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INTRODUCTION 

Graph theory is the study of mathematical 
objects called graphs, which are defined as 
collections of vertices and the edges between 
those vertices. 

Definition 1. A graph G = (V, E) is a finite set V 
of vertices together with a set E of edges, each 
of which is an unordered pair of distinct vertices. 

 
 

 
Figure 1: Depicted above is an example of a graph. 
In this case, the graph is the wheel graph consisting 
of 7 vertices, or W7. 

 

* dmorga19@depaul.edu 
Research Completed in Summer 2023 

ABSTRACT In a proper vertex coloring for a graph G, we call a vertex a b-vertex whenever this vertex 
is adjacent to at least one vertex of every color class. The b-chromatic number of a graph is defined to 
be the greatest integer k such that there exists a proper coloring on the graph with k colors where there 
is at least one b-vertex in every color class. This paper is on the b-chromatic number of the total graphs 
of complete bipartite graphs. We find bounds of the b-chromatic number for the total graphs of complete 
bipartite graphs and provide a method to calculate the b-chromatic number of the total graphs of 
complete bipartite graphs in specific conditions. 
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Graphs come in all shapes and sizes and as such 
we often refer to specific families of graphs, for 
example: paths, cycles, wheels, trees, and 
bipartite graphs. 

In this paper we will be investigating bipartite 
graphs. 

Definition 2. A bipartite graph G is a graph 
whose vertices can be organized into two sets A 
and B, such that any edge does not have both 
endpoints in the same set. 

 

Figure 2: Depicted above is an example of two 
graphs that encode the same information of the same 
bipartite graph. 

Despite looking completely different, the graphs 
in Figure 2 are the same graph and contain the 
same information but have been organized 
differently. In either graph we can still organize 
our vertices into two sets such that no two 
vertices in a given set are adjacent to each other. 
In this paper we will be concerned with 
complete bipartite graphs, which are defined as 
follows. 

Definition 3. A complete bipartite graph, 
denoted Ka,b, is a bipartite graph with the 
property that any vertex in one of its disjoint sets 
A or B, is adjacent to all vertices in the other 
disjoint set. 

 

 
 

Figure 3: The above is an example of a complete 
bipartite graph K3,3, with the three vertices on the left 
being in set A, and the right three vertices being in set 
B. 

There is a plethora of questions one can ask 
about graphs and their various properties, but we 
will be investigating an extension of graphs 
called total graphs, where we construct a new 
graph by converting our edges into vertices and 
reconnecting our graph. 

Definition 4: Two vertices are adjacent in the 
original graph if they share an edge. 

Definition 5: If two edges or an edge and a 
vertex share an endpoint in the original graph, 
then it is said they are incident to each other. 

Definition 6. Given a graph 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸), the 
total graph of G, denoted T(G), is a graph whose 
vertices are all vertices and edges in G. 
Moreover, two vertices in T(G) have an edge if 
and only if their counterparts in G were either 
adjacent vertices, were an adjacent edges, or 
were an incident vertex and edge. That is, - 
𝑇𝑇(𝐺𝐺) = ((𝑉𝑉 ∪ 𝐸𝐸), (𝐸𝐸 ∪ 𝐹𝐹 ∪ 𝐻𝐻)) where F = 
{{x, y} ∣ x ∈ 𝐸𝐸, y ∈ 𝑉𝑉, y ∈ 𝑥𝑥}, and 𝐻𝐻 = 
{{𝑤𝑤, 𝑧𝑧} ∣ 𝑤𝑤, 𝑧𝑧 ∈ 𝐸𝐸, 𝑣𝑣 ∈ 𝑉𝑉, 𝑣𝑣 ∈ 𝑤𝑤, 𝑧𝑧 }. 
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Figure 4: An example of a total graph of a bipartite 
graph. 

 

Figure 5: The complete bipartite graph K3,2 and its 
total graph T(K3,2). 

Total graphs get messy. We can see from Figure 
5 that our total graphs grow quickly in size and 
complexity for even small complete bipartite 
graphs. One way that we can measure this 
growth is the degree of the highest degree 
vertex, denoted Δ(G). 

Definition 7. Given a graph G=(V, E) and 
𝑣𝑣 ∈ 𝑉𝑉, we define degG(v) to be the number of 
vertices adjacent to v in G. 

Definition 8. Δ(G) is the degree of the highest 
degree vertex in G. 

We see that the number of vertices a given 
vertex is adjacent to, or the degree of our vertex, 
increases in the total graph. Let G=(V, E) be a 
graph, then let 𝑣𝑣 ∈ 𝑉𝑉. Then we know degT(G)(v) 
= 2degG(v), because we know that the degree of 
a vertex in v is connected to deg(v) other vertices 
in G, by deg(v) edges. So in a total graph of G, 
those deg(v) edges become vertices that are 
adjacent to v, thus doubling deg(v). Then it 
follows that Δ(G) ≤ Δ(T(G)). 

METHODS 
  Graph Coloring 

The fundamental process of this paper is graph 
coloring, which consists of assigning colors to 
vertices of a graph. Of course, to produce 
anything interesting we impose certain 
restrictions to our coloring process. One such 
restriction that we require our coloring to be 
proper. 

Definition 9. A proper coloring of a graph 𝐺𝐺 = 
(𝑉𝑉, 𝐸𝐸) is a function f : V →ℕ such that for 
𝑣𝑣1, 𝑣𝑣2 ∈ 𝑉𝑉 and 𝑒𝑒 = {𝑣𝑣1, 𝑣𝑣2} ∈ 𝐸𝐸 that 𝑓𝑓(𝑣𝑣1) ≠ 
𝑓𝑓(𝑣𝑣2). 

We will interpret each value as a color, hence 
our terminology for “coloring”. As discussed 
previously, writing out and coloring total graphs 
would be difficult, so instead we can utilize a 
proper total coloring. 

Definition 10. A proper total coloring of a graph 
𝐺𝐺 = (𝑉𝑉, 𝐸𝐸) is a function f : V ∪ E ⟶ ℕ that 
takes vertices and edges in G and assigns them 
each a color such that no pair of adjacent 
vertices, no pair of adjacent edges, and no pair 
consisting of an incident edge and vertex are 
assigned the same color. 

Any total proper coloring of a graph is a proper 
coloring of the total graph, and vice versa. 
Because we are only concerned with graph 
colorings of 𝑇𝑇(𝐺𝐺), we can use a proper total 
coloring to minimize the legwork of writing out 
and then coloring our total graphs. This works 
because our colored edges act the same as 
vertices in 𝑇𝑇(𝐺𝐺) and therefore obey the same 
rules for our coloring purposes. 

It is natural to ask, “What is the smallest number 
of colors one can use for a proper coloring?”. 

Definition 11. The chromatic number of a graph 
G is the fewest number of colors required for a 
proper coloring and is notated χ(G). 
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Take for example the path graph P3 in Figure 6. 
We can pick a vertex and color it color 1, then 
we can move onto another vertex adjacent to it. 
Then we must use another color, color 2, to 
maintain a proper coloring. Finally, we see that 
our last vertex can be colored with color 1. Then 
we see that we have χ(P3) = 2. 

 

Figure 6: Depicted above is the path graph P3 being 
colored with 2 colors. 

It is natural to explore questions related to the 
minimum number of colors we can use to color a 
graph, as well as the maximum number of 
colors. These are all questions that have real 
world applications that warrant investigation. In 
fact, within the last decade graph coloring has 
been used to improve the postal distribution 
system [2]. In addition, graph coloring also has 
applications in systems used to plan airplane 
layovers and healthcare data analysis [1]. 

  B-Chromatic Number 

The notion of b-colorings was introduced by 
Irving and Manlove in 1999 [3] and is 
expounded up by Jakovac and Peterin [4]. 

Definition 12. Given a properly colored graph 
G, a b-vertex is a vertex that is adjacent to at 
least one other vertex of every other color. 

Definition 13. A b-coloring is a proper coloring 
of a properly colored graph 𝐺𝐺 such that for each 
color class, there is at least one b-vertex of that 
color. 

Definition 14. A total b-coloring is a proper 
total coloring of a graph 𝐺𝐺 such that for each 
color class, there is at least one b-vertex of that 
color. 

Definition 15. The b-chromatic number of a 
graph, denoted φ(G), is the maximum number of 
colors you can use in a b-coloring. 

Our chromatic number is necessarily smaller 
than our b-chromatic number. If we had a 
smaller b-chromatic number than our chromatic 
number that would be a contradiction because 
then we have found a coloring using less colors 
than our chromatic number. We cannot have 
more colors than the degree of the vertex with 
the most adjacent vertices. Then it follows that 
χ(G) ≤ φ(G) ≤ Δ(G) + 1 [4]. 

We can give a better upper bound for our b- 
chromatic number. If our b-chromatic number is 
n, then by definition we need at least n vertices 
with degree at least n − 1. We define this new 
bound as our m-degree. 

Definition 16. The m-degree of a graph G, 
written m(G), is the maximum integer n such 
that G has at least n vertices of at least degree 
n − 1. 

Then it follows that φ(𝐺𝐺) ≤ 𝑚𝑚(𝐺𝐺), as the 
b-chromatic number will either reach the 
m-degree or will fall short. 

Putting this all together we can check the cycle 
C3. We can see that our m-degree is 3, as we 
have 3 vertices with degree 2. Then we can 
verify that C3 has a b-chromatic number that is 
equal to its m-degree and φ(C3) = 3. In this case 
we have χ(C3) = φ(C3) = m(C3). 

 

Figure 7: Pictured above the cycle graph C3 colored 
with three colors. 
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It is important to note that we do not always 
reach the upper bound of the b-chromatic 
number set by the m-degree, as we will see in 
later examples of Ka,b. 
 

RESULTS 

B-Chromatic Number of Complete Bipartite 
Graphs 

Complete bipartite graphs have some curious 
properties when it comes to b-coloring. Despite 
having relatively high m-degrees, complete 
bipartite graphs only ever reach a b-chromatic 
number of 2. 

Lemma 1. The b-chromatic number of the 
complete bipartite graph Ka,b is 2. That is, 
φ(𝐾𝐾𝑎𝑎,𝑏𝑏) = 2. 

Proof: Let G = Ka,b, with the vertices in G 
organized into two disjoint sets A and B, with 
cardinalities a and b respectively. If we color 
every vertex in our first set A with color 1, and 
all vertices in B with color 2, then we have a b- 
coloring of G with 2 colors, as every vertex of 
color 1 that is in set A is connected to a vertex in 
B of color 2 and the same with the other vertices 
in B. Hence, φ(𝐾𝐾𝑎𝑎,𝑏𝑏) ≤ 2. 

Now we will show we cannot have φ(Ka,b) ≥ 3. 
Assume that φ(Ka,b)=k ≥ 3, for some 𝑘𝑘 ∈ ℕ. 
Vertices will either be in a set A or a set B, with 
vertices within the same set not being adjacent 
to each other. Without loss of generality let 𝑣𝑣 ∈ 
A be a b-vertex of color 1, which means that 
there are vertices 𝑣𝑣2, 𝑣𝑣3 ∈ 𝐵𝐵 of colors 2 and 3, 
respectively. But then, we see that we cannot 
have b-vertices for both colors 2 and 3 in either 
set A or set B, as no vertices in set A can be 
colored with colors 2 and 3, as then we would 
have an improper coloring. Thus, we see that we 
can have at most b-vertices of one color in each 
set and we cannot have φ(Ka,b) ≥ 3. 

 

 
 

Figure 8: Depicted above is complete bipartite 
showing φ(Ka,b) = 2. 

As mentioned previously we can use our m- 
degree to act as an upper bound for our b- 
chromatic numbers for both Ka,b as well as 
T(Ka,b). 

Lemma 2. The m-degree of Ka,b is equal to 
min(a, b)+1. 

Proof. Without loss of generality, we can say 
b ≤ a. Then we know that there will be b vertices 
in our set B and a vertices in our set A. Then our 
vertices in set A will have degree b, and our 
vertices in set B will have degree a. Then 
because b ≤ a, we know that our highest degree 
vertices will be our vertices in set B, but we only 
have b many of them. So then for us to have an 
m-degree of a + 1 we would need a + 1 vertices 
of degree at least a, which we do not have. On 
the other hand, we can have an m-degree of 
b + 1 as we have a vertices of degree b as well 
as b vertices of degree at least b. Similarly, if we 
let a ≤ b, we find a + 1 to be our m-degree. 
Finally, we cannot have an m-degree of any of 
the values between b and a because either our 
vertices will either have degree a or degree b. If 
we want an m-degree for values between a and b 
than the vertices with degree a will contribute, 
but then we run into the same problem where the 
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vertices of b will not. Hence, we can find the m- 
degree by taking min(a, b)+1. 

Lemma 3. m(T(Ka, b)) = a + b + 1. 

Proof. In T(Ka, b) we have a vertices connected 
to b vertices by b edges, so they have degree 2b 
in T(G). Then we also have b vertices connected 
to a vertices by a edges, so they have degree 2a 
in T(G). Then for our edge vertices we have ab 
edge vertices with 2 incident vertices and a + b 
– 1 adjacent edges. Thus, we have ab edge 
vertices with degree a + b + 1 in T(G). Then the 
highest degree we have are the b vertices with 
degree 2a, but we do not have 2a + 1 vertices of 
degree 2a, so we cannot have an m-degree of 2a. 
But then we have at least a + b + 1 vertices of 
degree at least a + b, because we have b vertices 
with degree 2a as well as the edge vertices with 
degree a + b + 1. Then we have ab + b ≥ a + b 
+ 1. So, we have an m-degree of a + b + 1. 

Unlike in regular complete bipartites, the upper 
bound provided by the m-degree proves to be 
helpful in figuring out T(Ka,b). It is clear that the 
graphs generated by taking the total graph of a 
complete bipartite graph will not be bipartite, 
and so it is not unreasonable to expect that the 
total graph will reach the m-degree, as these 
total graphs will not be restricted by the bipartite 
condition. However, we now show that at least 
in the case where we have T(Kn,2) we cannot 
reach our m-degree of n + 2 + 1, but we can 
reach n + 2. We can prove this by defining an 
algorithm that provides us with a correct total b- 
coloring with n + 2 colors. 

Theorem 1. φ(T(Kn,2)) = n + 2. 

Proof. We will proceed via contradiction, that is, 
suppose that φ(T(Kn,2)) = n + 3. Let G = K2,n for 
some natural number n. Then let {x1, x2} be set 
B and {y1, y2, …, yn}be set A. We will perform a 
total coloring on G with n + 3 colors. Observe 

b-vertices and adjacent to one another. This is 
because n vertices in set A of Kn,2 only have 
degree 2, and cannot be b-vertices. Without loss 
of generality, we can let {x1, y1} be a b-vertex of 
color 1, then we can make it a b-vertex by 
coloring its neighboring vertices colors {2, …, 
n}. Observe that the low-degree end y1 and {x2, 
y1} are colored 2 separate colors. Then color 
another edge adjacent to {x1, y1} and incident to 
x1. Without loss of generality call this edge {x1, 
y2}, then on the low degree end we have y2 and 
{x2, y2} then to maintain a proper coloring we 
see that y2 and {x2, y2} must have opposite colors 
of y1 and {x2, y1}. Then for our third adjacent 
edge {x1, y3}, we see that y3 and {x2, y3} cannot 
be either of the necessary colors, so we cannot 
make this edge a b-vertex. Thus, we cannot have 
φ(T(Kn,2)) ≠ n + 3. 

 

Figure 9: Illustration of algorithm showing 
φ(T(Kn,2)) ≠ n + 3. Underlined elements are b- 
vertices. Ellipses indicate all n – 4 vertices and their 
respective edges. 

Now we show that we can have φ(T(Kn,2)) = 
n + 2. Let G = K2,n for some natural number n. 
Then we will perform a total b-coloring on G 
with colors {1, 2, 3, …, n+2}. We will make 
both {x1, x2} be color 1, then { y2, …, yn} be 
color n + 2, and y1 be color n + 1. Then color 

that necessarily we must have ⌊𝑛𝑛⌋ 
2 

edges be both the edges between x1 and yi for 1 ≤ i ≤ n with 
colors {2, …, n + 1}. 
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Then all the vertices {x1}, {x1, y2}, {x1, y3}, 
…,{x1, yn} are b-vertices. Now we just need to 
make a b-vertex with color n+2, so we color the 
edge {x2, y1} with color n+2 and all the edges 
adjacent to itself with the colors {2, …, n}. 
Observe that {x2, y1} is adjacent to all other 
colors and is therefore a b-vertex. Thus, we have 
φ(Kn,2) = n + 2. 

 

Figure 10: Illustration of the coloring algorithm in 
the proof. Underlined elements are b-vertices, and 
ellipses represent all n – 4 vertices and their 
respective edges. 

Indeed, finding a coloring algorithm is a useful 
method of proving facts about the b-chromatic 
number of the total graphs of complete bipartite 
graphs. However, in these proofs the algorithm 
benefits greatly from the fact that we have 2 
vertices in one set of vertices in our complete 
bipartite graph. Beyond 2 vertices, it becomes 
harder to find these patterns and build a method 
of coloring these graphs. For select cases we can 
show that φ(T(Ka,b)) = a+b. For example, we can 
define another coloring algorithm to show that 
φ(T(K4,3)) = 7. 

Theorem 2. φ(T(K4,3)) = 7. 

Proof. We will proceed via contradiction, that is 
we will assume φ(T(K4,3)) = 8. We need at least 
5 of our edges to be b-vertices, as none of our 
vertices in set A can be b-vertices, but all 3 
vertices in set B can be possible b-vertices. Then 
without loss of generality we can choose one 
edge vertex and color its neighbors to make it a 
b-vertex. This edge has an endpoint of degree 4- 
the high degree endpoint. Then because we have 
5 edges that have to be b-vertices and only 4 
vertices on the outside- as depicted in figure 11- 
at least two of these edges must be incident to 
one another. Then let another edge incident to 
our initial edge be a b-vertex. Then we have 3 
neighbors left with 3 colors to use. Those 3 
colors are the same color as our initial edge 
vertex used at its low degree end. Then we know 
that these neighbors form a cycle of 4, so then 
we have 2 vertices, 4 edges, and 2 more high 
degree vertices. The low degree vertices and 
incident edges must be some permutation of 
these 3 colors. So, if you pick an edge in this 
cycle, it is already connected to the other 2 
colors and on the high degree end, so it must 
share one of those two other colors and because 
we need every adjacent vertex to a different 
color, it cannot be a b-vertex, so we lose 4 edges 
and two high degree vertices. Then we would 
need to repeat this process again, which would 
mean we would not be able to color this graph 
with 8 colors. 
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Figure 11: Depicted above is a visualization of the 
proof φ(K4,3) ≠ 8. Black edges and vertices are 
uncolored. The violet and orange edges are b-vertices 
1 and 2. 

Then to show φ(K4,3) = 7, it suffices to show a 
valid total b-coloring with 7 colors, which is 
provided by Figure 12, pictured below. 

 

 
Figure 12: B-coloring of K4,3 using 7 colors. Bold 
edges and square vertices are b-vertices. 

DISCUSSION 
  Conclusion 

In this paper we have discussed b-chromatic 
numbers for complete bipartite graphs and the b- 
chromatic number for T(Kn,2), as well as 
calculating the b-chromatic number for a select 
case T(K4,3). 

Finding the b-chromatic number total graphs for 
complete bipartite graphs is a difficult process. 
The graphs grow quickly and often do not seem 
to meet their m-degree. Usually, it is trivial to 
color φ(Ka,b) = a + b – 1, but is harder to show 
that φ(T(Ka,b)) = a + b or φ(T(Ka,b)) = a + b + 1. 

Conjecture: φ(T(Ka,b)) = a + b. 

In the future we hope to explore the other cases 
for φ(T(Ka,b)), namely when a = b and a ≥ b. It is 
our conjecture that φ(T(Ka,b)) = a + b. We have 
been able to establish this for small cases and 
lack a good, generalized algorithm for proving 
the other more complicated cases. Computer 
assistance could prove to be useful in verifying 
this conjecture for larger cases. 
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