attachment to substrates, and enhancing establishment success inside the intermediate host (see 

Chapter 3). Therefore, it is reasonable to suggest that egg morphology is related to transmission 

in the Acanthocephala and that this relationship is driven by local ecology (i.e., habitat, host 

biology). The five taxa with egg fibrils, included in this study, were all found within the 

Palaeacanthocephala and all have aquatic hosts. Three of the taxa, L. thecatus, P. minutus, and P. 

constrictum, have amphipod intermediate hosts, whereas A. dirus infects isopods and R. prisits 

infects krill. In aquatic habitats, fibrils may aid in transmission by attaching to vegetation where 
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the intermediate host feeds. Egg fibrils may also aid in establishment inside the intermediate host 

by attaching to the intestines once the egg has been consumed. Both of these mechanisms are 

shown to be likely occurring in the acanthocephalan A. dirus (see Chapter 3).  

 While the data shown here appears to indicate that egg fibrils are homoplasies, it should 

be noted that not all acanthocephalans that possess fibrils were included in the phylogeny. As 

shown in Table 1, there are terrestrial taxa within the Acanthocephala that have egg fibrils (A. 

bufonis, P. rhampholeontos). Both A. bufonis and P. rhampholeontos are members of the 

Palaeacanthocephala and have amphibians as definitive hosts and ants and termites as 

intermediate hosts (Smales, 2005). The proposed benefits of fibrils in aquatic species (i.e. 

attachment to substrates, increasing establishment success) could also be applicable to terrestrial 

species. Fibrils could aid in attachment to substrates in the habitat and decrease the likelihood 

that the eggs are disturbed by environmental factors (e.g. wind). Fibrils could also increase 

establishment success in terrestrial hosts, in the same manner as in aquatic hosts, by attaching to 

the intestine wall, hence slowing passage through the gut of host that could increase the 

likelihood of infection. 

 In addition to the suggested evolution of egg fibrils in the Acanthocephala, other 

morphological traits of helminth eggs appear to be shaped by local ecology (Jarecka, 1961; 

Combes, et al., 1994). For example, in cestode tapeworms there is variation in egg morphology 

(shape, clumping behavior, and weight). In regards to weight, some tapeworm eggs are 

considered heavy and sink quickly through the water column, whereas other eggs are light and 

remain in the water column (Jarecka, 1961). The heavy eggs are found in species that have 

ostracod intermediate hosts that feed on the sediment, whereas the light eggs are found in species, 

which have copepod intermediate hosts that feed in the water column. The variation in egg 



	 35	

morphology described in tapeworms has also been proposed to be driven by host biology and 

feeding preference (Jarecka, 1961). Similarly, in the larval stage (cercariae) of some trematodes, 

behavioral mechanisms occur that increase encounter rates with target hosts (Combes, et al., 

1994). For example, in some species cercariae cluster together in ways which appear larger and 

more attractive to their hosts. In other species, cercariae possess a tail that moves similar to a 

worm, in a way that is attractive to the target host. This type of variation in behavior has also 

been proposed to be associated with the variety of hosts the cercariae infect (Combes, et al., 

1994). Thus, local selection pressures may have shaped several morphological traits associated 

with transmission to target hosts in multiple types of helminth parasites. 
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CHAPTER 3: Egg fibrils and transmission in the acanthocephalan parasite 

Acanthocephalus dirus 

 
ABSTRACT 

 Acanthocephalans are endoparasites that infect arthropods as intermediate hosts and a 

diverse array of vertebrates as definitive hosts. For transmission to the intermediate host to occur, 

acanthocephalan eggs must be consumed along with food in the intermediate host’s habitat. 

Some acanthocephalans have egg fibrils that could play a role in this transmission. These fibrils 

are filaments that arise from the egg’s fibrillar coat. To date, studies have proposed several, 

possible functions of fibrils in transmission to the intermediate host, but there is little 

experimental evidence to support the proposed functions. Studies have also indicated that fibril 

morphology appears to be species-specific and may be shaped by local factors (e.g. host biology, 

habitat). I examined the potential role of egg fibrils in dispersal and transmission of the 

acanthocephalan Acanthocephalus dirus, which infects a stream-dwelling isopod host 

(Caecidotea intermedius). I used lab-based experiments to examine the timing of fibril release, 

the role of fibrils in egg attachment to substrates and the role of fibrils in infection success 

(prevalence, intensity). Results showed that fibrils attached to substrates upon release and that 

the timing of this release did not occur for several days. This would allow eggs to sink through 

the water column to the sediment, which is occupied by the intermediate host, before attaching to 

a substrate. In trials in which C. intermedius were provided with access to either eggs with fibrils 

or eggs without fibrils, infection prevalence increased when fibrils were present. I suggest that 

the presence of egg fibrils could favor transmission to intermediate hosts through multiple routes, 
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i.e. timing of release, attachment to substrates in the microhabitat of the intermediate host, and 

establishment in the intermediate host. 

 
INTRODUCTION 

 Trophically transmitted parasites infect multiple hosts (Crompton, 1975; Poulin, 2010b), 

which require them to be able to exist in multiple habitats, i.e. inside their hosts and in the 

habitats of their hosts. Given the variety of host types and habitats, parasites may vary in their 

mechanisms of transmission (e.g. tapeworms; Jarecka, 1961). For example, in egg to 

intermediate host transmission trematode eggs can be sessile or motile. When eggs are sessile 

they are passively ingested by an intermediate host. In contrast, when eggs are motile they can 

actively search for an intermediate host (Combes, et al., 1994; Esch & Fernandez, 1994). 

Similarly, in intermediate to definitive host interactions, some parasites increase the frequency of 

transmission to definitive hosts by modifying their intermediate host’s behavior (Moore, 1983, 

2002; Poulin, 2010b; Hughes, et al., 2012). Most research to date has focused on the 

transmission from the intermediate to definitive hosts. Here, I examined factors associated with 

transmission of the free-living stage of an acanthocephalan parasite to its intermediate host. 

 Acanthocephalans are trophically transmitted parasites that infect arthropods as 

intermediate hosts and a variety of vertebrates as definitive hosts. These parasites are found in 

diverse habitats (aquatic, semiaquatic, terrestrial) throughout the world (Kennedy, 2006). Several 

studies have shown that variation in egg morphology appears to be related to mechanisms of 

dispersal of the free-living stage as well as factors in transmission to the intermediate host 

(Dezfuli, 1996; Barger & Nickol, 1998; George & Nadakal, 1973; Nikishin, 2001; Wongkham & 

Whitfield, 2004; Arredonodo & Gil de Pertierra, 2009). For example, eggs of acanthocephalan 

Pallisentis rexus expand in size and become buoyant in the aquatic habitat, which increases the 
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likelihood that they are encountered by their copepod intermediate host (Wongkham & Whitfield, 

2004). In several cases, acanthocephalan eggs possess fibrils, which are long, slender filaments 

that arise from the egg’s fibrillar coat (Monné & Hönig, 1954; Chapter 1; Chapter 2). These 

fibrils have been proposed to play multiple roles in transmission, which include attaching to 

vegetation consumed by intermediate hosts and facilitating establishment inside the intermediate 

host (Oetinger & Nickol, 1974; Uznanski & Nickol, 1976; Barger & Nickol, 1998). I examined 

the potential significance of each of these pre- and post-ingestion mechanisms in the 

acanthocephalan Acanthocephalus dirus (Van Cleave, 1931). 

 I examined three specific ways that egg fibrils could increase transmission success to 

intermediate hosts: timing, attachment, and establishment. First, the timing of outer membrane 

degradation and fibril release has been suggested to increase the likelihood that acanthocephalan 

eggs disperse into the microhabitat occupied by the intermediate host (Uznanski & Nickol, 1976; 

Taraschewski & Peters, 1992; Taraschewski, 2000). Figure 1 demonstrates how variation in the 

timing of fibril release could benefit the parasite (e.g. Uznanski & Nickol, 1976; Barger & 

Nickol, 1998; Taraschewski & Peters, 1992). Second, fibrils can attach to substrates, which have 

been proposed to aid in transmission by increasing the likelihood that eggs remain in the 

microhabitat of the intermediate host, and attach to food items within that microhabitat 

(Uznanski & Nickol, 1976; Taraschewski & Peters, 1992). Third, the attachment properties of 

egg fibrils could potentially aid in transmission by slowing passage through the intestines of the 

intermediate host; hence, increasing establishment success (Oetinger & Nickol, 1974). 
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Figure 1. Alternative scenarios of egg fibril release and transmission to intermediate hosts (IH) 

in aquatic systems (eggs are shown in grey; lines emerging from the egg indicate fibrils; dotted 

lines indicate the eggs trajectory; algal mats, either floating in the water column or laying on the 

sediment, are shown in black). In scenario A, the egg’s outer membrane degrades (OMD) inside 

the definitive host (DH), which allows fibrils to be present before the eggs are expelled into the 

habitat. This could benefit transmission in cases where intermediate hosts (IH) fed in the water 

column by allowing the eggs to attach to vegetation suspended in the water column. In scenario 

B, eggs are expelled by the definitive host before the outer membrane degrades, which could 

benefit transmission in cases where the intermediate host fed on the sediment by allowing the 

eggs to attach to the sediment. 
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 The acanthocephalan A. dirus infects the stream dwelling isopod, Caecidotea intermedius, 

as its intermediate host and stream fishes as definitive hosts (Muzzall & Rabalais, 1975; Camp & 

Huizinga 1980; Sparkes, et al., 2004). Infection of juvenile C. intermedius occurs when A. dirus 

eggs are consumed along with food located on the sediment (Kopp, et al., 2011). Eggs of A. dirus 

possess fibrils, which are released from the egg when the outer membrane degrades (Oetinger & 

Nickol, 1974). Here, I used laboratory-based experiments to examine the potential role of A. 

dirus fibrils in dispersal and transmission to C. intermedius. To address this goal, I examined the 

following specific questions: 1. Is the timing of fibril release delayed in a manner that is likely to 

result in dispersal of the eggs into the habitat of the sediment-dwelling host? 2. Do A. dirus 

fibrils attach to substrates in the environment? 3. Does the presence of A. dirus fibrils increase 

the likelihood of establishment in the intermediate host? 

 
MATERIALS AND METHODS 

Site of Study 

 All organisms were collected from Buffalo Creek, located 60 km northwest of Chicago in 

Lake County, IL, USA. In this site, A. dirus development is relatively synchronous with infection 

of juvenile C. intermedius occurring during summer (Sparkes, et al., 2004). In C. intermedius, A. 

dirus develop from the acanthor stage to the cystacanth stage, which is infective to the definitive 

hosts, in two to three months. Lepomis cyanellus (green sunfish) and Semotilus atromaculatus 

(creek chub) are infected with A. dirus cystacanths from winter through the spring (Sparkes, et 

al., 2004, 2006; Bierbower & Sparkes, 2007). In these months, A. dirus infections have a 

prevalence of 61% and a mean intensity of one (Kopp, et al., 2011). Gravid female A. dirus are 

present in L. cyanellus and S. atromaculatus during late spring and early summer (Kopp, et al., 

2011). 
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Timing of Fibril Release 

 To determine whether the timing of fibril release is likely to result in dispersal of the eggs 

into the habitat of sediment-dwelling host, I examined the timing of fibril release in mature A. 

dirus eggs. One treatment group was tested in stream water and the other was tested in filtered 

stream water. To identify the expected time course of release, I exposed eggs to stream water 

(the typical condition in nature). I also examined the timing of fibril release in stream water that 

had been filtered to remove microbes, in order to determine if the timing was due to the presence 

of stream microorganisms (e.g. Oetinger & Nickol, 1974). Stream water was collected from 

Buffalo Creek (23 March 2016) and was either used in its natural form or filtered through 

Whatman Grade 1 filter paper and then through a polyethersulfone (PES) filter with a 0.45µm 

inclusion (Whatman, Puradisc 25mm). Mature eggs were obtained from gravid A. dirus females 

(collected from L. cyanellus and S. atromaculatus, 23 March 2016). From each A. dirus female 

(n = 31), 40µl of egg solution was pipetted on to two counting cell slides, one containing 40µl of 

stream water and the other containing 40µl of filtered stream water (50x20mm, plastic 

Sedgewick-Rafter Counting Cell slide). Slides were refrigerated to mimic environmental 

conditions (8 - 14°C) and monitored daily for seven days to determine the timing of fibril release. 

To monitor the timing of fibril release the starting point on the slide was decided at random and 

then the presence of fibrils was recorded for the first ten eggs observed (Nikon Eclipse E400, 

200x). Data collected on day seven was used to determine if there was a difference between the 

proportions of eggs with fibrils released in stream and filtered water. 

 
Fibril Release and Attachment 

 To determine whether A. dirus fibrils attach to substrates in the environment, I examined 

if mature eggs attached to a substrate in stream water before and after fibril release. Eggs were 
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obtained from A. dirus in L. cyanellus and S. atromaculatus on 23 March 2016 (number of A. 

dirus females = 13). For all samples, the egg solution (mature eggs and filtered stream water) 

was homogenized and 10µl was pipetted on a counting slide containing stream water (50 x 20 

mm, 1ml, plastic Sedgewick-Rafter Counting Cell slide). Slides were refrigerated to mimic 

environmental conditions (8 - 14°C). Slides were monitored daily, the presence or absence of egg 

fibrils and egg attachments were recorded for the first ten eggs observed (Nikon Eclipse E400, 

200x). An attempt was made to sample eggs at different locations on the slide to avoid counting 

the same egg more than once. To test for egg attachment, the slide’s coverslip was slowly moved 

a 1cm forward and backward. If the egg moved with the water it was considered unattached to 

the slide. In contrast, if the egg did not move with the water it was considered attached to slide. 

To determine whether there was a difference in the percent of eggs attached to the slide in the 

two groups (‘fibrils’ and ‘no fibrils’) a Wilcoxon signed-rank test (Conover, 1980) was used 

because data were not normal despite transformation (determined with Shapiro-Wilk test in R). 

 
Establishment success in C. intermedius 

 To examine whether the presence of A. dirus fibrils increased the likelihood of 

establishment in the intermediate host, I exposed juvenile C. intermedius to leaves that contained 

either eggs with fibrils released or eggs without fibrils released. Both eggs with fibrils released 

and eggs without fibrils released were obtained from the same female A. dirus. To create the two 

groups, half of the eggs from the female were placed in stream water (to allow fibril release) and 

half of the eggs were placed in filtered water (to keep fibrils from being released). In both groups, 

mature A. dirus eggs were placed on a leaf disk in stream water, which would give fibrils 

released eggs and no fibrils released eggs the same likelihood of being encountered by C. 

intermedius. 
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 To obtain uninfected juvenile C. intermedius, gravid females were collected and 

transported to the laboratory at DePaul University (16 April 2016, n = 45). Each C. intermedius 

was held in an individual container (80 x 120 mm) with conditioned leaves and stream water 

(200ml). Each day individual containers were aerated, by disturbing the surface of the water, and 

monitored for the presence of juveniles. When juveniles were present, the female was removed 

and the juveniles were left undisturbed, to mature for two months (30 families). To increase the 

likelihood that juveniles fed during the experiment, their food source was removed two days 

prior to the trials. 

 Table 1 summarizes the experimental design used for the study. In each trial, the egg 

solution (mature eggs and filtered stream water) was homogenized and pipetted onto a leaf disk 

in an individual container (35 x 10 mm, 5ml) with stream water (all leaves were conditioned in 

diH20). An extra set of mature eggs was taken from each parasite to estimate the number of eggs 

per milliliter of solution for each parasite (n = 30). To create the fibril released and not released 

egg treatments, half of the containers sat for four days, prior to the start of the experiment, to 

allow for egg outer membrane degradation and fibril release (‘fibrils’ group). The second half of 

the containers had mature eggs added the first day of the experiment, which did not allow 

enough time for fibril release (‘no fibrils’ group). One juvenile C. intermedius from a family was 

placed into each container. Juveniles fed on the leaf disks, containing A. dirus eggs, in their 

individual dishes for either two, three, or four days. The containers were aerated daily during the 

experiment. After the allotted days of feeding, the juveniles were transferred to new individual 

containers with stream water and conditioned leaves without A. dirus eggs (35 x 10 mm, 5ml). 

Each container was monitored and aerated daily for two weeks, after which time each individual 

was preserved (70% ethanol), measured (body length), dissected and the number of A. dirus 
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present was recorded. Overall parasite prevalence, the number of C. intermedius infected over 

the total number of C. intermedius in the study, and overall mean intensity, number of A. dirus 

infecting a C. intermedius, were calculated (Bush, et al., 1997). To determine whether there was 

a difference in overall parasite prevalence and overall mean intensity in the  ‘fibrils’ and  ‘no 

fibrils’ groups, I compared these variables using a paired t-test in which the experimental unit 

was either percentage or average (normality determined with Shapiro-Wilk test in R). To 

determine that all infections observed were due to experimental infections, 30 C. intermedius 

were randomly sampled from the remaining juveniles in each family to determine their infection 

status. 

 

 

Table 1. Experimental design used to examine establishment success of A. dirus in C. 

intermedius. Half of the mature eggs from A. dirus females were used in each treatment (fibrils 

released, no fibrils released). Egg density refers to the volume of egg solution used in each trial. 

Days of feeding refer to the number of days C. intermedius fed on leaves containing A. dirus 

eggs. 

Egg 
Treatment 

Egg 
Density 

Days of 
feeding 

Fibrils 
Released 

50µL 
2 
3 
4 

20µL 
2 
3 
4 

No Fibrils 
Released 

50µL 
2 
3 
4 

20µL 
2 
3 
4 
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RESULTS 

Timing of Fibril Release 

 The percent of female A. dirus with at least one egg with released fibrils in stream water 

and filtered water each day are shown in Figure 2a. In A. dirus females, fibril release was 

observed starting on day one and continued to increase with each consecutive day in both stream 

and filtered water. There is a slight increase in the percent of females with eggs with fibrils in 

stream water than in filtered water. The percent of eggs with released fibrils in stream water and 

filtered water are shown in Figure 2b. There was a greater difference in the proportion of eggs 

with fibrils released in stream water than eggs with fibrils released in filtered water. The median 

number of eggs with fibrils released on day seven in stream water was 50 (0 - 70). In contrast, 

filtered water had a median of zero eggs with fibrils released on day seven. When analyzing the 

effects of the treatment groups on day seven, there was a difference in the proportion of eggs 

with fibrils released in stream water than eggs with fibrils released in filtered water (Wilcoxon 

signed-rank test, T30 = 4.9, p < 0.005). 

 
Attachment to Substrate 

 The percent attachment of eggs for each sample with and without fibrils is shown in 

Figure 3. Eggs with fibrils released had a higher percent attachment than eggs without fibrils 

released (Wilcoxon signed-rank test, T12 = 3.2, p < 0.005). This difference translated into a mean 

attachment of 96.7% (± 6.8) for eggs with fibrils released and 7.2% (± 9.9) for eggs without 

fibrils released. 

 

  



	 46	

a) 

b) 

 

Figure 2. a. Percent of female A. dirus with eggs releasing fibrils in stream water (filled circle) 

and filtered water (unfilled circle). For each trial, eggs from the same female (n = 31) were 

treated with either stream water and filtered water. b. Percent of eggs with released fibrils in 

stream water (filled circle) and filtered water (unfilled circle). For each of the 31 females, 10 

eggs were observed each day (n = 310).  
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Figure 3. Relationship between the presence of fibrils and the percent of A. dirus eggs that 

attached to substrates. Individual lines represent eggs obtained from the same female (n = 13).  
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Establishment success in C. intermedius 

 Experimental infections were used to determine the effect of fibrils on establishment 

success in C. intermedius. Of the 360 C. intermedius used, 274 survived (76%). Estimates of the 

number of eggs dispensed in each treatment for each density indicate that the 20µl density had an 

average of 404 (± 22 standard error) eggs and the 50µl density had an average of 1009 (± 75 

standard error) eggs. Randomly sampled juveniles from each family, not used in infection trials, 

were all uninfected indicating that infections present in the study were due to experimental 

exposure. 

 A summary of A. dirus prevalence and mean intensity for each density and the number of 

days C. intermedius were exposed to A. dirus eggs are shown in Table 2. Overall prevalence for 

the no fibril group was 41% and 55% in the fibril group, which resulted in a +14 difference 

(Table 2). Prevalence of A. dirus was greater in the fibrils group than the no fibrils group (paired 

t-test, t29 = 3.0, p = 0.005). Overall mean intensity for the no fibrils group was 3.1 and was 4.3 in 

the fibrils group, which resulted in a +1.2 difference (Table 2). Analysis of overall mean 

intensity in the no fibrils and the fibrils group indicated that there was not a difference between 

the groups (Wilcoxon signed-rank test, V27 = 193.5, p < 0.1). At the 50µl density, the mean 

intensity across the different days of feeding (2, 3, & 4) revealed a difference of +2.5 in the 

fibrils group, whereas the 20µl density showed no difference. Analysis of mean intensity for the 

50µl density indicated that there was a difference between the no fibrils and fibrils eggs 

(Wilcoxon signed-rank test, V24 = 234.5, p < 0.005). Analysis of mean intensity for the 20µl 

density indicated that there was no difference between the no fibrils and fibrils group (Wilcoxon 

signed-rank test, V24 = 182.5, p > 0.1). 
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Table 2. Summary of A. dirus prevalence and mean intensity for each treatment group. Density 

refers to the volume of egg solution used in each trial and days refer to the number of days C. 

intermedius fed on A. dirus eggs. There was not a difference in C. intermedius body size in the 

fibrils and no fibrils group (paired t-test, t29 = 1.49, p > 0.1). 

 
 Prevalence (%)  Mean intensity 

Density Days No Fibrils Fibrils Diff.  No Fibrils Fibrils Diff. 
20 2 27 42 +15  2.9 2.2 -0.7 

 3 52 56 +4  4.2 5.4 +1.2 
 4 40 55 +15  4.6 4.0 -0.6 
 Mean 40 51 +11  3.9 3.9 0.0 
         

50 2 32 64 +32  1.8 3.1 +1.3 
 3 50 50 0  2.7 5.9 +3.2 
 4 48 61 +13  2.5 5.3 +2.9 
 Mean 43 58 +15  2.3 4.8 +2.5 

Overall Mean 41 55 +14  3.1 4.3 +1.2 
 
  



	 50	

DISCUSSION 

 The results indicated are consistent with the notion that egg fibrils could increase 

transmission success to intermediate hosts by multiple mechanisms: timing of release, 

attachment to substrates, and establishment success. Delay in A. dirus fibril release may increase 

the likelihood that eggs disperse into the microhabitat (sediment) occupied by intermediate hosts 

prior to fibril release. The fibrils of A. dirus also influenced attachment, which could increase the 

likelihood that eggs remain in the microhabitat and are consumed by the intermediate host. In 

addition, the presence of fibrils increased both the prevalence and intensity of A. dirus infection. 

Collectively, these results indicate that egg fibrils in A. dirus likely play a role in transmission to 

intermediate hosts. 

 Given that fibrils attach to substrates in microhabitats occupied by intermediate hosts, a 

delay in the timing of fibril release would be beneficial when the intermediate host is sediment-

dwelling versus a host that feeds in the water column (Figure 1). In this study, A. dirus fibril 

release occurred after eggs were expelled from the definitive host and this release was associated 

with environmental microorganisms. This could allow eggs to reach the sediment, where the 

intermediate host feeds, prior to releasing fibrils. In contrast, the acanthocephalan 

Leptorhynchoides thecatus has fibrils released before eggs are expelled from the definitive host, 

which could allow eggs to attach to vegetation that the intermediate host feeds on while sinking 

through the water column (Barger & Nickol, 1998). Thus, the timing of fibril release in 

acanthocephalans appears to be related to the factors associated with the host’s habitat. 

 Variation in egg morphology appears to be consistent with different mechanisms of 

transmission in several taxa. For example, fibrils have been proposed to increase encounter rates 

with water column-dwelling hosts in other helminths (e.g. cestodes; Munson, 1972). Egg 
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buoyancy has also been proposed to increase transmission to intermediate hosts that feed in the 

water column. For example, the outer membrane of eggs of the acanthocephalan Pallisentis 

rexus expand, and become buoyant, increasing the time they spend floating in water column, 

where their copepod intermediate host feeds (Wongkham & Whitfield, 2004). Similarly in 

tapeworms, taxa with swimming hosts (e.g. copepods) have buoyant eggs, whereas taxa with 

benthic hosts have heavy, quickly sinking, eggs (Jarecka, 1961). 

 Oetinger and Nickol (1974) proposed one benefit of egg fibrils in acanthocephalans is 

that they could slow passage of eggs through the intestines of the intermediate host, hence 

increasing establishment success. The results obtained here are consistent with this hypothesis in 

that there was an increase in infection prevalence and mean intensity of A. dirus eggs with fibrils 

released (Table 2). However, there is a concern that the presence of fibrils might have increased 

establishment success by attaching the eggs to the leaf, rather than slowing passage through the 

intestines of C. intermedius. Given the chosen experimental design, I was unable to determine 

the number of eggs consumed by each individual. Consequently, it is unclear whether the 

presence of released fibrils could have had an effect on consumption by C. intermedius. 

 Given the potential benefits of egg fibrils in transmission to and establishment in 

intermediate hosts, it seems likely that the presence of fibrils would be beneficial in all 

acanthocephalans. However, fibrils appear to be present in less than 10% of taxa described in the 

literature (Chapter 1). A phylogeny of fibril evolution indicated that fibrils are likely 

homoplasies (Chapter 2). If fibrils evolved as a mechanism to increase establishment success in 

intermediate hosts, then they would likely be found in all acanthocephalans regardless of habitat 

(aquatic, semi-aquatic, terrestrial). Fibrils appear to be more common in aquatic habitats 
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(Chapter 2, Table 1), which may indicate that properties of the habitat may influence the 

evolution of fibrils in many cases. 
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