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Chapter 1 
 

Tetrahydroisoquinoline Alkaloids in Medicinal Chemistry 

Alkaloids, low-molecular weight compounds that commonly contain basic nitrogen, are produced by 

plants, bacteria, fungi, and animals. Alkaloid producing plants have been used for ages for vast 

therapeutic applications including in teas, medicines, poisons and tinctures for at least 4,000 years. The 

knowledge of medicinal and toxic properties of plants has been beneficial and valued to civilizations 

ranging from Assyria to China. In Assyria, 4,000-year-old plates have been found mentioning and 

describing 250 different plants. In India, details of the traditional medicine are documented in the 

Ayurveda.  The knowledge of these alkaloid-producing plants reached the Mediterranean where 

medicinal plants were documented on the Ebers papyrus.  Ancient Greeks and Romans, including 

Hippocrates and Aristotle, also utilized this knowledge, describing hundreds of medicinal plants. In the 

early 19th century, modern techniques were applied to isolate alkaloids. Opium, which is used as an 

analgesic and narcotic, was first researched leading to the isolation of morphine. In 1939, hundreds of 

alkaloids, including strychnine, emetine, brucine, caffeine, piperine, quinine, cinchonine and colchinine, 

were discovered and isolated. Today, most of the pharmaceutical drugs commonly used come from 

natural sources and serve as models in discovering effective drugs. 1  

Pharmaceutical alkaloids have various applications including the ability to affect the nervous system 

(GABA, dopamine, and serotonin), have antihypertensive effects (indole alkaloids), antimalarial activity 

(quinine), anticancer effects (dimeric indoles), antibiotic effects (berberine), analgesics (morphine), 

antitussive (codeine), etc. Over the last 50 years, an estimated 53 alkaloids are currently being used for 

pharmaceutical applications.2Due to the importance of these natural products in medicinal chemistry, 

the development of novel pharmaceutical alkaloids is imperative not only to discover new applications 

but also to serve as a scaffold for novel compounds and as starting materials for semisynthetic 

compounds. 

The Pictet-Spengler reaction of dopamine with 4-hydroxyphenyl-acetaldehyde (4-HPAA) (Figure 1) is the 

first step in the biosynthesis thousands of known alkaloids. This diversity of final products is generated 

by further tailoring reactions. Naturally inspired drug candidates can be made the same way, with 

enzymes from natural biosynthetic pathways or by chemical reactions. The Pictet-Spengler reaction of 

the substrates in question is particularly relevant because the chemical reaction generates a racemic 

mixture of norcoclaurine but enzymes only generate (S)-norcoclaurine.  Because phosphate is so specific 

for catalysis, it is a perfect candidate for investigation of a chiral catalyst that can possibly control the 

stereoselectivity.  Understanding the specificity of phosphate may help chemists design such catalysts.3 
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Figure 1. Vast chemical diversity of natural products beginning from the Pictet-Spengler reaction of 
dopamine and 4-HPAA to form (S)-norcoclaurine Adapted from Libsombe,2008 .4 

The Pictet-Spengler Reaction 

The Pictet-Spengler reaction is a two-step chemical cyclization reaction which was discovered by Amé 

Pictet and Theodor Spengler in 1911 by heating β-phenylethylamine and formaldehyde dimethylacetal 

in the presence of hydrochloric acid. The reaction they described formed the alkaloid 1,2,3,4-

tetrahydroisoquinoline (THI). The mechanism (Scheme 1) begins with the protonation of the carbonyl 

oxygen (1) by the acid which is attacked by the amine reagent. An iminium intermediate (2) is formed 

through proton transfer steps and the release of a water molecule which then undergoes 6-endo-trig 

cyclization reaction, resulting in the loss of aromaticity of the aryl ring. The final deprotonation step 

restores the aromaticity and results in the product THI (3).5 5 6 
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Scheme 1. Mechanism of the Pictet-Spengler reaction where a β-arylenylamine and an aldehyde convert 
to form a tetrahydroisoquinoline using an acid catalyst.  

This mechanism has been studied extensively with most of the previous work focused on Pictet-Spengler 

condensations with highly reactive indoles, such as tryptamine. 5  The Pictet-Spengler condensation 

reaction between tryptamine and an aldehyde occurs in very mild conditions. Cook et al. reviewed the 

data for the reaction of benzaldehyde and tryptamine being prepared at room temperature in a 

nonacidic, aprotic media. Under these conditions, the yield was found to be higher than in aqueous, 

acidic media. 5 A linear relationship between the rate and acidity of the medium was found, indicating 

that there is additional protonation of the N-monoprotonated imines (3) forming superelectrophiles (4). 

Pictet-Spengler reactions with phenethylamines generally require superacids to increase the 

electrophilicity of the iminium by generating a carbocation(Scheme 2).7 This chemistry is utilized for 

synthetic applications; however this linear relationship observed between the rate and acidity of the 

medium adds valuable insight on the Pictet-Spengler mechanism.  
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2 
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Scheme 2. Superacid-catalyzed Pictet-Spengler reactions of imines (1) of 2-phenyethylamine to give the 
parent (2a-2g)  and 1-substituted 1,2,3,4-tetrahydroisoquinoline in moderate to high yields.7  

In contrast to the indole reaction, the Pictet-Spengler reaction between 4-hydroxyphenethylamine (4-

HPAA) compounds such as dopamine and aldehydes, occur readily under mild conditions (Error! 

Reference source not found.Scheme 3).3c The reaction is initiated by formation of a carbinolamine 

(aminol), followed by elimination of water to form an iminium cation. The subsequent rate-limiting step, 

deprotonation of the dopamine 3-hydroxy, triggers cyclization onto the iminium. The final 

deprotonation step forms the THI (e.g. norcoclaurine for R = C5H4OH). The formation of (S)-

norcoclaurine is greatly studied because this compound is the starting compound in benzylisoquinoline 

alkaloid (BIA) biosynthesis. (Figure 1). 8 

Scheme 3. Pictet-Spengler reaction of dopamine and aldehyde to form tetrahydroisoquinoline . 3c 

 

Proposed Reaction Mechanisms 

The reaction was further studied by Pesnot et. al who demonstrated  that near neutral pH, the 

conversion rate of the Pictet-Spengler reaction between equimolar 4-HPAA and dopamine increased to 

77%  by increasing the temperature reaction to 50°C. In addition, Pesnot et al. noted that at pH 6.0, 

phosphate catalyzes the reaction much more effectively than other buffers.3c (Chapter 2, Table 1). 

Buffers that do not contain phosphate have very low conversion rates whereas phosphate-containing 

buffers have effective catalytic activity. Interestingly, diphosphate (pyrophosphate) has half the rate of 

phosphate-containing buffers. 
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Pesnot et al. proposed two possible mechanisms to explain the apparent specificity of phosphate 

catalysis (see Scheme 4). In path a of Scheme 4, phosphate ion forms a phosphate carbinolamine and 

the resulting a 6-exo-tet ring closure is facilitated by the phosphate leaving group. The role of phosphate 

is to act as a nucleophile by formation of an unusual phosphate carbinolamine that is apparently more 

electrophilic than the iminium. By path b, the role of phosphate is to deprotonate to make the aromatic 

ring more nucleophilic for 6-endo-trig substitution. In this mechanism, phosphate is a base catalyst. 

Neither of these mechanisms explains the apparent uniqueness of phosphate ion in the reaction 

mechanism. 

 

Scheme 4. Possible reaction mechanism for phosphate catalysis proposed by Pesnot el al.3c 

The mechanism of the Pictet-Spengler reaction will be studied to determine if the phosphate ion is a 

selective catalyst for the reaction and whether the ability to selectively catalyze other reactions or 

generate phosphate-based catalysts that control the stereoselectivity in this reaction.  

In collaboration with Dr. Ruben Parra, we have found no theoretical evidence for path a. We have 

examined possible energy landscapes for path b as well as alternative mechanisms involving phosphate. 

For example, by one alternative proposal by Dr. Ruben Parra, phosphate catalyzes the Pictet-Spengler 

condensation through the involvement of two phosphate ions forming a hydrogen bond network 

(Scheme 5). Although, this mechanism requires the infrequent situation of three molecules to form a 

reactive complex, it does uniquely require the geometry of phosphate. Initial computational results also 

suggest that phosphate ion may selectively catalyze steps 5 and 6 in Scheme 1 as a single transition 

state.9  

 



 

Page 10 of 54 
 

Scheme 5. Proposed transition state in which two phosphate ions form a hydrogen bond network. 

In principle, any of these proposals can be supported or eliminated with experimental evidence. In this 

thesis, an experimental investigation of the mechanism of the Pictet-Spengler reaction through kinetic 

studies in phosphate buffer will be presented and the results will be compared to those in an alternative 

catalytic buffer, maleic acid. 

For all studies, the reaction of dopamine and propanal were examined as a model system. The most 

common substrate for this reaction in biology, 4-HPAA, was not selected because is not soluble in water 

above 10 mM. 10  Furthermore, the compound is not commercially available and needs to be prepared.10  

Moreover, 4-HPAA has an additional reactive phenol group that could potentially complicate 

mechanistic interpretations. Propanal is the lowest molecular weight aldehyde that is liquid at room 

temperature. Given that it is readily available and has no other potentially catalytic reactive groups, it 

was selected as the aldehyde for all experiments. Propanal has the additional benefit of being small 

enough to model computationally.  
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Chapter 2 – Finding a Buffer to Compare to Phosphate and 

Identification of a Reaction Side Product 
 

2.1 Introduction 
Pesnot et al. cataloged the relative reaction rate of the Pictet-Spengler reaction of dopamine and 4-

HPAA in several buffers. Many of these buffers did not have pKa values that were similar to phosphate 

(Table 1). Pesnot et al. found that the buffers with potassium or sodium salts of phosphate, UMP and 

Glc-1-P have high conversion rates for the Pictet-Spengler reaction of phenylacetaldehyde with various 

phenethethylamines. Borate and vanadate, which are known to mimic phosphate, did not catalyze the 

formation of products. This suggested that that there is some sort of phosphate specificity in the 

reaction. 

Table 1. Buffer influence on Pictet-Spengler reaction of dopamine and 4-HPAA. Conversion rates given by 
Pesnot et. al. Reaction conditions: 4 mM dopamine, 4.8 mM 4-HPAA, and 0.1 M buffer, pH 6, 50 °C, 1 
hour. 

Buffer pKa Conversion (%) 

Tris  8.311 <1 

HEPES 7.5511 <1 

B(OH)3 9.2312 <1 

Na3VO4 3.5  8.1  1213  <1 

KHCO3 6.37    10.2514 2 

KHSO4 1.92 15   4 

KH2PO4 2.15   6.82   12.3816 77 

NaH2PO4 2.15   6.82   12.3817 75 

UMP 9.5  6.418 75 

Glc-1-P 1.10   6.1319 74 

Na4P2O7 0.9, 2.0, 6.6, 9.4 20  45 

Water 15.7 <1 

 

It should be noted that these reactions were performed at a pH of 6.0 and at 50 °C. Interestingly, many 

of these compounds do not actually buffer at pH 6.0, which raises the question of whether it is actually 
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valid to compare them to phosphate. For example, it is possible that the catalytic fitness of a buffer was 

simply correlated to the solution concentration of conjugate acid and base species. The published pKa 

values of the buffers used by Pesnot et al. were investigated to see if this was the case, since buffer pKa 

influences the ratio of acid and basic catalytic species in a buffer (Table 1). There was no clear 

correlation between the dominant catalytic species at pH 6.0 and catalysis. Tris, borate, and ortho-

vanadate were all poor catalysts and mostly protonated under the pH 6.0 reaction conditions. However, 

carbonate and the phosphates have similar pKa values but exhibited very different reactivity. 

To identify the importance of phosphate in the Pictet-Spengler mechanism, another buffer with a pKa 

that is similar to monobasic phosphate (7.21) but with slower kinetics to use as a control in mechanistic 

experiments will need to be examined.  

2.2  Methods 

Pictet-Spengler Reactions Monitored by HPLC-UV 

In a HPLC vial, 1.230 mL of the appropriate buffer sample (10, 20, 40, or 80 mM), 6.5 μL of 0.5 mM 

dopamine, and 65 μL of 100 mM propanal were mixed together. The start time was recorded as the 

time of addition of propanal. 

Reactions were monitored using high pressure liquid chromatography on a Waters Acquity Ultra 

Performance Liquid Chromatography instrument with a photodiode array detector (HPLC-UV). The 

volume of each injection was 5 μL. The solvent and gradient conditions used for HPLC analysis were as 

follows: Acquity HPLC BEH C18 column (1.7 µm, 2.1x50 mm) at 25 °C; 0.4 mL/min; 0% acetonitrile 

(MeCN) in 0.1% aqueous trifluoroacetic acid (TFA) for 1.0 minute, 0-20% MeCN in 0.1 % TFA over 4.25 

minutes, 20-70% MeCN in 0.1% TFA over 1.0 minute, hold at 70% MeCN in 0.1% TFA for 1.0 minute. 

Data in Figure 2 were acquired with an unoptimized method that used the same instrument and column 

as above but with a gradient program of 0-70% MeCN in 0.1% aqueous TFA over 5 minutes. 

The time of each injection, as recorded by the computer, was documented and referenced relative to 

the reaction start time. Chromatograms integrated at 225 nm were analyzed and the area was recorded 

at the various retention times corresponding to dopamine, THI, and isoTHI (see Figure 2). At the 225 nm 

wavelength, the aldehyde peak is less intense than at 280 nm; therefore, when analyzing data, the ratio 

of aldehyde peak to product peaks does not disrupt the ability to measure the product peaks; especially 

for isoTHI which, in comparison, has a smaller peak.  
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2.3  Results 

Side Product Identification 

 shows an HPLC trace of a typical reaction of dopamine 1 and propanal (not visible) in phosphate buffer 

where two products are observed. Peak 2 is the expected tetrahydroisoquinoline product (THI). 

Figure 2. HPLC chromatogram of the Pictet-Spengler reaction in phosphate buffer at 23 °C, at an 
absorbance of 225 nm and 280 nm, where 1 is the dopamine peak 2 is the THI peak, and 3 is the isoTHI 
peak. 

 We suggest that Peak 3 is an isomer of tetrahydroisoquinoline, which we call isoTHI (see Scheme 6). To 

verify that the observed side product was not an anomaly, all solutions were remade and experiments 

were re-run to show if there were similar results. Further analysis continued to show similar results,  

Scheme 6. Formation of tetrahydroisoquinoline (THI) and iso-tetrahydroisoquinoline (isoTHI). 
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which led to the suggestion that the side product was an isomer of THI (Scheme 6). This side product 

peak was observed in every time point for each run, increasing as the reaction continues. We were 

unfortunately not able to isolate or purify isoTHI.  However, mass spectrophotometry was performed on 

THI (Figure 3) and isoTHI (Figure 4) products of the norcoclaurine synthesis and show that the spectra 

are identical and fragment in the same way. Therefore the best assignment with the data available 

suggests that THI and isoTHI are regioisomers. 

 

Figure 3. . High resolution mass spectrometry analysis of THI. THI is identified as m/z=272.1 showing 
fragments m/z= 258.0, 235.0 ,216.9,208.0,198.0,180.0,165.155.0,139.0,132.0,114.0,102.0,98.0,73.9, 
and 71.0.   
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Figure 4. High resolution mass spectrometry analysis of isoTHI. isoTHI is identified as m/z=272.2 showing 
fragments m/z=258.0, 235.0 ,216.9,208.0,198.0,180.0,165.0,155.0,139.0,132.0,114.0,102.0,98.0,73.9, 
and 71.0.   

 

Pesnot et. al do not mention or report any side product. Our lab has also observed this side product in 

reactions of dopamine with 4-HPAA, the same reaction studied by Pesnot et al.10  The proposed 

regioisomeric side product for this reaction has been previously acknowledged in studies focused on the 

regioselectivity of the Pictet-Spengler reaction21. Quevedo et al. studied the Pictet-Spengler reaction 

with dopamine hydrobromide and different aldehydes. Isoquinonline hydrobromide was obtained in all 

of the reactions in high yields and complete regioselectivity. The reaction occurred in polar solvents with 

the starting phenylethyemine’s aromatic ring having a substituent in position 1 thereby activating the 

ring. When two strongly activated positions were present on the dopamine ring, two isoquinoline 

regioisomers were formed suggesting that the activating group in position 1 of the aromatic ring is 

necessary for the reaction to occur. 31 If there is a side product being formed in our reaction, this raised 

the question of what conditions would minimize its formation. This side-product will be examined 

further in Chapter 3. Using the results in Figure 2 as a reference, other buffers were studied. 

 

Buffer Comparison 

Four buffers were evaluated for comparison to phosphate: imidazole (pKa=7.05) , HEPES (pKa=7.55), BES 

(pKa=7.15), and maleic acid (pKa=5.82).7 The Pictet-Spengler reaction in imidazole (Figure 5), HEPES, and 

BES, are so slow that kinetic measurements were not practical. At high buffer concentration, the 

reactions required so many hours to complete that side reactions, such as the decomposition of 
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dopamine, through auto-oxidation of the catechol group by atmospheric oxygen and aldehyde 

polymerization, occurred (Figure 5). The HPLC trace of the Pictet-Spengler reaction in imidazole buffer 

showed no product had formed after several minutes. The reaction rate in maleic acid buffer was found 

to be at least 10 times faster than imidazole and slower (2 minutes) than phosphate buffer which 

allowed us to monitor the reaction in greater detail. To study the nature of phosphate’s catalytic 

specificity, maleic acid was used as a comparison since the rate was fast enough that dopamine 

decomposition was minimal (Figure 6). 

 

Figure 5. HPLC chromatogram of the Pictet-Spengler reaction in 40 mM imidazole buffer at an 
absorbance of 225 nm and 280 nm. A represents 2 minutes into the reaction, where 1 is the imidazole 
peak, 2 is where the dopamine peak appears and 3 is where product THI appears. B represents the 
reaction after 50 minutes with no product formed and the dopamine beginning to decompose, seen by 
peak doubling. See Methods for details of the gradient. 

The HPLC chromatograms of phosphate and maleic acid buffers showed a large, broad peak in the 

beginning of the run which was attributed to the high amount of buffer (Figure 6). Initially, this large 

peak interfered with the accurate measurement of important peak areas. To resolve this, in future 

experiments reported in later chapters, the mobile phase was held at 0% acetonitrile for 1.0 minute 

before beginning the acetonitrile gradient. Although the signal to noise ratio is 4 times better at 225 nm 

than 280 nm, the intensity of the solvent peak is reduced by observation of 280 nm which will allow for 

more accurate quantitation of peak areas. 
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Figure 6. HPLC chromatogram of the kinetic reaction of dopamine 1 and propanal in 80 mM maleic acid 
at pH 6.60 to yield tetrahydroisoquinoline 2 and iso-tetrahydroisoquinoline 3 at an absorbance of 225 nm 
and 280 nm. 

Conclusion 

HEPES, BES, imidazole and maleic acid buffer were compared to phosphate buffer where it was 

determined that all the buffers except maleic acid were too slow to accurately monitor the reaction. 

While analyzing the buffers, a side product, isoTHI, was identified. Maleic acid buffer will be compared 

to phosphate buffer to determine if there is phosphate specificity for the Pictet-Spengler reaction. In 

order to analyze the kinetic data, area extinction coefficients will need to be determined for each of the 

species by applying the Beer-Lambert Law. 

 

 

 

 

 

 

 

 

 

 

3

2 2

1 3

1



 

Page 18 of 54 
 

 

Chapter 3 – Determination of Area Extinction Coefficients  
 

3.1 Introduction 
The concentrations of the species in all reaction solutions need to be precisely controlled and 

quantifiable to draw meaningful conclusions from the effect they have on reaction rate. In HPLC-UV, the 

transmitted light is measured by a photodetector. Dopamine, tetraisohydroquinoline (THI), and isoTHI 

have aromatic chromophores that allow for their identification when using UV-light absorption. This 

signal is converted to a logarithmic relationship that is proportional to concentration.  The logarithmic 

relationship is known as the Beer-Lambert Law.  

� = ��� �
��

�
� = ���    Eq. 1 

Where I is the transmitted light intensity, Io is the incident light intensity, ε is the molar extinction 

coefficient, b is the path length, and c is the molar concentration of the substance. The Beer-Lambert 

Law allows us to determine the concentration once the extinction coefficient is known.  

In HPLC-UV chromatography, the area under a peak at a given wavelength may be converted to 

concentration if the area-extinction coefficient (α) is known: 

�� =
���×�����

�
      Eq. 2 

Typically, extinction coefficients are measured from a linear standard curve made from standard 

solutions of known concentration. This was done for dopamine; however, we were not able to isolate 

pure samples of THI and isoTHI. Instead, we were able to determine the concentrations of the product 

species by completely converting a known concentration of dopamine into pure THI. The area-extinction 

coefficient of THI and isoTHI was then determined by a similar method. 

All reactions were monitored under pseudo-first order conditions such that the concentration of 

propanal was very large with respect to dopamine and buffer. The excess of propanal ensures that its 

concentration change will not be significant during the course of its reaction with dopamine to form THI 

and isoTHI. Pseudo-first order conditions with propanal in excess eliminate the requirement for 

monitoring change in propanal concentration. Moreover, a high excess of aldehyde promotes complete 

consumption of dopamine by pushing the reaction equilibrium toward complete conversion to product. 

Furthermore, since propanal has a small molar extinction coefficient, it is difficult to follow accurately.  

3.2 Methods 
The accuracy and precision of these experiments were achieved by calculating the exact amount of 

phosphate or maleic acid and NaCl for each molarity and pH. To make sure that the pipette was 

delivering the correct amount of solution, they were calibrated before each run. The water used for all 

reactions was purified to a resistivity of 18.2 MΩcm (25 °C) using an EMD Millipore Ultrapure Milli-Q 
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reverse osmosis water purification system outfitted with ion exchange and organic removal cartridge 

filters.   

Standard solutions 

A standard 20.0 mM dopamine solution was prepared by gravimetrically measuring 94.3 mg of 

dopamine-HCl (MW 189.64) and dissolving to a final volume of 25.0 mL in water.  A solution of 200.00 

mM phosphate buffer was prepared by gravimetrically measuring 6.0 g of NaH2PO4 and dissolving to a 

final volume of 200.00 mL in water. Commercially obtained propanal (Sigma-Aldrich) was found to be 

contaminated with propionic acid, a product reaction with molecular oxygen. All propanal was distilled 

from CaCl2 to remove impurities. Standard solutions of propanal were prepared by measuring the mass 

of propanal and diluting into volumetric glassware.  

Measurement of THI and isoTHI area extinction coefficients, Method A 

The THI area extinction coefficient was determined indirectly by monitoring the Pictet-Spengler 

reaction. From the 20.0 mM dopamine stock solution, 126.8 µL was pipetted into a separate vial. To this 

vial, 142 µL of 200 mM phosphate buffer and 220.3 µL of 2,270 mM stock propanal solution were mixed 

to a final volume of 500 μL. The final concentrations were 0.500 mM dopamine, 100 mM phosphate 

buffer, and 100 mM propanal, in a final volume of 500 μL. With propanal in excess and dopamine the 

limiting reagent, we monitored the reaction by HPLC, ensuring that the only species left in the mixture, 

would be the product, THI. The area under the peaks in the 225 nm chromatogram was plotted against 

the known concentrations. 

The initial dopamine concentration was measured from identical samples prepared without aldehyde. 

The reactions were monitored as the reaction went to completion and the initial dopamine 

concentration was also determined by non-linear regression analysis using Origin software (OriginLab 

Corp.) to extrapolate the kinetics curve to time zero. The initial dopamine concentrations from this 

complimentary method were averaged equally with the concentrations from the aldehyde free controls. 

Once the reaction was complete, each of the reaction samples were injected five times. The area 

extinction coefficient of THI was determined by assuming that the final concentration of THI was equal 

to the initial dopamine concentration in this reaction that went to completion and the concentration of 

isoTHI was equal to the concentration of dopamine minus the concentration of isoTHI (Eq.3). 

Next, the isoTHI extinction coefficient was determined by applying Equation 3 to complete time course 

datasets of reactions in both phosphate and maleate buffers. This equation assumes that the sum of all 

observed species at any time point must be equal to the initial dopamine concentration.  

[���������������] = ������� × ���������� + ������� × ���������� + ���������� × ������������� 

 Eq. 3 

For this method, the area extinction coefficients for dopamine and THI were fixed as known constants. 

The area extinction coefficient for isoTHI was the only unknown. 
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Simultaneous measurement of THI and isoTHI area extinction coefficient, Method B 

The extinction coefficients of THI and isoTHI were determined indirectly by running the Pictet-Spengler 

reaction at low concentrations of buffer to generate a significant amount of the isoTHI side-product in 

solution. 

The area extinction coefficient of THI was determined by preparing a 2.0 mM dopamine stock solution 

by adding 189.5 mg of dopamine hydrochloride to 500 mL. From the 2.0 mM dopamine stock solution, 

50 mL was then added into eight 200 mL volumetric flasks.  A 400 mM stock solution of propanal was 

prepared and diluted to 100 mM by adding 80 mL to each of the eight flasks using a volumetric pipet. 

Various volumes of 1.00 M phosphate stock solution were added to five of the eight flasks resulting in 

final phosphate buffer concentrations of 5 mM, 25 mM, 50 mM, 100 mM and 400 mM, where the other 

three flasks were controls. The controls contained 2.0 mM dopamine and 1.0 M propanal, without the 

phosphate buffer to verify that the reaction needed phosphate buffer to produce THI and isoTHI.  Since 

no reaction was observed in the controls, they simultaneously provided a direct measurement of 

dopamine concentration present in the reactions and demonstrated that phosphate buffer is needed to 

make THI and isoTHI. The reaction in each flask was monitored via HPLC. 

The extinction coefficients (α) for THI and isoTHI were then determined simultaneously by fitting the 

experimentally measured areas of THI (AreaTHI225) and isoTHI (AreaisoTHI225) to Equation 3 using non-linear 

least-squares fitting in the Origin (OriginLab Corp.) to find the best parameters for both extinction 

coefficients. A total of 56 time points (each with different concentrations of dopamine, THI, and isoTHI) 

and the average of 10 initial dopamine controls were used. 

3.3 Results and Discussion 
After plotting the results of the dopamine standard, the dopamine extinction coefficient was 

determined to be 2.56 ± 0.02 x 10-4 μMμV-1s-1 (Figure 7). The trend line fit the data well; in fact the 

correlation coefficient was 1.0. The measurement of the dopamine area extinction coefficient was 

straightforward, but the THI and isoTHI analysis proved to challenging. Due to certain limitations, isoTHI 

and THI were unable to be isolated as pure compounds for extinction coefficient determination. Their 

high polarity made it difficult to separate by silica column chromatography. Preparative HPLC was 

attempted but the volume of the isolated oils was too small for accurate mass measurement and no 

fractions were pure enough to definitively assign the identity of isoTHI by NMR. When analyzing the 

reactions, it was observed that low phosphate buffer concentration resulted in a higher ration of isoTHI 

side-product to THI product. 
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Figure 7. Dopamine area-extinction coefficient standard curve where the line of best fit is y= (2.56 ± 0.02) 
x 10-4 μMμV-1s-1 x – 2.7 ± 1 μM and R2=1.0.22 

Method A  

The observation that high phosphate concentration reduces the production of isoTHI was used to 

determine the THI extinction coefficient through quantitative conversion of a known stock solution of 

dopamine to THI in the presence of high phosphate. The resulting THI extinction coefficient was then 

used along with the dopamine extinction coefficient to derive the isoTHI extinction coefficient from 

existing raw kinetics data in both phosphate and maleic acid buffers. The concentrations of dopamine 

and THI were first determined by multiplying their extinction coefficients, determined by the raw data 

from the kinetic runs, by application of Equation 2. Next, Equation 3 was applied to dozens of full 

kinetics datasets to determine the area extinction coefficient for isoTHI (αisoTHI225) setting the other two 

area extinction coefficients, αDOP225 and αTHI225, as fixed parameters. It was assumed that the THI area 

extinction coefficient values were accurately measured. From this, we extracted the isoTHI values based 

on the assumption that the area of dopamine, THI, and isoTHI should always be constant. For reasons 

that are still unclear, this method (Method A in the Methods section of this chapter) yielded a different 

αisoTHI225 value for every dataset. The values are different by orders of magnitude. This method (Method 

A) gave an extinction coefficient of 2.26 ± 0.02 x 10-4 μMμV-1s-1 for THI and 2.22 ±0.88 x 10-4  μMμV-1s-1 

for isoTHI. The estimated error in the THI extinction coefficient is an order of a magnitude smaller than 

that of isoTHI. One possible explanation for the discrepancies could be that the area extinction 

coefficient for THI was not initially determined correctly due to small amounts of unreacted dopamine 

or isoTHI present in the samples. Therefore, a second method was developed to circumvent this 

problem.  

Method B 

For this second method (Method B in the methods section), the volumes of all reactions were larger 

(200 mL versus 500 μL) to minimize errors due to pipetting and evaporation of the aldehyde. A series of 

six time course experiments were set-up, each with a different phosphate buffer concentration. Since 
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the relative rates of the competing reactions are dependent on phosphate concentration, the ratios of 

THI to isoTHI were variable such that Equation 3 could be used to determine two constants, αTHI225 and 

αisoTHI225, from non-linear least squares fitting using Origin graphing and analysis software (OriginLab 

Corp.). By using the extinction coefficient of dopamine as 2.56 x 10-4 ± 1 x 10-6 μMμV-1s-1, the 

concentration of dopamine from each sample reaction was plotted versus the area of THI from the each 

of the reactions, and then isoTHI. By applying Equation 3, the extinction coefficients were determined to 

be 2.146 ± 0.005 x 10-4 μMμV-1s-1 for THI and 2.34 ± 0.07 x 10-4 μMμV-1s-1 for isoTHI. Although 

determined indirectly, the extinction coefficients demonstrate a high level of confidence (Table 2).  

 

Table 2. Comparison of extinction coefficients for THI and isoTHI. 

Method THI, μM/μV/s T-value isoTHI, μM/μV/s T-value 

A 2.26 ± 0.02 x 10-4 
1.01 

2.22 ± 0.9 x 10-4 
18.08 

B 2.146 ± 0.005 x 10-4 2.34 ± 0.07 x 10-4 

 

Conclusion 

Determining the extinction coefficients of the species of the Pictet-Spengler reaction will allow us to 

quantify the peak areas from the HPLC plots. The extinction coefficients for dopamine, THI and isoTHI 

were determined first by using a method that extracted the extinction coefficients from the kinetic data 

sets. However, some of this data had very low isoTHI concentrations thus prone to error. Method B ran 

a set of controlled kinetics experiments that were designed to give larger isoTHI peaks. Two different 

sets of extinction coefficients were determined (Table 2). A t-test was calculated to determine if the two 

method results are significantly different. It was found that at a 95% confidence, the THI values are not 

significantly different within the stated uncertainties; where the t-value of 1.01 is less than the standard 

t-value of 2.228 for method A and 2.004 for method B. The isoTHI extinction coefficient values are 

statistically different with a t-value of 18.08 where the standard t-value for method A is 2.12 and 2.00 

for method B. 23 Because it was determined that there is statistical difference between the two 

methods, method B extinction coefficients were applied for the kinetic analysis to further understand 

the Pictet-Spengler mechanism. The extinction coefficients for dopamine, THI and isoTHI were 

determined to be 2.56 x 10-4 ± 1 x 10-6 μMμV-1s-1, 2.146 ± 0.005 x 10-4 μMμV-1s-1 and 2.34 ± 0.07 x 10-4 

μMμV-1s-1, respectively. These values will be applied to the kinetic data sets in order to analyze the data 

and clarify the role of phosphate in the Pictet-Spengler reaction. In addition, the role of buffers in the 

reaction will be examined to understand the Pictet-Spengler mechanism. 
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Chapter 4 - HPLC kinetics and Analysis of Time Course Data 

 

4.1 Introduction  

Catalysis in the Pictet-Spengler Reaction 

Catalysis by buffers plays a significant role in this reaction. Understanding the specific reaction steps 

catalyzed by buffer will help elucidate the function of phosphate in the mechanism of this Pictet-

Spengler reaction. Previous work has shown that aqueous Pictet-Spengler reactions of the indole 

tryptamine with propanal depend on acid catalysis.24 Determination of the separate rate constants for 

buffer-catalyzed acid and base catalysis should also reveal whether or not the apparent phenomenon 

seen for phosphate catalysis is really just a function of the concentration of the catalytic species, which 

will be different for two buffers of different pKas at the same pH. 

The general second order rate constant, kobs, for a two substrate reaction is given in Eq. 4. 

���� = 	����[��������][����ℎ���]                             Eq. 4. 

The contributions of all possible general acid and base catalysts may be described as follows.  

���� = 	��[�
�] +		��[���] + ��[���] +	��[�] + ��             Eq. 5. 

These five rate constants represent the contributions of specific acid catalysis (k1), specific base catalysis 

(k2), general acid catalysis (ka), general base catalysis (kb), and the rate of the uncatalyzed reaction (k3) 

respectively.  

The Pictet-Spengler reaction with dopamine and aldehyde is both acid and base catalyzed in buffer 

(Scheme 7).  If this reaction is specifically acid-base catalyzed, the buffer concentration will not have an 

effect on the reaction; whereas, if the reaction is general acid-base catalysis, the rate of the reaction will 

be dependent on the buffer concentration. Step 1 of the reaction may be acid or base catalyzed due to 

the pKa of the amine (9-10).  At the pH levels that are being studied, the amine will most likely be 

charged. Therefore, the amine in the first step is the dominant equilibrium species. The pKa of the 

protonated ketone is roughly 6; so acid catalysis by the protonating ketone is less likely than 

deprotonation of the amine. This indicates that there is most likely a base-dependent step before step 1. 

Step 3 is a tautomerization reaction which requires both acid and base. The ~H+ in step 3 shows that H+ 

is effectively hopping from one part of the molecule to another. In reality, a proton cannot make such a 

hop in one step because such a reaction would be a [1,3] sigmatropic shift. This is not feasible because 

the transition state is impossible to achieve by Woodward-Hoffmann rules. There are two possibilities in 

step 3, either first a base deprotonates then an acid protonates or first an acid protonates and then a 

base deprotonates. Both are likely to be occurring. Both are fast steps when both acids and bases are 

present (as is the case in a buffer). Both paths are kinetically equivalent and indistinguishable. In 

addition, tautomerization is generally not rate limiting in imine formation.25 
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Scheme 7. Pictet-Spengler Reaction in both acid and base catalyzed buffer.  In step 1, aldehyde 
undergoes nucleophilic attack by an amine from dopamine. In step 2-4:proton transfer results in the 
release of water, resulting in a protonated imine intermediate.  In step 5, a 6-endo-trig cyclization 
reaction occurs with a loss of aromaticity. Finally in step 6, deprotonation reestablishes aromaticity, 
resulting in tetrahydroisoquinoline product. (Red colored or blue colored molecules signify acid or base 
catalyzed steps, respectively.   

 

One method to determine the values of these constants is to measure kobs as a pseudo-first order rate 

constant at constant pH and ionic strength while varying the total buffer concentration (Bt). The 

dependence of the reaction on buffer catalysis can be analyzed by simplifying Eq. 5 based on the fact 

that, ko in Eq. 6 is constant when pH is constant.  

 k� = 	k�[H
�] + k�[OH�]	+		k�  Eq. 6 

Since [BH+] and [B] are related to [H+] and Bt as 

 
	�� = 	

[�]

��
=

��

�� + [��]
 

Eq. 7 

and 
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F�� = 	

[BH�]

B�
=

[H�]

K� + [H�]
 

Eq. 8 

where Ka is the acid dissociation constant of BH+, Eq. 5 can be expressed as               

 k��� = 	k� + (k�F� + k�F��)B� Eq. 9 

Thus, the relationship of total buffer concentration at constant pH is linear. Since FB + FBH =1, Eq. 9 can 

be written in terms of the conjugate base as 

 k��� = 	k� + �k�F� + k�(1	 − F�)�B� = 	k� + (k� + (k� − k�)F�)B� Eq. 10 

This equation can be rearranged into the form  

 k��� −	k�

B�
= k� + (k� − k�)F� 

Eq. 11 

   

A plot of  
�����	��

��
 versus FB will then be linear. The y-intercept of the plot is equal to ka; the value of y at 

FB = 1 is equal to kb – ka; knowing ka from the y-intercept then allows kb to be determined. 

Using this method to determine ka and kb will allow us to determine the relative contributions of the 

conjugate acid and conjugate base species from the buffer. If either the conjugate acid or conjugate 

base plays a greater role in catalysis, this narrows down which species participates in the critical rate 

limiting step of the reaction. This can also help us to eliminate steps in the reaction (Scheme 7) that are 

not rate limiting in the mechanism. Comparing the catalytic effects of different buffers should contribute 

to a greater understanding of the specific role played by phosphate in catalysis of this reaction. For 

example, phosphate may accelerate the rate of one step to such an extent that the rate limiting step 

changes. Additionally, it may be revealed that the differing pKa of the buffers is the major contributor to 

their different activities. For example, if kb is rate limiting and essentially identical for two different 

buffers, then we could conclude that the apparent advantage of one buffer over the other at a given pH 

and identical Bt is merely the concentration of [B] and not a feature of the catalyst itself. 
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The Curtin-Hammett Principle  

The Curtin-Hammett principle is often applied in chemical kinetics to understand the mechanism. By 

first establishing the relationship between the concentrations of reactants, catalysts and rate, we can 

then vary the other conditions to learn about the mechanism. In the following figure, (Figure 8), two 

reactants react to form two different products, just like in the Pictet-Spengler reaction with aldehyde 

and dopamine.  

 

Figure 8. Reaction coordinate free energy profile where A and B reactants react to form two products, PA 

and PB. 

Similarly, in this reaction we see the formation of two products, THI and isoTHI. The rate equations for 

this reaction will be, where [A] is the concentration of THI and [B] is the concentration of isoTHI. 

          

            
�[��]

��
= ��[�]  and  

�[��]

��
= ��[�]      Eq. 12 

  

The rate equations can then be combined to form: 

 �[��] =
��[�]

��[�]
�[��]    Eq. 13 
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Because A and B are in equilibrium, we apply ��� =
[�]

[�]
 to form:               

                          �[��] =
��

��
����[��]  Eq. 14 

        

And by integrating we get: 

          [��] =
��

��
���      Eq. 15 

     

Recall that	��� = 	 ����°/��, ��	 = �����‡/�� and ��	 = �����‡/��which can then be substituted into Eq. 

15 to give the Curtin-Hammett principle. 

 [��]

[��]
=

�����‡/��

�����‡/��
����°/�� = �����‡/�� 

Eq. 16 

     

By applying the Curtin-Hammett principle to this reaction (Equation 17) we can make predictions about 

reaction rate constants for a reaction from free-energy relationships.  As seen in Eq. 17, the product 

ratio depends on the difference in free energy on the transition state leading to the products where 

ΔΔG‡ is the change in the free energy, R is a gas constant,  and T is temperature. 26 

 [���]

[��� − ���]
	= 	 ����‡ ��⁄ 	 

Eq. 17 

 

4.2   Methods 
The reactions were conducted close to pH 7.0 and a series of constant ionic strength buffers were 

prepared using the Debye-Hückel equation described by Ellis27 using A = 0.509 for 25°C. 

 
�Ka* = ��� + (2� + 1) �

0.509	��/�

1 +	��/�
− 0.1�� 

Eq. 18 

For phosphate buffer (practical pKa of 6.84), the constant ionic strength was 0.10 M. A  100 mM stock 

solution of sodium phosphate (NaH2PO4) that was diluted for the 10 mM, 20 mM, and 40 mM samples 

and for each of the pH values of 6.60, 6.90, and 7.20. A, constant ionic strength was obtained by 

adjusting with NaCl.  

The reactions were monitored via HPLC-UV as described in Chapter 3 with the ambient temperature of 

the autosampler compartment maintained at 23.00 °C. All reactions were conducted under pseudo-first 

order conditions with the starting concentration for dopamine and propanal as 0.500 mM and 100 mM 
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respectively. The extinction coefficients from Chapter 3 were applied to determine the concentrations of 

dopamine, THI, and isoTHI at each time point. The times for the observed concentration data were 

adjusted with a time delay correction of 50 seconds to correct for the delay between the timestamp of 

the data file and the actual start of the run.  

The raw data was plotted in Origin by exponential fit to extrapolate a starting value for dopamine’s 

starting concentration. This starting concentration of dopamine was then included with the rest of the 

data and simulated in Gepasi. The Gepasi software program28 28cwas then used to estimate the pseudo-

first order kinetic constants kthi and kisoTHI from a model of dopamine reacting with THI (Eq. 13) and 

isoTHI (Eq. 14) by non-linear least squares fitting of the experimentally measured dopamine, THI, and 

isoTHI concentrations at all measured time points. In Gepasi, the reaction was defined as a mass action 

reaction that is irreversible, where dopamine makes either THI or isoTHI. A genetic algorithm using 500 

generations and a population of 10 gave the lowest sum of squares deviation and was used as the 

parameter search method for all experiments.28a 

��������	
����
�⎯� 	���                           Eq. 19 

��������	
�������
�⎯⎯⎯� 	������                                   Eq. 20 

 

Three parameters, kthi, kisoTHI, and the initial dopamine concentration, were optimized to the 

experimental time course data. The initial product concentrations were set to zero. The initial dopamine 

concentration was permitted ±10% variance to account for possible pipetting errors. The pseudo first 

order rate raw data was converted to second order rates constants by dividing by the aldehyde 

concentration.  

4.3   Results 
A series of reactions were carried-out with starting concentrations of 0.500 mM dopamine and 100 mM 

propanal. The phosphate buffer concentration was varied in such a way that three different pH values 

(6.6, 6.9 and 7.2) and three different total phosphate concentrations (10 mM, 20 mM, and 40 mM 

phosphate buffer) were tested. The area extinction coefficients from Method B of Chapter 3 were used 

to convert peaks areas observed in HPLC time course data to concentrations. These concentrations were 

fit to a kinetic model of two competing irreversible reactions using the Gepasi software program. Figure 

9 shows the quality of a representative fit by plotting concentrations with time based on the estimated 

parameters and the experimental data. 
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Figure 9 Gepasi parameter estimation of Pictet-Spengler reaction in 40 mM maleic acid buffer at a pH of 
6.11.           concentration of dopamine             predicted concentration of dopamine,             concentration 
of THI,            predicted concentration of THI,            concentration of isoTHI,           predicted concentration 
of isoTHI. 

General Base Catalysis 

The results of all nine pH and buffer concentration trials are shown in Figure 10, where the rates have 

been converted to second order rate constants by dividing by the aldehyde concentration. General base 

catalysis is observed in this Pictet-Spengler reaction where the rate of the reaction depends on 

concentration of buffer. It was observed that the phosphate buffer reaction was dependent on both pH 

and concentration of buffer. At a constant pH, the rate is proportional to the concentration. Similarly, at 

a constant concentration, the rate increased as the pH increased. The observed trend for this data is 

most likely due to the increase of the hydroxide species.  As the pH of the phosphate buffer decreases to 

6.6, the amount of hydroxide species decreases and reaches the buffering capacity of phosphate buffer, 

thereby slowing the reaction.  This is indicative of general buffer catalysis.  

If specific acid catalysis was observed, the rate of reaction would be independent of the concentration 

of buffer, due to the rate dependence on the concentration of the hydronium ion. The constituents of 

the buffer have no effect on the rate other than establishing the pH of the solution.  

Although there are only three data points for each concentration/pH trial and a linear trend is shown, 

three data points do not make a trend. In this case, however, each of these data points are actually 

derived from hundreds of concentrations and times. In the future, more buffer concentrations and pH 

values will need to be acquired to verify the trends that are suggested. 
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Figure 10. Observed rate constant dependence as a function of phosphate buffer for the reaction of 
dopamine at a constant concentration with pH increasing, producing THI. () pH 6.6 :Linear regression 
results give a relationship of kobs = 1.30 ± 0.09 x10-4 mM-1s-1mM-1 x + 7.4 ± 2 x10-7mM-1s-1 where R² = 1.0 
()pH 6.9: Linear regression gives a relationship of kobs = 1.52 ± 0.2 x10-4 mM-1s-1mM-1  x + 1.56± 0.5 x10- 
mM-1s-1and R² = 0.99 () pH 7.2: Linear regression gives a relationship of kobs = 1.275 ±0.02 x10-4 mM-1s-

1mM-1 x + 3.389 ±0.04 x10-6 mM-1s-6  and R² = 0.998.  

Curtin-Hammett Principle 

The calculated concentrations of products THI and isoTHI were calculated and the Curtin-Hammett 

principle (Eq. 17) was applied. Plotting the ratio of the concentration of THI over the concentration of 

isoTHI to the concentration of phosphate reveals a linear dependence correlated to total phosphate ( 

 

Figure 11). This indicates that phosphate in general is catalyzing the pathway to one product more so 

than the pathway to the other product. At 20mM phosphate, the data points begin to converge on a 

single value signifying that the ratio at this concentration are consistent at the varying pHs. However, at 

10 mM and 40 mM the data points scatter, indicating that there is error within the data set and the data 

set trials need to be repeated to verify the trends seen. Further investigations will hopefully clarify the 

mechanism of this phenomenon.  
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Figure 11. Rate of the concentration of THI over the concentration of isoTHI as a function of phosphate 
concentration. Where the line of best fit is y= 69.57 ± 5.0 mM1s-1 M-1 x + 2.33 ± 0.10 M and R2=0.96. 

 

A plot of either [BH+], H2PO4
-, or [B], H2PO4

2- against the [THI]/[isoTHI] ratio reveals that within a single 

phosphate concentration, [B] increases the relative yield of THI and [BH+] decreases the relative yield of 

THI (Figure 11,Figure 12,Figure 13). This suggests a role for base catalysis for the acceleration of THI 

formation relative to isoTHI. The factors controlling the two competing reactions will need to be 

investigated in more detail in a later study (see Chapter 5 for limitations encountered in this work). 
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Figure 12. Rate of the concentration of THI over the concentration of isoTHI as a function of acidic 
species of phosphate concentration. 

 

 

 

 

 

 

 

 

 

Figure 13. Rate of the concentration of THI over the concentration of isoTHI as a function of basic species 
of phosphate concentration  

Acid/Base Catalysis 

To determine if the reaction is primarily acid or base catalyzed, the data from Figure 10 was plotted as 

rate constant against monobasic phosphate (the conjugate acid [BH+]) and dibasic phosphate (the 

conjugate base [B]) concentration to give Figure 14 and Figure 15. The results clearly show that there is 

no trend for acid catalysis.  

  
Figure 14. Observed rate constant dependence as a function of acidic species of phosphate. 
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The plot of the observed rate dependence on the basic species of phosphate demonstrates a linear 

trend.  Although there appears to be a possible break at the later concentrations of the basic species of 

phosphate, this is not what has been observed in the raw data itself. If there was a break, the rate-

limiting step would abruptly change which has not been observed in the raw data. It is more probable 

that these are artifacts in the data set. As mentioned before, there is scatter in the original data set 

(Figure 10) and the scatter will be more so pronounced when applying different conditions.   
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Figure 15. Observed rate constant dependence as a function of basic species of phosphate. Line of best fit 
y=3.35 ± 0.3 x 10-4mM-1s-1 x + 9.4 ± 2.3 Mx 10-7 and R2=0.97. 

 

The apparent linear dependence of rate on base catalysis indicates that [BH+] is not the rate-limiting 

catalytic species. Since the reaction is apparently dependent on the concentration of dibasic phosphate 

[B],Figure 15 describes the equation 

 ���� = �� +	��[�] Eq. 21 

where the y-intercept k’ =  k1 [H
+]+ k2 [OH-] + ka  [BH+] + k3 for the condition of [B] = 0.  

However, in Equation 5 [B] and [BH+] are not the only contributors to ko. If we assume that k2 has no 

dependence on the buffer, we can substitute  

[���] = [��] − [�]      Eq. 22 

into Equation 23, giving, 



 

Page 34 of 54 
 

�� = 	��[�] +		�� + ��([��] − [�])     Eq. 23 

This demonstrates that both the acid catalysis rate constant and base catalysis rate constant has some 

dependence on [B].  

General Acid/ Base Catalysis Rate Constants  

The values of 
�����	��

��
 were plotted against the fractional base (Figure 16) to determine if the conjugate 

acid or base contributes to catalysis.  The rate constant for general acid catalysis (ka) was calculated to 

be 1.52 ± 0.2× 10-4 mM-2s-1 and the rate constant for general base catalysis (kb) is 1.26 ± 0.4 x 10-4 mM-2s-

1.  The rate constant for base catalysis is slower than acid catalysis, therefore suggesting that base 

catalysis contributes more to the mechanism. If the data had less scatter, the data points would begin to 

converge as seen for the data values of 0.9 M fractional base.  Due to limitations, more data will need to 

be collected to identify and verify a trend. 

If acid catalysis contributed more to the mechanism, the trend would look similar to what was seen in 

the tryptamine Pictet-Spengler reaction (Figure 17) where acid catalysis contributes more to the 

reaction. It is also hypothesized that the acid-catalyzed step becomes rate-controlling and the 

deprotonation step is no longer rate-limiting.29  

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Dependence of 
�����	��

��
  on fractional base of the reaction in phosphate buffer where y =-2.6± 

3 x10-5 mM-1s-1M x + 1.52 ± 0.2 x10-4 M.  
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Figure 17. Pictet-Spengler reaction of tryptamine where the KIE is 1 for kA and 2.65 for kHA.29 

Conclusions 

For this experiment, the concentration of the base and pH vary. This in turn varies the base/acid ratio. 

The data were not clean enough to apply equation 11 to determine ka and kb in Figure 14. Nonetheless, 

the general trend toward increasing rate with increasing conjugate base in Figure 14 combined with the 

observation that the same data show a strong linear dependence on conjugate base concentration 

(Figure 13), but not conjugate acid concentration (Figure 12) qualitatively suggest that the conjugate 

base species from the buffer catalyzes the rate limiting step of this reaction. This is the opposite what 

was observed for the indole Pictet-Spengler reaction, which exhibited rate limiting acid catalysis.29 Based 

on the proposed mechanism in Scheme 7, step 4 is in a base dependent equilibrium and step 5 is base 

catalyzed. The reaction is clearly dependent on the base concentration (Figure 15) therefore the rate 

limiting transition state must contain a molecule of basic phosphate.  Either the rearomatization (step 6) 

or the electrophilic cyclization (step 5) are ideal candidates. In order to distinguish which step is the rate 

limiting transition state, I will examine whether the substitution of the ring hydrogen atoms for 

deuterium exhibits a primary kinetic isotope effect. This can also help us to eliminate steps in reaction 

Scheme 7 that are not rate limiting. Comparing the catalytic effects of different buffers should 

contribute to a greater understanding of the specific role played by phosphate in catalysis of this 

reaction. For example, phosphate may accelerate the rate of one step to such an extent that the rate 

limiting step changes.  
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Chapter 5 – Maleic Acid Buffer and Kinetic Isotope Effects 
 

5.1 Introduction 
To further understand the role phosphate plays in the Pictet-Spengler reaction,  the role of phosphate in 

maleate buffer and the dependence of the rate constant on the kinetic isotope effect for deprotonation 

of [2,5,6-2H]-dopamine was examined. The addition of the heavy isotope of hydrogen allows us to 

determine if removal of the deuterium/hydrogen occurs in the limiting transition state for this multi-

step reaction. Observing how a kinetic isotope effect changes with different reaction conditions can 

provide insight into the influence of those reaction conditions on the mechanism. 

When replacing hydrogen with the heavier atom (deuterium) in a reactant, the energy barrier to the 

transition state will be larger, thereby slowing the rate of reaction. This is known as a kinetic isotope 

effect. Due to a lower zero-point energy for a heavier isotope in a bond, the bond dissociation energy 

for C-D is greater than C-H. Therefore, the rate of reaction for a deuterated species will be slower than 

for the natural abundance species. The effect will only be observable if the step in which the 

hydrogen/deuterium is removed is the highest energy barrier (rate limiting step) in a multistep reaction 

coordinate diagram. If a primary isotope effect is observed, the bond broken in the rate limiting 

transition state is the one that has the deuterium atom. If there is a secondary isotope effect, the bond 

to the isotopically labeled atom is not broken or formed during the rate determining step. Instead, the 

hybridization state of that atom undergoes a change.30  

We hoped that the use of deuterated dopamine ( 

Scheme 8) would allow us to determine the rate determining step.  Typically, electrophilic aromatic 

substitution reactions will give a secondary isotope effect on the aromatic D/H due to the hybridization 

change occurring next to the heavy atom (step 5,Error! Reference source not found.) when ring 

substitution is rate limiting. A primary isotope effect is observed when the deprotonation is the rate 

limiting step (step 6 of Scheme 7).  By determining the kinetic isotope effect, we can determine what the 

rate limiting step is.  In addition, any change in the kinetic isotope effect with buffer concentration and 

pH may provide insight into the catalytic roles of those species. 

Kinetic isotope effects for the chemically catalyzed Pictet-Spengler reaction of phenethylamines (like 

dopamine) with aldehydes have never been reported. We were interested in determining whether the 

reaction has a secondary isotope effect, as is typically seen in electrophilic aromatic substitutions, or a 

primary isotope effect.    
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Scheme 8. Deuterated dopamine, where D is the deuterated atom, utilized to determine if there is a 
kinetic isotope effect.   

5.2  Methods 

Preparation of Maleic Acid Buffer 

Maleic acid buffer was prepared in the same manner as described in Chapter 4. The practical pKa (the 

value at the ionic strength of the experiment) for maleic acid was calculated as 5.82 for a constant ionic 

strength of 0.220, the specific conditions of the experiment. The constant ionic strength of maleic acid 

was maintained at 0.220 M at 25 °C with Bt at either 20 mM, 40 mM, or 80 mM and pH at either 5.70, 

6.10, or 6.60. 

Preparation of [2,5,6-2H]-dopamine.  

The deuterated dopamine was synthesized as previously described in Vinning et. al26. Commercial 

dopamine hydrochloride (10 mg) was added to a sealed 48 mL high-pressure reaction tube (Ace 

Glass 8648 Pressure Tube with PFTE-glass plunger valve) along with 1.0 mL of 99.99% D2O (Isotech Labs). 

The tube was sealed and the liquid was frozen in liquid nitrogen. The tube was attached to a 

freeze dryer (Labconco FreeZone 1) and evacuated for 20 minutes at 0.050 Torr. The tube was sealed 

and placed in a 190 °C oven for 24 hours. The excess solvent was removed in vacuo on 

a Büchi RotoVapor in a 40 °C water bath. The resulting white crystalline solid had 1H-NMR spectra 

identical to natural abundance dopamine, but with no aromatic or phenol protons. [2,5,6-2H]-

dopamine: 1H NMR (300 MHz, CDCl3) δ 3.09 (t, J = 7.6 Hz, 2H), 2.79 (t, J = 7.6 Hz, 2H).  

Dopamine: 1H NMR (300 MHz, CDCl3) δ 2.64 – 2.58 (m, 2H), 2.56 (dd, J = 3.1, 0.8 Hz, 1H), 1.20 (t, J = 7.6 

Hz, 2H), 1.09 (t, J = 7.6 Hz, 2H).  

 

High Resolution Mass Spectrometry 

High resolution mass data (HRMS) were obtained on a Waters SYNAPT G1 High Definition Mass 

Spectrometer using an ESI ionization source in positive mode with HPLC separation on 

Waters Acquity XBridge BEH C18 column (5 µm, 2.1x100 mm); 0.4 mL/min; 0-70% acetonitrile in 0.1 

% trifluoroacetic acid (TFA) over 20 minutes.  

 

5.3  Results 

High Resolution Mass Spectrometry 

High resolution mass spectrometry was performed on dopamine (Figure 18Error! Reference source not 

found.) and trideuterated dopamine (Figure 19Figure 19Error! Reference source not found.). A 

comparison of the two mass spectra shows that the substitution is complete. By 1H-NMR, the protons in 

the methylene groups (2.8 and 3.1 ppm) were still present but the aromatic protons between 6.6 and 

6.8 ppm were not detectable (Figure 20Error! Reference source not found.). From 1H-NMR, the 

substitution was estimated to be ≥98%. 



 

Page 38 of 54 
 

Figure 18. High resolution mass spectrometry analysis of dopamine. Dopamine is identified as m/z 
=154.1 showing fragments m/z=101.5 and 137.1.  

 

 

Figure 19. High resolution mass spectrometry analysis of trideuterated dopamine. Trideuterated 
dopamine is identified as m/z=157.1 showing fragments m/z= 139.1 , 121.1,  and 93.1.   
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Figure 20. 1H NMR traces of dopamine and deuterated dopamine in methanol-d4. The peak at 3.31 ppm 
is the residual solvent peak, 4.87 ppm is water. 
 

General Catalysis in Maleic Acid 

The trends for buffer catalysis in phosphate buffer were much stronger than those for maleate buffer. 

The observed trend at constant buffer concentrations of 20 mM suggest a linear trend, however at 40 

mM and 80 mM, there are too many inconsistencies to suggest a trend (Figure 21).  These data series 

were repeated; however this did not help in determining which data point is the outlier. More data 

points are necessary to determine if there is a linear dependence on concentration of maleic acid and 

uncover a possible error in the data series.  

The rate constants did not increase as the concentration of maleic acid buffer increased at a pH of 5.7; 

rather, it seems as if there is an exponential or parabolic trend. If there was a linear trend, this would 

indicate general buffer catalysis.  This series was repeated several times, giving the same results. This is 

most likely due to an experimental error that has not been discovered yet. The experiments need to be 

repeated until acceptable results are obtained. 
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Figure 21. Rate constant dependence on the concentration of maleate for the reaction of dopamine at a 
constant concentration with pH increasing, producing THI. ()pH 5.7 () pH 6.1 ()pH 6.60  linear 
regression results give a relationship of kobs = 2.503 ± 0.08 x 10-7 mM-1s-1M x + 8.53 ± 0.20 x 10-7 mM-1s-1. 

Curtin-Hammett Principle Application  

In phosphate buffer, the ratio of products THI/isoTHI, show a dependence on the concentration of total 

buffer (Figure 11). The data for maleate buffer does not conclusively demonstrate this. The data points 

should converge, which would indicate a trend and allow for the determination of the acid/base 

catalysis rate constants. The maleic acid data set (Figure 21) has discrepancies. More concentrations will 

need to be evaluated to determine an accurate trend for maleate buffer. 
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Figure 22. Ratio of THI product over isoTHI product dependence the concentration of total maleate 
buffer. The linear regression results give y=242 ± 41 mM-1s-1M-1 x + 7.7 ± 3 mM-1s-1. 

 

Kinetic Isotope Effects 

To study kinetic isotope effects, [2,5,6-2H]-dopamine (or simply “deuterated dopamine” from this point 

forward) was prepared by reacting commercial dopamine with D2O under high temperature and 

pressure.  

For small kinetic isotope effects, it is necessary to correct observed kinetic isotope effect date for low 2H 

incorporation by the following equation where x is the fraction deuterated or ��
∗ /(��	 + ��

∗ ) where A* 

refers to deuterated dopamine.31  

������������ 	= 	�/(�����������	– 	1	 + 	�)     Eq. 24 

Because of the large magnitude of all kinetic isotope effects observed in this work, the reported KIE 

values are uncorrected for low, incomplete incorporation of 2H in the deuterated dopamine. Such 

corrections would be smaller than the uncertainty in the rate constant measurements. 

In separate reactions conducted at the same time, deuterated dopamine reacted at a slower rate than 

the natural abundance dopamine in both phosphate and maleic acid buffer ( 

0.02 0.04 0.06 0.08

10

20

30

[T
H

I]
/[

is
o
T

H
I]

,m
M

-1
s-1

[maleate] (M)



 

Page 42 of 54 
 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0.0

5.0x10-7

1.0x10-6

1.5x10-6

2.0x10-6

2.5x10-6

3.0x10
-6

ra
te

 o
f T

H
I f

or
m

at
io

n 
(m

M
-1
s-1

concentrationof conjugate base (M)

 
Figure 23Figure 24). Because the deuterated dopamine rates are slower than the natural abundance 

species, this demonstrations that the removal of the deuterium/hydrogen occurs in the limiting 

transition state for this multi-step reaction. 
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Figure 23. Observed rate of THI formation dependence on the concentration of conjugate base of 
phosphate () and maleic acid (●) buffers for the reaction of deuterated dopamine, producing THI. Line 
of best fit is y=8.5 ± 0.4 x10-5 mM-1s-1M-1 x + 5 ± 3 x 10-8 M with R2= 0.99 for the reaction in phosphate 
buffer. The 40 mM phosphate pH 6.89 data point was excluded from this analysis under the assumption 
that it is an outlier due to experimental error. 

 

For each condition, the observed second order rate constant is three to sevenfold slower for deuterated 

dopamine, indicative of a primary isotope effect (Figure 24). The range for primary KIE’s is 5-8.30 These 

results suggest that the final step of base catalyzed deprotonation (step 6 in Scheme 7) is rate limiting 

for this Pictet-Spengler reaction in both buffers.  
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Figure 24. Comparison of the dependence of 
�������

��
 on fractional base of the deuterated reaction () 

and natural abundance reaction(●) in phosphate buffer. 

 

As noted in the previous chapter, this reaction is first order in base concentration. When the observed 

second order rate constants for THI formation are plotted against acid concentration for each condition, 

no trend is observed (Figure 12). The rate of THI product formation from deuterated dopamine is also 

first order in base concentration, however, the correlation is not as strong in maleic acid buffer (Figure 

23). Given that these reactions were slower, the peak integrations relied on smaller values that may 

have introduced error. Furthermore, the instability of the reactants and products in solution also may 

have contributed to error in the measurement of these slower reactions. Likewise, the correlation is not 

as strong for isoTHI (Figure 25). This is most likely due to the small peak size of isoTHI in comparison to 

the other peaks, which increases the error.  
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Figure 25. Observed rate of isoTHI formation dependence on the concentration of conjugate base species 
of phosphate buffer () and maleic acid buffer(●) of the reaction with  deuterated dopamine, producing 
the isoTHI species. Line of best fit is y=(1.3 ±0.3)x10-5mM-1s-1M-1 x + (7 ± 2)x10-8M  with R2= 0.86  for the 
reaction in phosphate buffer and y=(1.3 ±0.4)x10-6mM-1s-1M-1 x + (1.2 ± 0.7)x10-8M  with R2= 0.76 for the 
reaction in maleic acid buffer.  

The observed KIEs do not follow a discernable trend and exhibit significant variation. The origin of this 

variation is unclear. It may be due to experimental error. These experiments will need to be replicated 

with freshly prepared solutions and more concentrations measured to uncover trends in the KIE values.  

Despite the variability in the KIE data, it is clear that our data shows a significantly large primary KIE. The 

average KIEs are around 5 and 4 in phosphate and maleate buffers, respectively.  The following 

possibilities could explain the large KIE:  either steps 5 and 6 have the same transition state (Figure 28) 

or the reverse reaction for step 5 is fast (Figure 27). If there was no kinetic isotope effect, the reaction 

coordinate for steps 5 and 6 for the Pictet-Spengler reaction would depict the energy profile in Figure 

26.  
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Figure 26. Reaction coordinate diagram for no kinetic isotope effect. 

Figure 27 portrays the reaction coordinate for a small kinetic isotope effect (1-3) where step 5 is fast; 

however, this is not represented in our data. The other possibility is shown in the reaction coordinate  

Figure 27. Reaction coordinate diagram for a small kinetic isotope effect. 

for a large KIE (>3), (Figure 28). Steps 5 and 6 have the same transition state therefore, the rate for a 

large KIE (>3), (Figure 28). Where steps 5 and 6 have the same transition state therefore, the rate 

equation would be equal to [phosphate]2. Because the base concentration increases linearly with rate, it 

is clear that either step 4 or 5 in Scheme 7 is the rate-limiting step. The observation of a large primary 

KIE strongly supports that the final deprotonation of the aromatic ring (step 5) as being rate limiting. We 

see that the KIE is not apparently dependent on the amount of buffer, (Figure 10). The large magnitude 

of the KIE is quite unusual for an electrophilic aromatic substitution reaction. Step 4 in Scheme 7 ring 

formation, is not typically expected to be a fast step because this reaction breaks aromaticity and 

reduces entropy. However, the 3-hydroxyl group clearly activates the ring and reduces this barrier. A 

computational study of the relative energy of these reaction barriers is in progress. Initial results suggest 

that phosphate may uniquely combine steps 5 and 6 into one step with one transition state (Figure 25). 

The current data are qualitatively consistent with this model and rule-out rate limiting ring closure 

(Figure 23). The current data are not clean enough to determine if there is a change in the kinetic 

isotope effect with maleic acid or if maleic acid functions by a different mechanism. 
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Figure 28. Reaction coordinate for a large kinetic isotope effect. 

Kinetic Isotope Effects in Other Studies 

The final deprotonation step has been found to be limiting for indole Pictet-Spengler reactions of 

tryptamine with propanal.29 In that study, the observed effect was 2.7, a relatively small in magnitude 

for a primary KIE. Just as this dopamine Pictet-Spengler reaction is linearly dependent on base catalyst, 

the tryptamine reaction was linearly dependent on the concentration of acid catalyst. Thus, acid-

catalyzed steps were significantly rate limiting in the tryptamine reaction. In general, the expression of 

the primary KIE for the isotopically dependent rate limiting step can be attenuated by other steps that 

are significantly rate limiting.32 In the case of the tryptamine Pictet-Spengler reaction, this effect was 

verified by a strong linear dependence of the KIE on the concentration of acid catalyst. It was concluded 

that the mechanism was similar for both conditions. Therefore, the presence of an acid-catalyzed rate-

limiting step most likely reduced the apparent value of the base-catalyzed isotopically dependent 

deprotonation. In contrast, the dopamine Pictet-Spengler reaction is base dependent, the KIE is close to 

the expected theoretical maximum for a primary KIE, and does not apparently vary with base or acid 

concentration (though this needs to be confirmed with higher quality data). Together, these 

observations suggest that the final deprotonation step is the only significant rate limiting step in the 

dopamine reaction with aldehyde. Acid catalyzed steps do not interfere with our ability to measure the 

KIE. 

In the study of the tryptamine Pictet-Spengler reaction, the 2.7 magnitude of the KIE was similar in both 

enzymatic and acetic acid buffer reactions. Luk et al. studied the enzymatic mechanism of this Pictet-

Spengler reaction norcoclaurine synthase (NCS) and observed a KIE of 1.7 for (Vmax/Km)H/(Vmax/Km)D. This 

study used dopamine and deuterated dopamine prepared by the same procedure. However, instead of 

propanal, the enzyme reaction was carried-out with 4-hydroxy-phenylacetaldehyde. This study did not 

examine isotope effects on the equivalent non-enzymatic reaction. Our finding that the KIE for the non-

enzymatic reaction of dopamine is significantly higher suggests that steps other than deprotonation are 

significantly rate limiting in NCS, and therefore reduce the magnitude of the kinetic isotope effect in the 

phosphate buffer-catalyzed reaction system. It should be noted that the kinetic isotope effect measured 

for the enzymatic reaction followed the competition of deuterated and natural abundance dopamine 
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within the same reaction.33 Observation of relative rate constants based on the ratios of the product 

distribution is a powerful method because it measures KIEs with higher precision. However, KIEs 

measured by such a method must be interpreted differently than KIEs measured from direct comparison 

of two separate reactions.34 In such experiments, steps that have no analog in the buffer-catalyzed 

reaction, such as substrate binding and release of product measurements may be significantly rate 

limiting. Therefore, unless additional experiments are performed to verify an enzyme primary kinetic 

isotope effect is the intrinsic effect for the reaction, it cannot be compared to a chemical KIE because of 

other rate limiting steps that are introduced by enzyme reactions.35 The intrinsic isotope effect for the 

enzymatic reaction would need to be measured for both (Vmax/Km)H/(Vmax/Km)D and (Vmax)H/(Vmax)D by 

measuring the these enzymatic kinetic constants in parallel reactions instead of by isotope competition 

in the same reaction. 

In electrophilic aromatic substitution, a small, inverse secondary KIE is typically observed. Such an effect 

indicates that the isotopic bond substitution bond is not being broken and that the reaction for the 

deuterated reactant proceeds faster. 30 This effect is commonly observed because the slowest step is 

typically the attack on the ring. In general, this step is usually rate limiting as well36, depending on the 

rate limiting step. This suggests that the KIE is secondary and another step is rate limiting.  

Most electrophilic aromatic substitutions studied do not have a primary isotope effects because k1 is 

large and k2 and k-1 are small (Figure 29).36 The slowest step is not actually rate limiting because the 

faster second step is actually the highest energy barrier.  

 

Figure 29. First step reversible reaction where k1 is the formation of isoTHI , k2 is the formation of THI and 
k-1 is the starting material, dopamine. 

 

Pesnot proposed two pathways for the Pictet-Spengler reaction where phosphate acts as a base after 

the formation of iminium intermediate (Scheme 4).  Phosphate, anion or dianion, undergoes 

nucleophilic attack on the iminium intermediate, thereby forming a highly reactive aminophosphate that 

is in equilibrium with the iminium. In his proposed path a, phosphate acts as a base to deprotonate and 

activate cyclization.  Phosphate then mediates intramolecular rearomatization. In Pesnot’s path b, 

phosphate mediates intramolecularly rearomatization. The favored pathway for this reaction is the 

formation of a carbinolamine, which then facilitates catalysis, allowing for rearomatization. However, 

this was not supported by our data. We find the reaction to be base catalyzed, but no intermediate due 

to rearomatization and cyclization occurring simultaneously.  

Additionally, there is no evidence that shows that the aminophosphate adduct exists in this reaction. 

Interestingly, Pesnot’s hypothesized mechanisms both require two phosphate ions up to and including 

the final deprotonation step. If rearomatization were rate limiting in such a model, as our data shows, 

then the rate dependence would be: 
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Although the current data has considerable scatter, they do not suggest such a rate dependence on 

phosphate. We hypothesize that our very large primary KIE is due to cyclization and rearomatization 

occurring simultaneously with no intermediate (Scheme 4) and that a second equivalent of phosphate is 

not required to deprotonate the phenol. In addition to our data, Dr. Ruben Parra has modeled this 

reaction and found that a single transition state for both Steps 5 and 6 is the lowest energy pathway. 

This provides an explanation for the large KIE values as there are no preceding steps which would 

decrease the KIE.  Based on this data, we are able to conclude that final step, step 6, is the rate limiting 

step and that one equivalent phosphate buffer is responsible for catalysis. 

The effects of acid and base appear to cancel each other out in terms of regioselectivity of the reaction 

for THI versus isoTHI. The total phosphate concentration, not the concentration of an individual species, 

is linearly correlated to the THI/isoTHI ratio. Because two conformations (Figure 11) of the same 

iminium intermediate give rise to the two different products, THI and isoTHI, the Curtin-Hammett 

principle applies such that the ratio of the two kinetic products is proportional to ΔΔG‡ for the rate 

limiting step of the two reactions when the reaction is carried-out under kinetically selective 

conditions.26 The large primary KIE observed for all reactions suggests that the final deprotonation is the 

rate limiting step in all reaction conditions studied. Within the limits of the current dataset, the reaction 

appears to be linearly dependent on buffer concentration. This indicates that there is one equivalent of 

buffer in the rate limiting transition state.37 Combining these two pieces of information, the transition 

state structures in Scheme 9 are drawn to indicate the final deprotonation step without simultaneous 

protonation of the ring. 

 

Scheme 9. Proposed reaction of phosphate where a one-step deprotonation and cyclization with no 
intermediate occur. Phenol deprotonation is not required.  
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Chapter 6 – Conclusions and Future Work 
 

The mechanism of the Pictet-Spengler reaction of dopamine with propanal in maleic acid is apparently 

comparable to that in phosphate buffer. The rate of reaction clearly depends on the concentration of 

buffer. In addition, [HA] is not the rate-limiting catalytic species. Although there is a strong first order 

rate in the base concentration in both buffers, it is not as strong in maleic acid buffer. When observing 

the reaction mechanism, step 4 (rearomatization) is in a base dependent equilibrium and step 5 

(electrophilic cyclization) is base catalyzed (Scheme 7). This confirms that the reaction is dependent on 

the base concentration. When determining which step is rate limiting, the deuterated dopamine reacted 

at a slower rate than the natural abundance species; in both buffers the rate was 3-fold to 4-fold slower. 

This suggested that step 6, deprotonation, is rate limiting. In addition, general base catalysis is observed, 

where kb in phosphate buffer is about an order of magnitude faster than in maleate buffer, further 

confirming that the reaction is dependent on the base concentration. 

In the midst of studying the reaction, and isomer of tetrahydroisoquinoline was seen, which we call 

isoTHI. Interestingly, no previous work has mentioned this product.  Although we were not able to 

isolate and purify isoTHI for this work, our goal is to do this and to verify the extinction coefficients we 

calculated. The reaction in phosphate buffer showed that the reaction is dependent on buffer 

concentration and pH. Previous work found the Pictet-Spengler reaction of tryptamine with aldehydes 

to be acid catalyzed. We found no trend for acid catalysis in a rate limiting step, only base catalysis for 

both maleic and phosphate buffers.  However, stronger trends are seen for phosphate buffer. Maleic 

acid buffer trends fall apart as the pH reaches the pKa of maleic acid. Further work on comparable 

buffers would be helpful to see if they would also follow this trend and if there is phosphate specificity 

seen. 

A kinetic isotope effect is seen in both phosphate buffer and maleic acid buffer. It is quite large, in fact, 

indicating a primary isotope effect. This occurs because rearomatization and cyclization occur 

simultaneously. A currently unpublished computational study by Dr. Ruben Parra found a low energy 

pathway for the cyclization and rearomatization steps for the formation of a model compound 

analogous to THI. In this pathway, the final deprotonation step was rate limiting and dibasic phosphate 

(HPO4
2-) was the best base catalyst.  A schematic of the rate limiting transition states found are shown in 

Scheme 10. In these structures, phosphate may exhibit enhanced basicity due to the unique bridged 

structure or it could be that this bridged structure catalyzes both steps 5 and 6 as a single transition 

state. Unfortunately, we were unable to conclusively observe a different catalytic mechanism in maleic 

acid buffers. These slower reactions gave poorer results. This was most likely the result of interference 

from slow side reactions that decompose the reactants and products that become more significant 

when the reaction is slower, as was the case for reactions with deuterated dopamine and maleic acid 

buffer. 
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Scheme 10. Proposed rate limiting transition states of model compound analogous to THI. 

Future Directions 

Dopamine is an unstable catechol. Our inability to obtain trends in some cases made be due to the 

presence of oxidative decomposition of the catechol functional group in both dopamine and the Pictet-

Spengler reaction products. The resulting quinones are not generally observed by HPLC because they 

rapidly polymerize to multiple species that elute late in our method or precipitate and are not injected. 

Elimination of the catechol group should improve the overall quality of the data.  In order to isolate THI 

and isoTHI, the below reactions can be used to prepare an amine substrate that is less vulnerable to 

oxidation due to an absent catechol. This compound will then permit the study of Pictet-Spengler 

reactions for longer time frames. This will be helpful as I have evidence that the stock solution of 

deuterated dopamine decomposed a bit and may have contained some reactive side products.  

 

 

Scheme 11. Proposed preparation amine substrate with higher stability. 

Additionally, the boiling point of propanal is 46 °C. It is possible that the concentration of aldehyde is 

drifting while our kinetics experiments are running. This could significantly affect the apparent rate 

constant measured for slow reactions and may make them difficult to compare to faster reactions, thus 

impacting the trends for kinetic isotope effect measurements. Propanal was selected because its high 

water solubility made it suitable for pseudo first order kinetics. However, a less volatile aldehyde may 

improve the trends in future experiments.  

Finally, internal competition experiments provide high quality KIEs. It is possible that an isotopically 

sensitive method like NMR could be used to measure KIEs by this alternative method. 

 

a. b. 
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