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INTRODUCTION 

 

This paper is interested in a section of graph 
theory related to b-colorings. All graphs, G, in 
this paper are finite, simple, undirected, non- 
trivial, and connected. V(G) represents the set of 
vertices of G, and E(G) the edges. A finite graph 
is defined as a graph G such that |𝑉𝑉(𝐺𝐺)| = 𝑛𝑛 for 
some positive integer n. A simple graph is one 
that contains no edges connecting a vertex to 
itself. An undirected graph is a graph that 
contains no direction from vertex to vertex. A 
non-trivial graph is a graph G such that |𝑉𝑉(𝐺𝐺)| 
>0. Finally, a connected graph is a graph G; there 
always exists a path containing every vertex. A 
path in a graph G is a sequence of vertices such 
that one vertex is adjacent to 

to the next vertex via an edge. 

Given a graph G, a proper coloring of G assigns a 
color to every vertex v ∈ V(G) such that no 
adjacent vertices share the same color (Figure 1). 
All colors exist in the color set C. It is common to 
represent colors as integers such that C = {1, 2, 3, 
4, ..., k} for some integer k colors. You can 
separate the set of vertices of G into color classes. 
If vertices share the same color, they exist in the 
same color class. In this paper, all colorings are 
proper colorings. 

 
 

* edahlen@depaul.edu 
Research Completed in Summer 2023 

ABSTRACT In this paper we focus on the newly introduced b-colorings of a graph G. A b-coloring is 
a proper coloring such that for each color class, there exists at least one vertex that is adjacent to every 
other color. The b-chromatic number of a graph G is the largest number k such that G admits a b-coloring 
with k colors. This paper will introduce the b-chromatic number of some interesting graphs. Several 
operations of graphs are defined, and the b-chromatic number of those operations are found. All graphs 
in this paper are simple, connected, non-regular graphs. In our main result we compute the b-chromatic 
number of the graph power of a star. 
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Figure 1. A proper coloring of P4. 
 

Coloring graph problems were introduced by 
mathematicians and computer scientists in 1852. 
An intuitive question that might come up right 
away is: if you are given any graph G, what is the 
fewest number of colors that can completely color 
G? The smallest number of colors in any coloring 
of a graph G is called the chromatic number of G 
and is denoted by χ(G). The b- chromatic number, 
φ(G), which can be intuitively used to denote the 
largest number of colors used to color a graph 
such that each color class contains a vertex that is 
adjacent to all other colors, was introduced by 
Irving and Manlove in 1997 [5], [Definition 1]. A 
problem that was proposed by famous 
mathematician Augustus De Morgan is the Four-
Color Theorem, which stood open for over 150 
years. Augustus De Morgan conjectured that 
every map can be colored in at most four colors. 
At the time, detailed maps of the world were being 
created. Countries like the United States were 
divided up into many small parts, and coloring 
such maps created a problem for cartographers – 
a problem which needed a graph theory solution 
(Figure 2). 

 
To see how we model this problem with graph 
theory, we let each territory be a vertex, and we 
connected a pair of vertices if and only if the 
corresponding territories are adjacent to each 
other. Each such graph of territories is planar, 
meaning that no pairs of edges intersect. Adjacent 
territories cannot be the same color because then 
the territories would be indistinguishable. 
Therefore, a proper coloring is needed to make 
each territory distinct. A lot of effort has been put 
into finding the chromatic number of any simple 
planar graph, and the conclusion is that given a 
planar graph G, χ(G) ≤ 4. For more information 
on the Four-Color Theorem, mappings, 
combinatorial hypermaps, and what has been 
done after the four-color theorem; consider the 
following. [4] 

 
Some other work has been done in postal mail 
sorting systems and b-colorings. Many sorting 

systems rely on density of address blocks to 
determine hierarchical necessity. The method of 
finding the b-chromatic number of a graph G 
consequently identifies those dense areas of G. A 
b-coloring with k colors contains k vertices that 
connect to all other color classes. The b- 
chromatic number, which is of interest to postal 
mail systems, finds the maximum number of 
colors that can be used in a graph such that there 
exists a vertex in each class that is connected to 
every other color class. For example, suppose we 
are looking at a certain area of downtown 
Chicago, where each address is a vertex. Vertices 
are adjacent to each other if one address has 
received mail from another address in the past 6 
months. In this graph there may be some 
extremely dense vertices like schools, restaurants, 
or government buildings. But finding the b-
vertices of this graph shows the most relevant 
addresses in the area and therefore sets a 
precedent for future hierarchical postal sorting 
improvisations. For a more detailed explanation 
consider the following. [3] 

 

Figure 2. A proper coloring of the counties of the 
United States of America using four colors. 

 
Power graphs have been useful in the field of 
computer science and are well studied. The 
results in this paper aim to explore non-regular 
power graphs. For information on simple power 
graphs and regular power graphs consider [2],[6]. 
The p-th power graph, denoted Gp , is a graph 
obtained from G by connecting vertices at 
distances p or less. More formally, 

 
V(Gp) = V(G) and E(Gp) = {(u, v) : d(u, v) ≤ p}: 

𝑢𝑢, 𝑣𝑣 ∈ 𝐺𝐺. 
 

The function d(u,v) represents the distance 
between the vertices u and v. The distance 

2

DePaul Discoveries, Vol. 13 [2024], Article 4

https://via.library.depaul.edu/depaul-disc/vol13/iss1/4



between u and v is the shortest path of edges from 
u to v. This is not to be confused with the diameter 
of a graph G, denoted as Diam(G), the diameter 
of a graph represents the longest distance between 
two points u,v ∈ G. The diameter is a common 
general bound as it limits the size of a given 
graph. Other bounds on a graph may include the 
vertex set, but sometimes we would like a vertex 
set to be unbounded for proof purposes. The 
Distance k-graph of G, denoted Gk has the vertex 
set of G and the edge set {(u, v) : d(u, v) = k}. It is 
clear then that Gk ⊆ Gk . Graphs of interest for 
distance k-graphs are the hyper- cube graph Qn, 
the folded cube graph Fn, halved graphs, and 
distance regular graphs. Many subtopics have 
been extensively studied, such as trees, regular 
graphs, cubic graphs, and cartesian products. 
[6][2][5]. 

 
Fact 1. For any graph G of order n, if Diam(G) ≤ 
p, then φ(Gp ) = n, with p ≥ 2. 

 
Proof. Since Diam(G) ≤ p, it is trivial to see that 
Gp is a complete graph, so φ(Gp ) = n. 

 
Several notations will be used for describing 
graphs and sub-graphs. Notations Pn, Cn, Kn, Sn, 
Km,n stand for the path, cycle, complete, star, and 
complete bipartite graphs respectively. A path 
graph is a visual representation of the path 
described in the introduction. A cycle graph is a 
path graph such that the first vertex in the 
sequence is the same as the last vertex. A 
complete graph is a graph such that all vertices 
are adjacent to each other. A star graph contains 
one central vertex, commonly denoted v0, and n 
vertices adjacent to v0. A bipartite graph is a graph 
that can be split into two subsets 𝐴𝐴, 𝐵𝐵 ⊆ 
𝑉𝑉(𝐺𝐺): for all elements 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵 there 
does not exist an element such that 𝑎𝑎 = 𝑏𝑏. A 
complete graph is the bipartite graph as described 
just previously, however every vertex in A is 
adjacent to every vertex in B. Any graph with a 
chromatic number of two is considered bipartite. 
The star graph Sn can be written as K1, n (Table 1). 
For more information consider the following.[1] 
[8]. These graphs are areas of interest for 
computer scientists when dealing with power 
graphs. Bounds on the b-chromatic number have 
been found for the power graph of cycle graphs, 

path graphs, and complete graphs. For more 
information on power graphs and the b-chromatic 
number, consider [2]. 

 
The path graph 
P4 on four 
vertices 

 

 

 
The cycle graph 
C4 on four 
vertices  

 
 

The star graph 
S3 on three outer 
vertices. 

 

 
The complete 
bipartite graph 
K2,3 with 2 
vertices in one 
set and 3 
vertices in the 

other. 

 

 

 
Table 1. A proper coloring of P4, C4, S3, K2,3. 

 
 

METHODS 

In math research, we discover our main results by 
using precise definitions, using inequalities to 
provide bounds for our computations, and 
computing small examples. We will include all 
three of these elements in this section, beginning 
with a precise definition of a b-coloring. 

 
Let C = {c1, c2, c3...ck} where k is the number of 
desired colors in a graph. We can refer to a graph 
coloring as a function f : V(G) → C. It is common 
for each element in C to be an integer for 
simplicity, however the set may include colors for 
visual references. In this paper, we will use integers 
to represent the colors so therefore the function f : 
V(G) → 𝕫𝕫+. The 𝕫𝕫+ here simply means the set of 
all positive integers. If this function is still 
unclear, then imagine assigning every vertex in a 
graph a positive integer. You may use the same 
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color multiple times; however, the same vertex 
may not have two different colors. This is the 
definition of a function. 

 
Definition 1. Let G be a graph with a proper 
coloring. A b-vertex is a vertex that is adjacent to 
every other color. A b-coloring is a proper 
coloring when there exists at least one b-vertex of 
each color (Figure 4). 

 
 

Figure 4. A b-coloring of a graph G. 
 

Definition 2. The b-chromatic number, 
denoted φ(G), is the largest positive integer k 
such that there exists a b-coloring with k 
colors. 

 
Intuitively, the b-chromatic number is the 
maximum number of colors such that there 
exists a vertex in every color class that is 
adjacent to at least one vertex of every other 
color class. The clear relation to the adjacency 
matrix A(G) and the adjacency hierarchy leads 
us to the definition of the m-degree. 

 
Definition 3. m(G) := max{1 ≤ i ≤ n : d(xi) ≤ i 
− 1} where n = |V(G)|. 

 
In other words, the m-degree of a graph G is the 
maximum integer i such that there exist at least 
i vertices of at least degree 𝑖𝑖 − 1. By this 
definition, φ(G) ≤ m(G). The elements xi, that 
satisfy the inequality d(xi) ≤ i – 1, are called 
dense vertices. In other works, they may be 

called b-vertices or dominating-vertices. A 
vertex v with deg(v)−1 = k can, but does not 
have to, be a b-vertex. Refer to the definition of 
a b-vertex and a b-coloring [Definition 1]. The 
lower bound of the b-chromatic number can be 
either the largest complete sub-graph Kn in G 
known as the clique number, denoted 
ω(G):|𝜔𝜔(𝐺𝐺)| = 𝑛𝑛; or the chromatic number 
χ(G). The chromatic number is always greater 
or equal to the clique number, therefore the 
chromatic number can be used as a better 
general lower bound. For most graphs, the b- 
chromatic number will either be equal to m(G) 
or m(G) − 1. Note that just because a graph can 
reach a certain m-degree does not therefore 
mean the graph can be colored with that 
number. The m-degree is simply an upper- 
bound. First, we will prove that a graph has a 
certain upper-bound, then we will prove 
whether it can reach it or if it cannot. 

 
Corollary 1. ω(G) ≤ χ(G) ≤ φ(G) ≤ m(G) 

 
Definition 4. ∆(G) = max{deg(vi) : vi  G} or 
the highest degree of a vertex in a graph G. 

 
Additionally, δ(G) = min{deg(vi) : vi  G}, or 
the smallest degree of a vertex in a graph G. 
Areas of interest are degree-regular graphs 
where δ(G) = ∆(G) and therefore the m- 
degree, m(G) = deg(v) + 1. This makes finding 
the b-chromatic number of regular graphs 
simple, as the upper-bound is φ(G) ≤ deg(v) + 
1 and most regular graphs will reach this 
bound. [5][6] 

 
Definition 5. The power graph of G, denoted 
as Gp, has a vertex set V(G) and an edge set 
E(Gp) = {(u, v) : d(u, v) ≤ p}. 

 
One of the general operations for any graph G 
that is part of a graph’s family, is its power 
graph. This function is not one-to-one, and its 
inverse does not exist for all graphs, as such, 
finding the root of Gp is considered NP-Hard. 

 
 

RESULTS 

  Lemma 1. G1 = G 
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Proof. Let p=1. By the definition of a power 
graph, we must have an edge between any vertex 
with distance less than or equal to 1. It is therefore 
trivial to see that connecting all vertices with 
distance 1 in G does not change the graph and 
therefore G1 is isomorphic to G. 

𝜑𝜑(𝑆𝑆𝑘𝑘) = {  2, 𝑖𝑖𝑖𝑖 𝑘𝑘 = 1 

Definition 6. The Cartesian product of two 
graphs G and H is denoted G□H. V(𝐺𝐺□𝐻𝐻) = 
𝑉𝑉(𝐺𝐺) × 𝑉𝑉(𝐻𝐻). If there exist vertices 𝑢𝑢1, 𝑣𝑣1 ∈ 
𝐺𝐺 ∧ 𝑢𝑢2, 𝑣𝑣2 ∈ 𝐻𝐻, then there exists an edge 
between (𝑢𝑢1, 𝑢𝑢2) and (𝑣𝑣1, 𝑣𝑣2) if, and only if, 
𝑢𝑢1 = 𝑣𝑣1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢2~𝑣𝑣2 or 𝑢𝑢2 = 𝑣𝑣2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢1~𝑣𝑣1. 

 
Defintion 7. A regular graph is a graph 
𝐺𝐺: ∀𝑣𝑣 ∈ 𝑉𝑉(𝐺𝐺), 𝑑𝑑(𝑣𝑣) = 𝑘𝑘 for some positive 

Theorem 1. 𝑛𝑛 𝑛𝑛 + 1, 𝑖𝑖𝑖𝑖 𝑘𝑘 ≥ 1 integer k. Consequently, the graph is 
considered k-regular. 

Proof. The kth-power graph of G connects v  
V(G) if the distance between two vertices is at 
most k. Additionally, u, v  S n , d(u, v) ≤ 2, as 
you can always travel from u to the center vertex 
v0 and then to v. (Sn)2 is the graph of Sn such that 
vertices distances at most 2 are connected by an 
edge. It is trivial to see that every vertex in Sn is 
connected to every other vertex. Visually, if vo is 
moved to the outside to create a cycle, the graph 
is isomorphic to Kn+1, therefore its b-chromatic 
number is the same as Kn+1. The b-chromatic 
number of Kn+1 is n +1, therefore 𝜑𝜑(𝑆𝑆𝑛𝑛𝑘𝑘)=n +1 
for k > 1. 

 
Additionally, this can be verified through Fact 1. 

 
DISCUSSION 

Subtopics discussed during this research 
project have been the cartesian product of 
certain families of graphs. We looked at the 
star graph, the line graph of the star graph, the 
total graph of the star graph, the power graph 
of the star graph, and caterpillar graphs [1][9]. 
The cartesian product gives insight on a 
possible operation between graphs. There are 
very few well-studied operations between 
graphs, a few of which are the rooted product, 
the lexicographic product, the strong product, 
the tensor product, and the cartesian product 
[7]. The most used product between graphs is 
the cartesian product and in our research, we 
found that b-chromatic numbers for the 
cartesian product of degree regular graphs are 
easier to find than non-regular graphs. Next, 
we will briefly define the cartesian product 
and for the following Lemma we will define a 
n-regular graph. 

 
Lemma 2. Given a graph G that is d1-regular 
and a graph H that is d2-regular, the cartesian 
product is (d1 + d2)-regular. 

 
Proof. A short proof using the definition of the 
cartesian product of two sets shows that for any 
fixed vertex u ∈ G, u must have d1 adjacent 
vertices and for any fixed vertex v ∈ H, v must 
have d2 adjacent vertices. Therefore, by the 
definition of the cartesian product, any fixed 
vertex (u, v) ∈ V(G□H) must also be adjacent 
to all d1 vertices that were originally adjacent 
to u and must also be adjacent to all d2 vertices 
that were originally adjacent to v. Because of 
this, deg((u, v)) = d1 + d2 and if every vertex 
has an identical degree, then it must be true that 
G□H is (d1 + d2)-regular. 

 
Corollary 2. φ(G□H) ≤ d1 + d2 + 1. 

 
Although regular graphs are important in 
defining recurring similar data structures, like 
cyclic organic molecules or set arrays in 
multiple dimensions, there exist more 
applicable uses of graph colorings in non-
regular graphs. For example, given a non-
regular graph Pn and regular graph Ck, finding 
the b-chromatic number of the cartesian 
product of these two graphs is non-trivial. In 
addition to looking at regular graphs, we 
looked at the cartesian product of two star 
graphs K1,n. In [6], it was found that 
φ(K1,n□K1,n ) = n + 2, if n ≥ 
2. However, we believe we have generalized the 
result to find that, 

 
Conjecture 1. φ(K1,n□K1,m ) = m + 2, if n ≥ m. 
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√ 

    Conclusion 
The research project has left some questions 
unanswered that we wish to leave as open 
problems to the public. 

 
Conjecture 2. We strongly believe that the b- 
chromatic number of the tensor product of two 
stars, φ(Sn × Sm) = m + n + 1. 

 
This has not been verified for all m,n. 

 
Question 1. What is the relation between the total 
graph function and the Cartesian product of a 
graph with itself? Is the b-chromatic number of 
the cartesian product G□G always greater than 
or equal to total graph T (G)? 

 
Question 2. The power graph of a cycle C4 

and the power graph of a star S3 are 
isomorphic. This becomes problematic when 
trying to take the inverse of the power graph 
because the function is not one-to-one. If a 
graph does not contain the sub-graphs C4 and 
S3 is there a way to define a “root graph” 
function that when given Gp will return G? In 
other words, is it possible to construct a 
function 𝑝𝑝 𝐺𝐺? 

 
Question 3. A star graph Sn is isomorphic to 

the complete bipartite graph K1,n. If we 
consider Conjecture 1 as a base case, is it 
possible to find φ(Ku,n□Kv,m) using 
mathematical induction? 

 
Question 4. General bounds for the b- 
chromatic number of the cartesian product of 
graphs with girth ≥ 5 have been considered, 
however bounds for girths ≤ 4 have not been 
generalized and are considered NP-hard as the 
girth gets too small to consider all possibilities. 

 
Question 5. Given that you can find the power 
graph of any graph using the theorem 
provided in this paper and previous lemmas 
for cycles and paths, is it possible to subdivide 
any graph into ranked trees based on distance? 
What does this tell us about the graph’s 
chromatic number, b-chromatic number, and 
dense vertices? For any graph G, if it contains 
a high amount n of dense vertices at a large 
enough distance away from each other 
(determined by the power graph), are there 
bounds on the b-chromatic number based on 
n? 
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