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Abstract

The central problem of diffraction theory is determining the structure of an object given only the intensity

of its diffraction pattern. In general, both the amplitude and phase must be known to uniquely solve a

structure; however a coherent radiation source is usually required in order to measure the diffacted phases

(e.g. in holography). In many important cases, coherent sources are unavailable and other assumptions or

methods must be employed to substitute for the missing phase information. One method that has been

successfully applied to the specific problem of determining atomic structure from X-ray diffraction intensity

patterns has been the use of multiple-wavelength measurements in the vicinity of an x-ray absorption edge.

The large dispersion of the atomic form factors near resonance can be used to constrain the inversion of

the diffraction pattern. This thesis explores the extension of this approach to near-perfect crystals where

dynamical diffraction theory is required to describe the X-ray diffraction lineshapes. In particular, this thesis

presents a study of the depth-dependent transient strain that exists in an otherwise perfect Germanium

crystal following the absorption of an intense ultrafast light pulse. This analysis shows that additional

structural information may be obtained by the use of multiple-wavelength techniques.



Chapter 1

Introduction

Light is a solution of Maxwell’s Equations in which the magnetic and electric fields are perpendicular. This

is observable in the effect of light on a moving or stationary electron. As essential a part as light plays in

the world, we do not come across it except through its interactions with matter—dominantly, the vibration

of electrons caused by the vibration of other electrons. Examining the interactions of light and matter have

contributed to countless advances including wireless communication, Cosmology, and the storage systems in

most digital electronics.

Matter is made up of atoms containing many electrons, each of which reacts to the light incident

upon it. This causes more general, macro-scale interactions dubbed transmission, reflection, and absorption.

For example, a coherent laser light—a plane wave—travelling through air is shaking air’s electrons, which

causes them to radiate in all directions. However, only the light in the forward direction radiates in phase, or

additively, while the light directed outside of the direction of the laser light is incoherent, and cancels itself

for the most part. Light can also be transmitted through an interface, or a material with different properties

than air; it is then refracted in a direction given by Snell’s Law. Finally, light going through a material

is absorbed, and its energy is converted to another form such as heat in vibrating the material’s atoms or

molecules. If the light is of sufficient energy, it might turn into the extra kinetic energy of an electron which

is in turn excited to a higher energy state or kicked entirely out of the atom with some velocity in the

Photoelectric Effect. If there is some light left over, it is called a Compton scatter. Finally, light hitting

light or a particle can annihilate to create an electron-positron pair in pair production.

One application of these processes can be used to measure the shapes of molecules, crystals, and

proteins using x-ray diffraction methods. X-rays, while not visible, constitute light of higher frequency than

ultraviolet and lower frequency than gamma rays, and their small wavelength allows them to measure up to
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nanometer imaging resolution and to femtometer resolution using X-ray diffraction. To facilitate the growing

demand for high energy x-ray sources, there exist very large and expensive facilities called synchrotrons, in

the shape of a donut over a kilometer in circumference3. The donut shapes are the accommodate very

fast electrons made to turn with the circle every so often—the turns are in fact decelerations which create

x-ray radiation in the tangential direction, where they are harnessed so that scientists in the fields including

biology, physics, and chemistry carry out their experiments.

We use this approach to find how a germanium wafer reacts to being hit with a laser. When the laser

hits the germanium—which can be treated as layers of atoms due to its crystalline structure—a compression

wave of heat is sent into the lattice. If the laser energy is above germanium’s band gap, it will kick electrons

which previously held the layers together in the valence band to the conduction band through Compton

scattering or the photoelectric effect, collapsing layers and causing an elastic response in the crystal. By

positioning the laser and x-ray probe so they can be treated as transverse to the crystal surface, we assure

that the strain is essentially in one dimension, the depth of the crystal.

1.1 Motivation

Germanium and silicon are two of many elements and compounds with diamond structures. Silicon is used

in integrated circuits in countless electronics, and like germanium, it is also a semiconductor. The demand

for these is so high that scientific advances have allowed the mass production of perfect silicon crystals for

use in electronics on a grand scale. It comes as no surprise, then, that understanding the reaction of these

elements to light—even moreso, to heat, which light absorption also generates—is pivotal to fast electronics,

which generate so much heat that we customize heat sinks and fans to cool them down in computers.

One-dimensional strain in germanium and silicon structures can occur if one side of the crystal is met

with a surge of heat. Undestanding the reaction of the lattice structure to such surges has applications in

electronics where heat is a byproduct, or as an infrared detector where the heat is intended. Optoelectronic

devices used in fiber optics and photovoltaics also result in heat generation following light absorption. Ger-

manium is further a very sensitive infrared detector due to its transparency in that domain. Calculating

the strain of germanium after excitation helps to calculate the speed of the electrons ejected through the

conduction band as a result, which is pivotal for detectors.

When the laser pulse meets the germanium, its energy transfers to heat vibrations over varying time

scales14. Processes include the production of electron-hole pairs, the conversion of photons into thermal

vibrations, and free carrier absorption. Electrons excited to the conduction band in the penetration depth

of the laser (less than 1µm) propagate into the material at supersonic speeds14.
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If we could measure both the intensity and the phase of incoming waves, we could determine three-

dimensional structures from X-ray diffraction. Because we only measure intensity, obtaining three-dimensional

structures requires clever methods. One such method is multi-wavelength anomalous diffraction, known as

MAD phasing. This technique allows for the determination of the structure of select unstrained, imperfect

crystals, via atomic replacement in the unit cell. This is to achieve an accessible K-edge to find the positions

of atoms within the (very large) unit cell. The method does not apply for perfect crystals, however, where

dynamical diffraction theory is required, the unit cells are small, and atomic replacement does not occur.

The method used in this thesis is collecting data at multiple wavelengths (hence penetration depths) to

obtain a depth-dependent strain profile. If two rocking curves are obtained for the same crystal; one strained

and one unstrained, then the measured Darwin curve offset of each wavelength corresponds roughly to a

change in cumulative average lattice spacing at that penetration depth. This provides data for the average

interplanar spacing as a function of depth, which can yield information about the strain profile.

3



Chapter 2

Theory

2.1 Overview

In order to describe the obtained rocking curves—data of reflective intensity over a range of angles—for our

perfect crystals, the dynamical theory of diffraction is required. Unlike the kinematical approximation, the

dynamical method accounts for inner reflections that end up in the same direction as the original incident

xray beam, which can reflect again to contribute to the reflected intensity; hence the dynamical approach.

The crystal is spatially periodic in all three dimensions, and if viewed from certain angles, one will

observe that the crystal is made up of atomic layers that are identical up to translation in their own planes.

In this regard, the simplest theory of diffraction is kinematical diffraction. Kinematical diffraction treats

the layers as identical and applies Bragg’s law to find that the reflected intensity is equal to the incident at

some critical angle θC at which the reflections of the incident wave from each layer are in phase. Given by

mλ � 2d sin θC , this angle depends on the interplanar separation d and the wavelength of the incident beam

λ. As the x-ray penetration depth is orders higher than the interplanar spacing d, there are enough reflections

from each atomic plane to cancel completely at non-integer m; the result is a rocking curve consisting of a

single, thin intensity equal to the incident at θC .

One thing the kinematical derivation doesn’t account for is internal reflections. As the x-ray beam is

reflected out of the material from some layer, it is also partly reflected back into itself by the previous; the

theory that takes this into account is dynamical diffraction. This partial internal reflection itself then

contributes both to the next layer’s incident beam and to the present layer’s beam—this is explained in

more detail in the next sections (see , Figure 2.9, Figure 2.12), and gives rise to the need for a kinematical

calculation, in which each beam splits into a reflected and transmitted beam at each the bottom and top

4



interfaces of each layer infinitely many times. The result is that the peak is not only widened, but also

shifted by some amount derived as Equation 2.33.

However, there is still one element missing, and that is absorption at each interface. The beam loses

intensity as it enters the material, and we thus turn to dynamical diffraction with absorption to analyze

our perfect crystal’s rocking curves. Model rocking curves with this more complete theory are not only wide

and shifted (by the same amount as without absorption), but are asymmetric; this is because changing

the angle towards the normal of the plane increases the extinction depth, whereas changing it in the other

direction decreases it, and this changes how much is absorbed in the layers.

We have already summarized kinematical diffraction, and will expand upon this and core concepts

in Section 2.2. The theory of dynamical diffraction, which takes internal reflections and transmissions into

account, is derived in Section 2.3, and its expansion to many layers in Section 2.3.6 is reconciled with

the results of refractive kinematical diffraction in Section 2.3.5. Finally, absorption is factored into our

derivations with a simple but powerful expansion to dynamical diffraction with absorption in Section 2.3.8.

2.2 Kinematical Diffraction

The kinematical approximation is the assumption that the x-ray scatters only once within the material; it is

not used for perfect crystals in which this effect is significant. This approximation is illustrated in Figure 2.1.

Figure 2.1: An illustration of the path of rays of light in kinematical diffraction. Horizontal lines are reflecting
planes, such as the periodic atomic planes of a crystal. The rays interact constructively according to Bragg’s Law.

5



2.2.1 Thomson Scattering Length (r0)

The electrostatic potential energy of an electron is given through work by

UEprq � �W � �
» r
8

qE � ds

� �
» r
8

q

�
q

4πε0r2



dr

� � q2

4πε0

» r
8

r�2dr

� q2

4πε0r

But the energy is also known to be U � mc2, so that

mc2 � U � q2

4πε0r
ùñ r0 � q2

4πε0mc2
,

where we have reserved the assumptions that ∇�E � 0 (conservative E�field) and ε � ε0 (free space). If

it is an electron we are referring to, we can express the Thomson Scattering Length (ro) of the electron:

r0 � e2

4πε0mec2
(2.1)

2.2.2 Scattering Vector

The principle aim of this chapter is to understand how a perfect crystal will affect light incident upon it.

Any observable effects in the light can be attributed to the charge distribution of the material. To this end,

we consider the effect of some charge distribution on an incoming plane wave. A plane wave is a solution of

Maxwell’s equations with the perpendicular sinusoidal E and B fields propagating in the direction given by

E �B. The sinusoidal electric field in a plane wave can be expressed

Epr, tq � E0 cospk � r � ωtq � Re
�
E0e

ipk�r�ωtq
�

(and the B field similarly), and it is clear that this is the equation of a sinusoidal wave pulling in the �Ê0

direction along the k̂ axis with wavelength λ � 2π
|k| moving to the right with angular velocity ω and with

amplitude |E0|. The complex part of this and subsequent equations is to be ignored; we only make use of

the complex plane because it offers mathematical simplifications, such as the multiplication of eiφ to apply a

phase shift (this is more cumbersome in the real domain). The incoming plane wave initially makes its way

from the source to the distribution, undergoes optical effects, and then makes its way out of the distribution,
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where it can be observed. Our focus is on light that has been shining long enough for observable effects

to have stabilized (ie, the source having been turned on and eventually being turned off are beyond our

interests). In our region of interest, it then suffices to observe the waves frozen in space, where they are

characterized uniquely by their wavelength and direction, which are combined in the k vector. We then

represent the incoming wave as k with the understanding that this describes the wavevector of the electric

(and magnetic) field propagating along that direction. The only information we lose in this notation is the

direction that the electric (and magnetic) fields pull, Ê0 (B̂0), which is safely left ambiguous in our initial

theoretical developments.

To begin, we analyze the effect on a pair of electrons. In this and further analyses, we restrict both

the directions of the incident wave k and the scattered wave k1. This is akin to shining an x-ray beam on a

sample and placing a detector of finite size at some chosen angle for a reading. The results will be functions

of k1, so that they still hold the information for scattering at any angle. For example, the incident wave in

Figure 2.2 is pointing to the right, and we’ve chosen the detection angle to be 45� in the plane of the page

in denoting k1.

r

k

k

k1

k1

e-

e-

2θ

Figure 2.2: Demonstrating the usefulness of the scattering vector. One electron is at the origin at the lower right,
and another is located at r. To find the phase shift, we sum the shift from the delay of the incident vector k hitting
the electron at r with the shift of the scattered vector from the origin reaching that of the other. This figure also
defines θ as half the angle between the incident and measured angles.

The Scattering Vector (Q � k � k1) is very useful in finding the phase difference between scattering

waves of two scattering objects located a vector r apart. Take one such object, an electron, to be at the

origin, another at r. Since our detector defines k1, it remains the same direction. The phase shift between

the electrons is given by a retarding shift from the radians along k between them (ie, k �r) and the backwards

shift from the electron at r, since it is closer to the detector. The former is a shift of k � r � 2π
λ k̂ � r, and the

latter k1 � r. See Figure 2.2 for details. The phase shift of the electron at r with respect to that at the origin

(denoted by the crosshairs) is then the sum of the delay of the incident wave in reaching it (k � r), and the
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negated shift in distance reaching it from the electron at the origin (�k1 � r):

∆φ � pk � k1q � r � Q � r

The Scattering Vector Q � k�k1 is particularly useful in describing an inelastic Bragg’s law–assuming that

the scattered wave has a higher wavelength (less energy) than the incident, mλ � 2d sin θ will no longer do,

since the λ are different, and we now have Q � r � 2π, where r is the vector from the first to the second

scatterer.1 In the case of elastic absorption where |k| � |k1|, we have:

|Q| � 2k sin θ � 4π

λ
sin θ (2.2)

where θ is defined in Figure 2.2.

2.2.3 Atomic Form Factor

The scattering amplitude at Q of a plane wave incident on an isolated atom is given by its Atomic Form

Factor f0pQq, where Q � k � k1, k is set by the incident plane wave, and k1 is given by where one places

the detector. This can be expressed as the sum of contributions from the electron density ρprq with phase

shift given by eiQ�r over the volume:

f0pQq �
»
ρprqeiQ�rdr (2.3)

where dr is an infinitesimal volume.

The scattering is lessened by the attraction of the electron to the nucleus of the atom; this diminish-

ment is denoted by f 1p~ωq, the bound reduction. At higher energies, when the electron is less bound to the

atom, the bound reduction becomes negligible.

Finally, the scattered wave is further diminished by f2, the phase lag dissipation from the phase lag

between the driving plane wave and the electron response. It also accounts for attenuation due to damping

by the bound electron, and is dependent on the strength of the E-field on the electron, which is given by

the energy ~ω. Together, f 1 and f2 are known as the dispersion corrections. Summing these corrections to

f0 gives the corrected form factor, which carries both angular and energy dependence:

fpQ, ~ωq � f0pQq � f 1p~ωq � if2p~ωq (2.4)

We can calculate f0pQq by finding the electron distribution ρprq of the atom using computational

methods such as relativistic Hartree-Fock and Dirac-Slater methods and evaluating Equation 2.3 for various
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Q. This has been done in the Crystallographic Tables6, where a method is derived for accurate interpolation

of these values; given coefficients tai, biu4i�1 and c, a sample of which are given in Table 3.3, one can find the

interpolated f0 by evaluating

f0pQq �
4̧

j�1

aje
�bjQ

2 � c (2.5)

with the scattering length given by �r0f0, negative because of the double integral in getting from F � qE �
q cospkx � ωtq to x � ³ ³

F
mdtdt. The International Tables of Crystallography also provide values of f 1 and

f2 for various energies5, samples of which are given in Table 3.4)—however, this is not sufficient for our

needs, as the Crystallographic Tables do not cover the understandably eratic behavior near the band edges.

Instead, we use more accurate data given around the K-edge from another source7, made available online9.

Interpolation methods are then used to obtain their values at energies between those given—this paper uses

simple linear interpolation.

Crystal structures are categorized by their symmetries into 14 Bravais lattices in three dimensions,

ranging from rhombohedral to hexagonal in shape. The materials we are interested in are all cubic lattice

systems, meaning that their conventional unit cell—an arrangement of atoms that repeats throughout the

crystal in the Cartesian directions—is a cube. We restrict our derivations to cubic lattices for the remainder

of our derivations. Cloning this cube at each of its faces recursively then creates the crystal structure. To

exploit this, we express the vector from our origin to each atom in the entire crystal as Ri � rj , where Ri

points to the origin of the ith unit cell, and rj to the jth atom within that unit cell. Iterating over j gives

us insight into the properties of a single unit cell, which simplifies calculations over complex symmetries of

atoms to calculations over simple cubic symmetries of unit cells.

Explicitly, we can split the scattering amplitude of the entire crystal into

F crystalpQq �
�¸

n

eiQ�Rn

��¸
j

fjpQqeiQ�rj

�
� Fu.c.pQq

¸
n

eiQ�Rn .

where we’ve defined the form factor of a unit cell, the Unit Cell Structure Factor, as

Fu.c.pQq �
¸
j

fjpQqeiQ�rj . (2.6)

This method is explained more thoroughly in §2.2.5 and is applied dynamically to fully exploit symmetry in

§2.3.

Of the terms in the product, Fu.c.pQq has been discussed and will be simplified in the following

sections. The real challenge becomes summing over every unit cell in the lattice—effectively infinite, we will
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eventually exploit absorption through the crystal layers to get meaningful results.

2.2.4 Reciprocal Lattice

Figure 2.3: Face-centered cubic crystal lattice (left) and its reciprocal lattice (right). Note that the reciprocal lattice
of the face-centered cubic (fcc) lattice is body-centered cubic (bcc).

Whenever we write a vector as a column matrix, it is in Cartesian coordinates:

r � xx̂� yŷ � zẑ � x

�
�����

1

0

0

�
������ y

�
�����

0

1

0

�
������ z

�
�����

0

0

1

�
����� �

�
�����
x

y

z

�
����� , x, y, z P R

If we want to denote the position of each unit cell in the lattice, we seek to describe only the position of the

corner we take to be the origin in each unit cell (the corner from which the arrows in Figure 2.3 originate),

and for this task we scale the Cartesian basis by the lattice parameter a in creating the new basis taiu where

a1 � ax̂ a2 � aŷ a3 � aẑ,

and this has the benefit that any unit cell can be specified as an integer linear combination of these basis

vectors:

Ri � xa1 � ya2 � za3 x, y, z P Z.

If we now seek to describe the positions of the atoms within the unit cell, a more fitting basis is the

one drawn in Figure 2.3 consisting of tsiu where similarly, the position of any atom within the unit cell

rj � xs1 � ys2 � zs3, x, y, z P Z

can be expressed as an integer linear combination of these basis vectors.
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The “crystal basis” which is just a scaled Cartesian basis taju is then useful for describing terms

having to do with the unit cell within the crystal, whereas the “unit cell basis” tsju is useful for describing

the positions of atoms relative to each unit cell.

A given basis tqju has a reciprocal space, which is actually the same space but spanned by a

reciprocal basis, defined by

qi � qj � 2πδij . (2.7)

Both the crystal basis and the unit cell basis have corresponding reciprocal bases. In the crystal lattice taiu,
it is clear that the condition ai � a�j � 2πδij is satisfied by a�i � 2π

a2 ai.

In the crystal reciprocal basis, we can now show that a vector given by

G � ha�1 � ka�2 � la�3 , h, k, l P Z (2.8)

is perpendicular to a plane crossing in the Cartesian basis the points p ah , 0, 0q, p0, ak , 0q and p0, 0, al q and the

family of planes parallel to it (ie, the family of Miller planes given by ph k lq) by noting that the equation of

such a plane is given by xh� yk � zl � a and its normal vector is then

n � hx̂� kŷ � lẑ

whereas the equation for G can be rewritten in the taiu basis of the simple cubic lattice to take the form

G � 2π

a2
rha1 � ka2 � la3s (2.9)

which is parallel to n and scaled by a factor of 2π
a , so that G is perpendicular to the plane. Hence G is

perpendicular to the family of Miller planes ph k lq. The interplanar distance of the Miller planes is given

by definition as the distance from the origin to the closes plane (which crosses the x, y, and z axes at the

aforementioned points), and this is given by taking the projection of any vector extending from the origin

to the plane (eg, a1

h ) onto G, given by

dhkl � a1

h
� G

|G| �
2π

|G| (2.10)

with the subscript hkl emphasizing the dependence of the interplanar distance on which family of Miller
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planes we choose. Plugging Equation 2.9 into this yields for the simple cubic lattice

dhkl � a?
h2 � k2 � l2

. (2.11)

To find the unit cell reciprocal lattice basis vectors
 
s�j

(3

j�1
, we solve uniquely for the equation

sj � s�j � 2πδij , where represents the Kronecker delta. Denoting the volume of the unit cell

vc � s1 � ps2 � s3q �

�
�����

0

a
2

a
2

�
����� �

�
�����

�
�����
a
2

0

a
2

�
������

�
�����
a
2

a
2

0

�
�����

�
����
�

�a
2

	3

�
�����

0

1

1

�
����� �

�
�����

�
�����

1

0

1

�
������

�
�����

1

1

0

�
�����

�
����
�

a3

8

�
�����

0

1

1

�
����� �

�
�����
�1

1

1

�
����� � a3

4
,

we note that in order for the reciprocal lattice
 
s�j

(
to satisfy its definition si � s�j � 2πδij , (1) s�j must be

orthogonal to s�k , k � j, and (2) s�j � sj must have magnitude 2π. The first condition is achieved if we take

s�j to be the cross-product of the other two vectors (in cyclic order), since the cross product of two vectors

is orthogonal to each. This yields for i � j � k with si � sj � sk that

sq � s�i � sq � psj � skq � δqisi � psj � skq ,

so the second condition is satisfied by multiplying our s�i by the factor

2π

si � psj � skq �
2π

vc
� 8π

a3

where a is the form factor.

s�1 �
8π

a3
s2 � s3

� 8π

a3

�
1

2
pa3 � a1q



�
�

1

2
pa1 � a2q




� 2π

a3
pa3 � a1 � a3 � a2 �����a1 � a1 � a1 � a2q

� 2π

a
pâ3 � â2 � â3 � â1 � â1 � â2q

� 2π

a
p�â1 � â2 � â3q

Likewise,

s�2 �
2π

a
pâ1 � â2 � â3q s�3 �

2π

a
pâ1 � â2 � â3q
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Hence we come to find the result that is Figure 2.3, a cubic reciprocal lattice.

2.2.5 Lattice Sum

Equation 2.6 defines F crystal as the product of the unit cell structure factor and the lattice sum, the latter

consisting of a sum over a large order of magnitude (the number of unit cells in a sample). The claim is

made that unless all contributions from the lattice sum are in phase, the sum is of order unity (which, as

our form factor is in units of r0, is very small)1; this corresponds to Q �Rn � 2πm, m P Z. The solution is

integer coordinates in reciprocal space, defined in Equation 2.8, which yields:

G �Rn � pha�1 � ka�2 � la�3 q � pxa1 � ya2 � za3q � 2πphx� ky � lzq � 2πm, m P Z

Since h, k, l, x, y, z P Z. This clarifies the role of G; G is the Q at which constructive interference

occurs in our derivation—remember that Q � k�k1, so Q is an expression of the angle between the incident

and reflected beam (neglecting absorption, for now).

In evaluating Equation 2.6, we carry out our calculations for only the four atoms located at the origin

and basis vectors, as show in Figure 2.3; ie, r0 � 0, r1 � s1, r2 � s2, and r3 � s3. This is justified once we

realize that the cubic unit cell is to be repeated at every corner, and cloning these four atoms at every unit

cell site Ri yields the fcc structure (normally, one performs calculations on every atom in the cell, taking

whatever fraction of the atom is in the cell to avoid redundancy). For given angles of incidence and detection

(reflection) corresponding to constructive interference and expressed by G, Equation 2.6 can be expressed

F fccpGq � fpGq
3̧

j�0

eiG�rj , (2.6)

where F is the form factor for the unit cell and rj points to each of the four atoms which we choose to

represent the unit cell. As these atoms are located at the origin and the three basis vectors, they can be

expressed:

r0 � 0 r1 � s1 � a

2
pŷ � ẑq r2 � s2 � a

2
pẑ � x̂q r3 � s3 � a

2
px̂� ŷq (2.12)

Using Equation 2.9, we can express G in the non-reciprocal crystal basis as

G � ha�1 � ka�2 � la�3 �
2π

a2
rha1 � ka2 � la3s � 2π

a
rhâ1 � kâ2 � lâ3s

Combining this with Equation 2.12, we can solve Equation 2.6:
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F fcc

hkl � fpGq
3̧

j�0

eiG�rj � fpGq
3̧

j�0

�
ei0 � eiπph�kq � eiπpk�lq � eiπph�lq

�

Ignoring ei0 � 1 and observing the pairity of h, k, l, if two are odd and one even, the sum of the odds will be

even and the other two odd. The same happens if one is odd and two even. This results in the cancellation

of the sum, as e2πn � 1 and eπi � �1. The sum is then zero, and the reflection said to be forbidden, if h, k, l

are not all even or all odd. If they are all even or all odd, their pairwise sums are even, and

F fcc

hkl � 4fpGq (allowed reflections)

Figure 2.4: Diamond lattice structure. Note that it is a convolution of two monoatomic fcc structures.

Using these results, the trick to expanding the method to silicon blende crystals consisting of two

atoms is to treat them as two monoatomic crystals, and add the two with a shift (similar to the shift of

each atom within the unit cell), remembering to multiply them by their appropriate atomic form factors.

A subtlety that arises in polyatomic crystals is that what were previously forbidden reflections from h, k, l

causing the unit cell structure factor to add to zero are no longer necessarily forbidden, due to the shift

between the monoatomic crystals and the differing atomic form factors of each. In the diamond structure

shown in Figure 2.4, the “shifted” lattice is at 1
4 pa, a, aq, as can be verified in the image. Suppose we choose

the origin atom and those in the fcc lattice corresponding to it as Gallium, and the “shifted” atoms Arsenic,

arbitrarily. It suffices to add a phase shift for the distance between the two, in the form of ei2πph{4�k{4�l{4q;

this will add h{4, k{4, or l{4 to r. Note that G � r adds a factor of 2π
a to r, which already has a factor of a.

The 2π in our phase shift assures that the shift is applied to r, not G.
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2.3 Dynamical Diffraction

The kinematical derivation above assumes that each diffraction process is independent. This doesn’t account

for the refraction shown in Figure 2.9 for a single slab; in fact, the x-rays are reflected back into the material

and refract over and over again throughout the different layers as in Figure 2.5—hence the dynamical theory

of diffraction.

Figure 2.5: Illustration of dynamical derivation. The dynamical theory accounts for internal reflections dynamically
through each layer.

2.3.1 The Refractive Index

Suppose we strike a thin medium of thickness ∆ with a plane wave E0 whose propagation is normal to the

slab from the left, a distance R0 away, and record a frame frozen in time after the wave has reached R0 to

the right of the slab (Figure 2.6).

The incident field, frozen in time, can be denoted E0 � eikz emanating R0 away from it. There are

two equivalent ways of finding the electric field at R0 to the right (or R0, and we will refer to R0 to the left

as �R0); by using refractive principles, or by solving for the collective electron scatter. We compare the two

to obtain a relationship between the index of refraction and scattering properties.

Refraction

In the refractive case, the wave travels R0 � ∆
2 with wavelength λ and wave vector k, then travels ∆ with

wavelength λ1

n since

λ2

λ
� v2{f

c{f � v2

c
� 1

n
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Figure 2.6: Setup for refraction and scattering derivations—absorption is ignored for now.

and wave vector k2 � 2π
λ2
� 2π

λ1
n � nk. The wave then travels R0 � ∆

2 again, for a total phase shift from the

incident given by:

E0e
2ipR0�

∆
2 qk�nk∆

E0e2iR0k
� ei∆pn�1qk

Hence we observe a phase shift of eipn�1qk∆ to the original incident wave E0, so that the total wave measured

instantaneously at R0 is

EtotpR0q � E0e
inpk�1q∆ � E0 r1� ipn� 1qk∆s (2.13)

using the Taylor approximation, where E0 � E0pR0q implicitly.

Scattering

Each electron scatters the wave in phase if n ¡ 1 and precisely out of phase when n   1, where n is the

material index of refraction. As the latter is most often the case in x-rays, which deviate very slightly from

1, we want to denote

n � 1� δ. (2.14)

Following Figure 2.6, we take an infinitesimal section of the slab of area ∆dx at some height x from

the source S, with R0 " x. The distance that the wave travels before reaching this section is

R �
b
R2

0 � x2 � R0

�
1� 1

2

�
x

R0


2
�
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using the Maclaurin series. As the wave hits dx and is refracted unto point P , it has travelled

�
2R0 � 2x2

2R0



� R0 � x2

R0
.

The extra distance x2

R0
from the plane wave taking the shortest path accounts for a phase difference of eik

x2

R0 .

As our slab is three dimensional (expanding infinitely in the xy–plane and with thickness ∆ in the z), we

expand to cylindrical coordinates for a phase shift from the volume element ∆dxdy at px, yq of eik
r2

R0 .

The spherical wave solution to Maxwell’s Equations is of the form eikr

r . Our incident wave is of the

form eikR0

R0
throughout the origin, and eikR0

R0
eik

r2

2R0 for each point pr, θ, 0q in our slab (which is very thin,

so this approximately holds for |z|   ∆.) This is the wave received by each electron, which scatters it out

of phase (assuming n ¡ 1) with attenuation r0 given by the Thomson scattering length. The wave is now

of the form �r0
eikR0

R0
eik

r2

2R0 as it returns the length |R0 � r| to our observation point, contributing another

phase shift and attenuation of eikR0

R0
eik

r2

2R0 as measured at the observation point. Thus, from each electron,

a scattered contribution of

�r0
e2ikR0

R2
0

eik
r2

R0

is measured. To integrate over the slab with volume density ρ, we first note that for a P R�,

» 8

0

re�ar
2

dr

�������
u � ar2

du � 2ardr

������� �
1

2a

» 8

0

e�udu � 1

2a
.

This can be extended to any complex a; we choose a � �ik
R0

to obtain, with the approximation ∆2 � 0,

∆
2»

�∆
2

2π»
0

8»
0

�r0
e2ikR0

R2
0

eik
r2

R0 ρrdrdθdz � �r0ρ
e2ikR0

R2
0

∆
2»

�∆
2

dz

2π»
0

dθ

8»
0

re�ar
2

rdr

� �2π∆ρr0
e2ikR0

R2
0

�
1

2a




� � iρr0π∆

k

e2ikR0

R0

The wave at our point of observation is then the initial incident wave (ignoring absorption) added to this

contribution from the slab. The incident wave upon reaching the observation point is eik2R0

R0
so that the total

wave at our point of observation is

Etot � E0 � ES � E0

�
1� 2πiρr0∆

k

�
,
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and substituting that by the definition of f0 as discussed above, the electron density ρ � ρatf
0pQq with ρat

the atomic number density and Q � 0 (as our wave goes directly through the material at θ � 0), we obtain

Etot � E0

�
1� i

2πρatf
0p0qr0∆

k

�
� E0 r1� ig0s � E0e

�ig0 (2.15)

with

g0 � λρatf
0p0qr0∆

sin θ
(2.16)

is the phase shift due to the slab, and ∆ was substituted with its equivalent with a change in incident angle

by ∆
sin θ .

We compare this result to its equivalent in the subsection above to obtain

E0 r1� ipn� 1qk∆s � E0

�
1� i

2πρatf
0p0qr0∆

k

�

with solution

δ � 1� n � 2πρr0

k2
� 2πρatf

0p0qr0

k2
(2.17)

having used Equation 2.14 as the definition of δ.

Absorption

The intensity of a beam diminishes by factor e�µz, where z is the distance within the material travelled and

µ the absorption coefficient of the material. We can include this in our math elegantly by allowing n to be

complex. As refractive indices in the x-ray domain are often just less than 1, we want to denote

n � 1� δ � i
µ

k
(2.18)

Then, for a distance z, we can combine the phase shift and attenuation into einkz � eip1�δqkze�µz with δ is

given by Equation 2.17. If we set f2 � � µk
2πρatr0

, we obtain

n � 1� 2πρatr0

k2

�
f0p0q � if2

�

We submit without derivation that additional dispersion corrections take the form of f 1 and contribute to

corrections to f2 with the result

n � 1� 2πρatr0

k2

�
f0p0q � f 1 � if2

�
. (2.19)
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These are the components that make up the form factor given in Equation 2.4

2.3.2 Fresnel’s Equations

Figure 2.7: An incident wave ψI � AIe
ikI �r hits a sharp interface at z � 0 with angle θ and is reflected at the same

angle as ψR � ARe
ikR�r and transmitted at angle θ1 as ψT � AT e

ik�r. Since θ, β ! 1, it is assumed that θ and θ1 are
very small.

We know that an incident wave upon a boundary of changing refractive index and its derivative must

be continuous at this boundary. In Figure 2.7, this means that, do to the point where this ray meets the

material having been chosen as the origin,

ψIp0q � ψRp0q � ψT p0q dψI
dt

p0q � dψR
dt

p0q � dψT
dt

p0q (2.20)

AIe
ikI �0 �ARe

ikR�0 � AT e
ikT �0 AIkI �ARkR � ATkT (2.21)

AI �AR � AT (2.22)

With the interface surface as reference, taking the parallel and perpendicular parts of the rays separately,

and remembering that the wavevector is k outside of the interface and nk within it, we obtain:

AIk cos θ �AR cos θ � AT pnkq cos θ1

for the perpendicular and

ARk sin θ �AT pnkq sin θ1 � AIk sin θ

for the parallel.1 We derive Snell’s Law from the former paired with Equation 2.22:

pAI �ARq k cos θ � AT pnkq cos θ1 ùñ cos θ � n cos θ1

1A note about θ: This is not necessarily the angle to the surface of the crystal, but the angle to the Miller planes that we
are reflecting off of. Since as we shall see reflection is limited to small glancing angles, we can often restrict our reflections to
just one Miller plane. Thus, θ is not an absolute angle, but one relative to reflecting Miller planes.
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and recast the latter using Equation 2.22 as

pAR �AIq sin θ � ATn sin θ1 � pAR �AIqn sin θ1.

Expanding cosines with their Maclaurin equivalents for the critical angle θc in Snell’s law yields

cos θ � n cos θ1�
1� θ2

2



� n

�
1� θ12

2




� n (total external reflection)

θ2
c � 2p1� nq � 2δ

θc �
?

2δ (2.23)

where we have ignored the attenuation term iβ as it is not relevant. This ensures the result

AR �AI
AR �AI

� n sin θ1

sin θ
� θ1

θ

having expanded the sines for small angles using the Maclaurin series, and having taken advantage of n � 1.

We use this equation to derive the Fresnel equations:

pAI �ARq � θ1

θ
pAI �ARq 2AI � pAI �ARq � pAI �ARq

AI
�
θ � nθ1

� � AR
�
nθ1 � θ

� � AT � θ1

θ
AT

r � AR
AI

� θ � θ1

θ � θ1
t � AT

AI
� 2θ

θ � θ1

where r and t are the relative reflected and transmitted amplitudes. While less intuitive, the equations are

more helpful to us using the wavevector transfer Q � 2k sin θ � 2kθ (by definition), with Qc � 2k sin θc �
2kθc. We introduce the dimensionless

q � Q

Qc
� 2kθ

Qc
q1 � Q1

Qc
� 2kθ1

Qc
(2.24)

so that q9θ and q19θ1 gives the same ratios in the Fresnel equations

rpqq � q � q1

q � q1
tpqq � 2q

q � q1
Λpqq � 1

QcIm pq1q (2.25)
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where the latter Λ is the penetration depth.

2.3.3 Perfect Crystals, Imperfect Monochromators

k �∆k

k1 �∆k1

�k1 �∆k1

Q�∆Q

k
k1

�k1

Q

Figure 2.8: In this symmetric reflection off of the dotted/dashed line as a surface, we see the initial (blue) incident
ray k reflected symmetrically but attenuated to form k1. We negate the latter to obtain Q � k � k1. If we send
another ray of a different energy, with wavevector k���∆k, we negate the reflected k111 ���∆k111 to obtain Q���∆Q. We
demonstrate in the text that these should be similar triangles if k1 � ak (linear attenuation).

Monochromators make use of Bragg’s law to separate a single wavelength for use in x-ray diffraction,

but even with perfect crystals as monochromators the beam will have some nonzero wavelength band of

energies. Another deviation is in the angle, which we may wish to vary very slightly for a “rocking curve”–a

plot of the intensity reflectivity versus angle for a fixed energy. For these reasons, we simultaneously claim

and define the relative deviation ζ of all of these with

ζ � ∆λ

λ
� ∆k

k
� ∆Q

Q
� ∆θ

tan θ
(2.26)

A very general interpretation of ζ is as a deviation from Q � mG, with m an integer:

Q � mGp1� ζq. (2.27)

In deriving Equation 2.26, we will refer to Figure 2.8. We begin with the definition that ζ � ∆k
k as in

Figure 2.8 and derive ζ � ∆λ
λ . We make use of the notation k2 � k �∆k and likewise for other variables.
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As k � 2π
λ , our calculation is straightforward:

ζ � ∆k

k
� k2 � k

k
�

2π
λ2
� 2π

λ
2π
λ

�
1
λ2

1
λ

� 1 � λ2 � λ

λ
� ∆λ

λ
.

The next equality is best shown by Figure 2.8. We have negated the reflected k1 and k1 �∆k1 vectors

in the bottom half of the image to form Q � k� k1. We will show that the overlayed blue and red triangles

are similar, from which it follows that

k �∆k

k
� Q�∆Q

Q
ùñ 1� ∆k

k
� 1� ∆Q

Q
ùñ ∆k

k
� ∆Q

Q
.

The triangles clearly have one equal angle, and because k1 � ak where a is independent of k, we have for

k2 � k � ∆k that k12 � apk2q � apk � ∆kq so that
k1

2

k1
� apk�∆kq

ak � k�∆k
k � k2

k . The triangles are then

congruent and ∆k
k � ∆Q

Q .

Finally, we use Bragg’s law and its derivative to show the angular equality:

mλ � d sin θ

mdλ � d cos θdθ

dλ

λ
� cos θ

sin θ
dθ � dθ

tan θ

2.3.4 One slab

Region 0

Region 1

Region 2

r01

t01

r12

t12

∆

t10

r10

r12

t12

∆

t10

r10

r12

t12

∆

t10

r10

r12

t12

∆

t10

r10

r12

t12

∆

Figure 2.9: A light ray entering a slab of finite thickness ∆ reflects internally many times.
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A light ray in a medium “0” is incident on a slab of finite width ∆ constituting medium “1”, which is

followed by medium “2”. The incident light ray reflects immediately a relative reflection r01 from medium

0 to medium 1, and transmits t01 from medium 0 to medium 1. This transmitted ray is of concern, since

it reflects internally r12 between medium 1 and medium 2, while also transmitting t12 from medium 1 to

medium 2. This is shown in Figure 2.9, which the incident ray coming in at an angle for clarity. For this

derivation, however, we assume 2θ � π and that we are hitting the material straight on. For

this reason, Q � 2kr sinp2θq � 2kr at glancing angle 2θ, and the total amplitude reflectivity accounting for

the phase shift p � eik�r � eik∆ � eiQ∆{2 for each distance ∆ travelled between mediums 0 and 2 is

rslab � r01 � t01r12p
2
�
t10 � r10r12p

2
�
t10 � r10r12p

2 pt10 � . . .q��
� r01 � t01r12t10p

2
�
1� r10r12p

2
�
1� r10r12p

2 p1� . . .q��

which reduces immediately to

rslab � r01 � t01t10r12p
2

8̧

m�0

�
r10r12p

2
�m

.

The geometric series is of the form

SN �
N�1̧

n�0

kn.

The solution follows from the equations SN � SN�1 � kN�1 and kSn�1 � 1 � SN . Solving for SN�1,

SN � kN�1 � SN�1 � 1

k
pSN � 1q

kSN � kN � SN � 1

SN � 1� kN

1� k
. (2.28)

The limit is given by

lim
NÑ8

SN �

$'&
'%

1
1�k , |k|   1

8, |k| ¥ 1
(2.29)

so that

rslab � r01 � t01t10r12p
2 1

1� r10r12p2
.

Letting Q0 correspond to reflection and Q1 to transmission, we put Equation 2.25 to use:

r01 � Q0 �Q1

Q0 �Q1
t01 � 2Q0

Q0 �Q1
.
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This implies that r01 � �r10 and that r2
01 � t01t10 � 1 by substitution. Plugging these in, we obtain for

rslab:

rslab � r01 � t01t10r12p
2

1� r10r12p2

� r01

�
1� r10r12p

2
�� t10t01r12p

2

1� r10r12p2

� r01 � r12p
2
�
r2
01 � t10t01

�
1� r10r12p2

� r01 � r12p
2

1� r10r12p2

� r01

�
1� p2

�
1� r2

01p
2

(r01 � �r12)

where in the last step it was assumed n2 � n0.

At sufficiently large angles, |r01| ! 1 so that r2
01 � 0, and the angle of refraction approaches the

incident angle so that Q0

Qc
� Q1

Qc
and r � 1

p2qq2 � Q2
c

4Q2 (see Equations 2.25 and 2.24). We can then reduce

rslab to

rslab �
r01

�
1� p2

�
1� r2

01p
2

� r01

�
1� p2

� � �
Qc
2Q


2 �
1� eiQ∆

�

Plugging in for Qc � 2k sin θc � 2kθc with θc given by Equation 2.17 plugged into Equation 2.23, we obtain

Qc �
?

16πρr0 so that

rslab � Q2
c

4Q2

�
1� eiQ∆

�
� 16πρr0

4Q2

�
�eiQ∆{2

�
eiQ∆{2 � e�iQ∆{2

�	

�
�

16πρr0

4Q

∆

Qp∆{2q
i

2i

��
�eiQ∆{2

�
eiQ∆{2 � e�iQ∆{2

�	

� 4πρr0∆

Q

eiQ∆{2

Q∆{2
�
�i

�
eiQ∆{2 � e�iQ∆{2

2i

�


� �i4πρr0∆

Q

sin pQ∆{2q
Q∆{2 eiQ∆{2

Assuming a slab thin enough that Q∆ ! 1, since limθÑ0
sin θ
θ � 1, we drop the phase term to obtain

reflectivity

rthin slab � �i4πρr0∆

Q
� �iλρr0∆

sin θ
� �ig (2.30)

making use of Equation 2.2. This equation is valid in calculating intensity reflectivity at small glancing

angles where the reflectivity is weak; such angles surpass the critical angle θc. Note that this defines the
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variable

g � λρr0∆

sin θ
� p2d sin θ{mq p|F | {vcq r0d

sin θ
� 2d2r0

mvc
|F | (2.31)

where m is the Bragg index, ∆ is rewritten as d, the distance between reflecting planes, and ρ has been

generalized to |F | {vc, the reflected amplitude (form factor) per unit volume. Hence one thin slab will reflect

�ig while transmitting 1� ig0 of the original amplitude. We can rewrite Equation 2.16:

g0 � |F0|
|F | g. (2.32)
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2.3.5 Many Layers: Kinematical Approximation

This approach varies from that of Section 2.2 in that we are now including refractive effects. In the kine-

matical approximation, the product of the number of layers N and the reflectivity per layer g (with a phase

factor of 180�, or factor of �i) is small (Ng ! 1). The amplitude reflectivity for these layers is just

rN � �ig
N�1̧

j�0

eipQd�2g0qj

where e�ig0 is the reflectivity of a single slab neglecting dynamical effects as derived in Equation 2.15 and

factors doubly per layer since the wave is transmitted then reflected through each layer, and eiQd{2 � eikd is

the phase shift from travelling through one layer, and it has also been squared to account for travelling as a

transmitted wave down the layer, then travelling the same distance d up the layer as a reflected wave. The

reader should keep in mind that we are still working with glancing angle 2θ � π, so that our x-ray beam is

parallel to the surface normal of the reflecting planes.

Plugging in Equation 2.27 and Equation 2.11 into the previous, we obtain

rN � �ig
N�1̧

j�0

eipQd�2g0qj � �ig
N�1̧

j�0

eiprmGp1�ζqsr 2π
G s�2g0qj

� �ig
N�1̧

j�0

ei2πp�m�mζ�g0{πqj

� �ig
N�1̧

j�0

ei2πpmζ�g0{πqj

which reduces by use of Equation 2.28 to

rN � �ig 1� ei2πNrmζ�g0{πs

1� ei2πrmζ�g0{πs

� �ig e
iπNrmζ�g0{πs

�
e�iπNrmζ�g0{πs � eiπNrmζ�g0{πs

�
eiπrmζ�g0{πs

�
e�iπrmζ�g0{πs � eiπrmζ�g0{πs

�
� �igeiπpN�1qrmζ�g0{πs

sinpNπ rmζ � g0{πsq
sinpπ rmζ � g0{πsq .

Neglecting the phase terms and denoting the Bragg peak displacement as

ζ0 � g0

π
� 2d2 |F0| r0

πmvc
, (2.33)
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we obtain

rN pζq � g

���� sin pNπ rmpζ � ζ0{mqsq
sin pπ rmpζ � ζ0{mqsq

���� . (2.34)

Figure 2.10: Kinematical result for many layers as given by Equation 2.35, with diverging parts replaced by |rN |
2 � 1.

Hence, even in the kinematical approximation, the reflection peak is not centered where we would

expect it to be from Bragg’s law, but is displaced ζ0{m. To see the behavior of the intensity reflectivity

|rN pζq|2 as N Ñ8 (which is realistic, since the x-ray penetrates into several orders of magnitude more atomic

planes than its limit in penetration depth, and plausible, since Ng ! 1 in the kinematical approximation), we

note that in this limit the square sine term in the numerator of |rN |2 oscillates infinitely quickly as N Ñ8
in justifying its replacement by the factor of 1{2:

|rN pζq|2 � g2

2 sin2pπmpζ � ζ0{mqq
� g2

2π2m2pζ � ζ0{mq2 . (2.35)

It is clear then that the intensity reflectivity diverges as
��r2
N

�� reaches its maximum at ζ � ζ0{m, but by

its definition the reflectivity can’t be greater than 1, so we cap it off at 1 in Figure 2.10. It is clear from the

divergence of the intensity reflectivity that the kinematical derivation does not suffice—however, we expect

the theory of dynamical diffraction to match at angles farther away from ζ0{m, where the kinematical result

does not diverge, and we expect the reflectivity to be shifted an amount ζ0{m in the final derivation as well.
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2.3.6 Many Layers: Dynamical Derivation

j

Tj Sj

j � 1

Tj�1 Sj�1

Figure 2.11: Reflection and transmission through two layers j and j�1. Tj and Sj , where j corresponds to the layer
depth down the crystal, are representative of the T and S fields just above layer j. They include all contributions
from previous layers, and have their own phase information.

Let’s focus on the T (in the transmitted direction) and S (in the reflected direction) wavefields.

These are not the same as the transmitted and reflected portions of an incident wave calculated with the

transmittivity and reflectivity; these include all contributions in their respective directions, for their layer—ie,

Tj is all contributions in the transmitted direction just above layer j, as shown in Figure 2.11.

Let’s denote the phase shift φ between reflected rays in layer j�1 and layer j—which is 2πm withm P Z

if they are constructive—by φ, and examine as we have been the deviation from constructive interference

with the variable ∆, which is defined below along its relationship to ζ:

φ � mπ �∆ � mπp1� ζq (2.36)

so that

∆ � mπζ. (2.37)

Let’s solve dynamically for Tj and Sj . Figure 2.12 illustrates the contributions to Sj and to Tj�1.

We have derived in Equation 2.15 that each transmitted wave undergoes a phase shift p1 � ig0q and each

reflection �ig. The contributions to Sj are the reflected Tj and the transmitted Sj�1 with an extra phase

term eiφ per Equation 2.36, while the contributions to Tj�1 are the transmitted Tj and the reflection back

into the material of Sj�1. The former carries phase term eiφ due to the extra distance it travels before

becoming Tj�1 (which is just above layer j � 1), and the latter carries the same doubly—once for the extra

phase in reaching layer j, and once after reflection going to layer j � 1. We thus obtain

Sj � �igTj � p1� ig0qSj�1e
iφ Tj�1e

�iφ � p1� ig0qTj � igSj�1e
iφ
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j

j+1

j

j+1

Tj �igTj

Sj�1e
iφ

p1� igqSj�1e
iφ

Sj�1e
iφ

�igSj�1e
2iφ

Tj

p1� igqTj

Figure 2.12: Contributions to layer wavefields Sj (left) and Tj�1 (right). Sj is made up of the refection of Tj
combined with the transmission of Sj�1, while Tj�1 is made up of the reflection back into the material of Sj�1 and
the transmitted Tj from the previous layer, and phases due to reflection (�ig), transmission (1� ig0), and travelling
the extra phase φ (eiφ) are accounted for.

Rearranging the Tj�1 equation yields,

igSj�1 � p1� ig0qe�iφTj � e�2iφTj�1

and shifting the indices by -1 yields

igSj � p1� ig0qe�iφTj�1 � e�2iφTj .

We substitute these into the Sj equation to obtain the second order recursive function

p1� ig0qe�iφ rTj�1 � Tj�1s �
�
g2 � p1� ig0q2 � e�2iφ

�
Tj .

Skipping a proper derivation, we note the validity of the trial solution Tj�1 � e�ηeimπTj with η P C and

0   Re η ! 1 for small attenuations. Plugging the trial solution into the previous and expanding to second

order yields

η2 � g2 � p∆� g0q2

with solution

iη � �
a
p∆� g0q2 � g2. (2.38)

The same solution is found likewise with Sj�1 � e�ηeimπSj so that S1 � e�ηe�imπS0 can be plugged into

our original Sj equation to obtain

S0 � �igT0 � p1� ig0qS0e
�ηeimπeimπei∆,
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or

S0

T0
� �ig

1� p1� ig0qp1� ηqp1� i∆q �
�ig

ig0 � η � i∆
� g

iη � p∆� g0q

Plugging in for η using Equation 2.38 and defining

ε � ∆� g0 � mπζ � πζ0, (2.39)

we obtain

r � S0

T0
� g

iη � ε
� g

ε�
a
ε2 � g2

, (2.40)

where the ambiguous sign of the square root matches that of ε at ε " g so that the tails tamper off, and at

ε   g, the intensity reflectivity is

r �
�
S0

T0


�
S0

T0


�

�
�

g

ε�
a
ε2 � g2

��
g

ε�
a
ε2 � g2

�
� g2

ε2 � ε2 � g2
� 1

regardless of the sign.

2.3.7 The Darwin Reflectivity Curve

Multiplying the right hand side of Equation 2.40 by g gives

r � g

ε�
a
ε2 � g2

�
1{g
1{g



� 1

ε{g �
b
pε{gq2 � 1

�
� ε

g 	
b
pε{gq2 � 1

ε{g 	
b
pε{gq2 � 1

�

� 1	

a
x2 � 1.

Introducing the shorthand variable

x � ε

g
� mπ

ζ

g
� g0

g
, (2.41)

we can rewrite the amplitude reflectivity more clearly as

rpxq �

$''''&
''''%

x�?x2 � 1 x ¥ 1

x� i
?

1� x2 |x| ¤ 1

x�?x2 � 1 x ¤ 1

(2.42)

having swapped the sign in the square root for |x| ¤ 1 to show explicitly that
?
x2 � 1 is imaginary in that

range. The intensity reflectivity is the square of each piece and its plot is shown in Figure 2.13.

We can solve for intensity reflectivity R � r2 � .5 for x   1 and x ¡ 1 to obtain a full width half max
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Figure 2.13: Darwin curve without absorption effects—the reflectivity is 100% in the middle, but tapers off to the
sides. The intensity reflectivity is the square of the amplitude reflectivity given in Equation 2.42 when |x| ¥ 1 and
equals 1 (the product of the complex number and its conjugate in Equation 2.42) when |x| ¤ 1.

of

FWHMx � 3?
2

in x, or

FWHMζ � 3?
2

g

mπ

in ζ (making use of Equation 2.41). This can be translated to angular FWHM using Equation 2.26:

FWHMθ � FWHMζ tan θ � 3?
2

g

mπ
tan θ

where θ is the Bragg angle. Note that the latter definition depends on energy while the others do not:

FWHMθ varies the angle of a perfectly monochromatic beam while FWHMζ varies the wavelength (see the

discussion following Equation 2.26).

We can likewise switch between representations of our independent variable as x, ζ, or θ, using the

equations compiled below for convenience:

xpζq � g

mπ
ζ � g0

g

θpζq � ζ tan θ (2.43)

θpxq � ζpxq tan θ � mπ

g

�
x� g0

g



tan θ
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Using these, a sample plot is given with the independent variable in millidegrees in

Figure 2.14: Darwin reflectivity curve for Ge(111) probed with 8 keV at σ̂ orientation.

2.3.8 Darwin Curve with Absorption

Figure 2.15: Illustration of the dynamical derivation with absorption effects. Similar to Figure 2.5, but the rays
diminish as they are transmitted and reflected within the crystal.

Absorption (see Figure 2.15) comes with making x complex. This follows from g0 being allowed to be

complex and represented by

g0 �
�

2d2r0

mvc



F0 (2.44)
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where

F0 �
¸
j

�
f0
j p0q � f 1j � if2j

� �¸
j

�
Zj � f 1j � if2j

�
(2.45)

with Zj the jth atom’s atomic number. We still have

g �
�

2d2r0

mvc



F (2.46)

where

F �
¸
j

�
f0
j pQq � f 1j � if2j

�
eiQ�rj . (2.47)

We compute rocking curves by the combination of these equations. Figure 2.16 shows the asymmetric results,

to be contrasted with Figure 2.14.

Figure 2.16: Darwin reflectivity curve for Ge(111) probed with 8 keV at σ̂ orientation accounting for absorption
effects.
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Chapter 3

Method and Data

3.1 Method

Figure 3.1: Layout of pump-probe experiment at APS 71D.14 The x-ray beam travels through an undulator before
being led through the white beam (WB) slits. The beam is reduced to a single wavelength by the diamond (111)
monochromator and slit, after which it is split into an avalanche photodiode (APD) for normalization, and a horizontal
focusing mirror and slit. Finally, the beam meets the sample of Ge(100) and is measured by a second APD. The
laser beam’s polarization is focused by a half-wave plate (WP) and polarizing beam splitter (PBS) and is transmitted
through a lens before exciting the sample.

The data analyzed in this thesis was taken using the Time-Resolved X-Ray Diffraction instrument

at Sector 7ID of Argonne National Laboratory’s Advanced Photon Source (APS). This apparatus has been

described in detail elsewhere14 but is briefly reviewed here. The instrument is shown schematically in

Figure 3.1. The 7 GeV, 100 mA electron beam inside the APS storage ring consists of 24 bunches of 100
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ps duration full-width at half-maximum which rotate with a 3.68 microsecond period such that the effective

x-ray repetition rate is 6.5 MHz. The x-rays at beamline 7ID are produced by an undulator which has its

peak brightess at wavelengths near one Angstrom, close to the x-ray energy range used in this experiment.

The ”white beam” produced from the undulator has a 10 % bandwidth, or about 1 keV/10 keV. The center

of this spectrum may be tuned by adjusting the undulator magnet gap, which in turn changes the magnetic

field strength and the relativistic doppler shift. A silicon crystal monochromator is used to further filter the

x-rays down to a 0.1% relative bandwidth, or approximately 1 eV/10 keV. This is the energy resolution used

in our experiments. The monochromator consists of two Silicon (111) crystals which are adjusted such that

the Bragg angle is at the desired energy.

A series of slits reduces the spot size and limits the angular resolution in the vertical (diffraction)

direction to approximately 1 mdeg. The measured darwin curve widths in our experiments is a result of the

combined angular and energy resolution of the x-ray beam following these optics.

The x-rays and laser beam are focused such that the x-rays only probe the very center of the few mm

laser spot size on the sample, thereby insuring a one dimensional geometry. The x-ray intensity in each x-ray

bunch is measured upstream of the sample using an Avalanche Photodiode (APD). The APD can count

single x-ray photons and has a 10 ns rise time, much faster than the 153 ns (6.5 MHz) bunch separation.

This signal is used to normalize the counts from the detector placed after the sample, which records a count

rate that changes depending on both the angle of the sample (the rocking curve) and the time delay after

the laser pulse strikes the sample (the strain profile).

The laser is delivered from an adjacent laboratory. The amplified ultrafast laser pulses arrive at 1000

Hz, with each laser pulse less than 50 fs in duration and centered at a wavelength of 800 nm. They are

synchronized to the selected x-ray pulse with a fixed, controllable delay time. At a fixed delay time, the

same transient strain field will exist in the sample for each rocking curve datapoint.

3.2 Data

To account for the different properties of different materials, such as unit cell dimensions and response to

radiation, it is necessary to seek tabulated data. Table 3.1 consists of lattice constants, which is the size of

our cubic unit cells, and Table 3.2 presents some physical constants. Table 3.3 is used for form factors outside

of absorption range in Equation 2.5, and NIST values are used near the absorption regime—particularly the

K-edge of germanium. Finally, cubic interpolation through the values in Table 3.4 yields f 1 and f2 as a

function of energy, again restricted outside of absorption regimes, for which NIST values were used. Finally,

a plot of NIST values is given in Figure 3.2 with cubic interpolation.
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3.2.1 Form Factors, Structure Factors, Constants

In order to carry out the calculations in the equations derived above—particularly Equation 2.44–Equation 2.47—

one needs to know certain properties of the crystal and x-ray source, and how they interact at given angles

and energies. The available data has been tabulated below for reference, and elementary results are given in

Tables 4.1 and 4.2 to check reproducability of results.

Table 3.1 gives the lattice parameters for several zinc blende (diamond) structures. These structures

form a cubic unit cell as discussed in Section 2.2.3, and the lattice constant is the length of any side of

this unit cell. This is used, eg, in Equation 2.11 to find the interplanar spacing of atoms for a given Miller

plane. Physical constants are also required to obtain results, and those used were gathered from the National

Institute of Standards and Technology (NIST).

Element Lattice Constant (Å)
Ge 5.64613
Si 5.43095

GaAs 5.6533
InSb 6.4794

C 3.56683

Table 3.1: Selected zinc blende structures and their lattice constants2

Parameter Value Unit Description Source

h 4.135667516(91)�10�15 eV�s Planck’s Constant NIST11

c 299792458 m/s Speed of light in vacuum NIST10

r0 2.8179403267(27)�10�5 Å Classical electron radius NIST12

Table 3.2: Physical constants, gathered from NIST.
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The constants which are discussed in Section 2.2.3 and necessary to calculate the form factor of

Equation 2.5 are obtained with a subscription to the Crystallographic Tables and are found in Ch. 6.1,

Table 6.1.1.4, and a parsing algorithm was developed to convert these to a useable form in Appendix B.6;

selected elements are outlined for reference in Table 3.3.

Crystallographic Tables Interpolation Factors For Selected Elements
a1 b1 a2 b2 a3 b3 a4 b4 c

Ge 16.0816 2.8509 6.3747 0.2516 3.7068 11.4468 3.683 54.7625 2.1313
Si 6.2915 2.4386 3.0353 32.3337 1.9891 0.6785 1.541 81.6937 1.1407
Ga 15.2354 3.0669 6.7006 0.2412 4.3591 10.7805 2.9623 61.4135 1.7189
As 16.6723 2.6345 6.0701 0.2647 3.4313 12.9479 4.2779 47.7972 2.531
In 19.1624 0.5476 18.5596 6.3776 4.2948 25.8499 2.0396 92.8029 4.9391
Sb 19.6418 5.3034 19.0455 0.4607 5.0371 27.9074 2.6827 75.2825 4.5909
C 2.31 20.8439 1.02 10.2075 1.5886 0.5687 0.865 51.6512 0.2156

Table 3.3: Nine-factor interpolation constants from Crystallographic Tables6

Finally, as per the interpolation discussed in Section 2.2.3, a dispersion corrections as collected from the

Crystallographic Tables5 are given for selected elements and energies in Table 3.4. These are, as mentioned

in Section 2.2.3, not suitable for calculations near the band edges, and for this we use extensive tabulated

data provided in the Journal of Physica nd Chemical Reference Data7 which have been made available

online by NIST9, for which code has also been written to minimize load on the server in Appendix B.6. The

dispersion corrections are necessary to calculate the atomic form factor in Equation 2.4 after the form factor

has been found by Equation 2.5. These are included in Table 3.5, and Figure 3.2 clarifies the advantage of

the NIST data around the band edges. This clarifies the choice of NIST for the dispersion correction data,

while the Crystallographic Tables are used to find f0.
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(Truncated) Forward-Scattering Dispersion Corrections to Form Factors

λ (Å) 2.749 2.29 1.936 1.789 1.541 0.709 0.559 0.216 0.209 0.18

Ge
f’ -0.155 -0.386 -0.641 -0.778 -1.089 0.155 0.302 0.088 0.08 0.044
f” 2.445 1.784 1.329 1.156 0.885 1.8 1.19 0.199 0.186 0.139

Si
f’ 0.392 0.365 0.321 0.298 0.254 0.082 0.052 -0.002 -0.003 -0.005
f” 0.962 0.692 0.508 0.438 0.33 0.07 0.043 0.006 0.005 0.004

Ga
f’ -0.252 -0.499 -0.77 -0.92 -1.285 0.231 0.318 0.08 0.072 0.039
f” 2.152 1.567 1.166 1.014 0.776 1.608 1.059 0.174 0.164 0.122

As
f’ -0.069 -0.287 -0.526 -0.652 -0.93 0.05 0.276 0.096 0.087 0.05
f” 2.763 2.019 1.507 1.311 1.005 2.006 1.331 0.225 0.211 0.158

In
f’ -5.133 -1.597 -0.416 -0.147 0.082 -0.728 -1.284 0.101 0.101 0.082
f” 12.631 9.629 7.359 6.467 5.045 1.31 0.854 1.052 0.992 0.759

Sb
f’ -9.214 -3.064 -0.987 -0.519 -0.056 -0.587 -1.055 0.056 0.062 0.061
f” 12.766 11.103 8.562 7.537 5.895 1.546 1.01 1.22 1.151 0.883

C
f’ 0.049 0.036 0.027 0.024 0.018 0.003 0.002 -0.001 -0.001 -0.001
f” 0.031 0.021 0.015 0.013 0.009 0.002 0.001 0.0001 0.0001 0.0001

Table 3.4: Dispersion corrections for forward scattering, provided by the Crystallographic tables.5 Correct
interpolation yields form factors at a very wide range of energies.

Selected NIST Forward-Scattering Dispersion Corrections to Form Factors
E (keV) 0.01 0.87 6.92 22.98 39.20 51.19 139.26 181.85 271.39 405.00

Ge
f’ -27.154 -9.828 -0.625 0.440 0.332 0.252 0.077 0.058 0.040 0.032
f” 0.000 -3.592 -1.147 -1.113 -0.413 -0.248 -0.034 -0.020 -0.009 -0.004

Si
f’ -9.507 -0.992 0.310 0.065 0.029 0.019 0.005 0.004 0.003 0.003
f” -0.495 -1.209 -0.435 -0.040 -0.013 -0.007 -0.001 -0.000 -0.000 -0.000

Ga
f’ -27.824 -11.068 -0.773 0.444 0.314 0.236 0.073 0.055 0.040 0.032
f” 0.000 -3.092 -1.003 -0.989 -0.365 -0.218 -0.029 -0.017 -0.008 -0.003

As
f’ -27.009 -8.917 -0.501 0.385 0.346 0.264 0.077 0.056 0.037 0.028
f” 0.000 -4.147 -1.305 -1.245 -0.464 -0.281 -0.038 -0.022 -0.010 -0.004

In
f’ -46.889 -12.393 -0.063 -1.103 0.093 0.357 0.195 0.137 0.078 0.044
f” 0.000 -23.685 -6.411 -0.794 -2.030 -1.280 -0.203 -0.123 -0.058 -0.027

Sb
f’ -45.397 -14.922 -0.391 -0.813 -0.141 0.310 0.213 0.150 0.085 0.047
f” 0.000 -26.568 -7.473 -0.941 -2.337 -1.479 -0.239 -0.145 -0.069 -0.033

C
f’ -3.897 0.345 0.026 0.004 0.002 0.002 0.001 0.001 0.001 0.001
f” -1.739 -0.750 -0.013 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

Table 3.5: Dispersion corrections for forward scattering, provided by NIST.9 Data is more abundant than
the Crystallographic Tables near the band edges, making this the optimal data source for our calculations.
Note that NIST provides f 1 � f0 and f2, and the atomic form factor f0 was subtracted from the latter in
compiling this table.
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Figure 3.2: Graph of dispersion corrections from the Crystallographic Tables5 (top) and NIST9 (bottom). The
NIST data is more abundant near the band edges, where the form factors display erratic behavior. The lines are
linear interpolation (used in this paper) between the points, which represent energies for which the source provides
explicit data.
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3.2.2 Collected Data

Data output is in the form of an MDA file, which represents n-dimensional data linearly. A sample excerpt

is included in Appendix C.1, and the full data used for this experiment can be found on the APS website.4

The relevant data in each scan is the energy, labelled detector S16 (47), and detector S15 (51) in the MDA

files; these are parsed by the code provided in Appendix B.5, and S16 and S15 hold the number of detector

counts before and after the laser strains the material, respectively. Both detectors count the cumulative

number of photons over 10 seconds for different energies. This results in rocking curve data for each energy

both before and after the laser has strained the material. Selected scans representing our range of energies

are illustrated in Figure 3.3.

It is apparent from these scans that the Laser On (red) peak precedes the Laser Off (blue) peak—

this is expected, as it implies a larger interplanar spacing for the crystal in its excited state, whereupon it

expands. It is from this relative peak position that we will derive the depth profile.

(a) High energy (b) Middle energy (c) Low energy

Figure 3.3: Raw data for energies at the extremum and median of data, unnormalized and shifted from
Bragg angle.

This strained and unstrained rocking curve data is taken for 232 energies between 11.0380 and 11.5000

keV. When the data is normalized to an angle relative to the Bragg angle—taken as the center of the fit to

the unstrained data, to account for any slight movements of the crystal—we begin to observe patterns as

in Figure 3.4, which is a superposition of completely raw data at different energies. Note that the differing

peak heights, peak widths, and absolute angles are of little relevance here. The peak height depends on the

size of the bunch creating our x-ray, so we will normalize it with the height of the unstrained measurement.

The peak width is due to uncertainties in the detector (see §5.1). The absolute angle is not as important as

the angular difference between the strained and unstrained curves, due to millidegree perturbations of the

crystal. This makes clear the importance of the reference unstrained data.

The error bars in Figure 3.3 and Figure 3.4 were obtained by taking the square root of the total count,
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and since this count was averaged over 10 seconds, we multiply the number of counts by 10 before taking

the square root. This implies error increasing monotonically with count; hence the higher error bars near

the peaks.

Data on the half-width half-max (HWHM) and the center of each curve is obtained with a Lorentzian

fit (see §4.2) through the least squares method. While code and theory have been developed for more

accurate fits using Darwin rocking curves, the resolution of the data renders it symmetrical enough that

Lorentz curves, which offer data such as the center position and HWHM more readily, are more appropriate.

Figure 3.4 shows rocking curve data taken at different energies. This serves to demonstrates the

variance of fluctuations in height, width, and absolute angle between energies, none of which play a major

role in data gathering thanks to reference data of the unstrained crystal for each measurement. Of particular

focus instead is the relative angle between the strained and unstrained crystal, which gives insight into the

interplanar spacing.

Figure 3.4: Superposition of raw data with Lorentz fits at different energies. Not a lot can be learned from the
height, width, and absolute angle, but relative angles give the average interplanar spacing.
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Chapter 4

Analysis

4.1 Rocking Curve

In addition to being rich in theory, developing code for finding form factors (Appendices A.2–A.5, B.3)

and plotting Darwin curves (Appendices A.6, B.2) will allow us to perform fits on the data more precisely,

especially with data at higher resolution. The least squares fitting method is flexible in that it will fit to any

number of parameters for any function, making it extendable to fitting a Darwin curve.

The preliminary part of our analysis should then consist of validating our work with established and

well-known databases such as APS’s χ0h server.13

4.1.1 Checking our Work

The χ0h server, currently hosted on the ANL network, has been online since 1997 and served nearly 2 million

requests. It is continually accepting new structures. The application allows the download of generated rocking

curves, which were generated manually for comparison before using the rocking curves in our least squares

fits.

In Figure 4.1, the curves labelled ’Computed (no absorption)’ are computed without accounting ab-

sorption effects; those labelled ’computed’ are the product of our final code. Finally, the ’X0h’ curves are

imported directly from the manually downloaded data files. It is concluded that the shifted peak, normalized

reflectivity, and width match satisfactorily with the χ0h data for different energies of Ge (see Figure 4.3 for

further energies). It is not enough to test different energies, of course, so Figure 4.1 validates our code with

χ0h for different Miller planes.

As illustrated in Figure 4.2, dual-element zinc blende structures are just as accurate as single element
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(a) Ge(111) at 8.05 keV. (b) Ge(400) at 8.05 keV.

Figure 4.1: Darwin curves for Geσ̂ at different miller indices, compared with X0h.

Figure 4.2: Gallium Arsenide at miller index 400.

ones, and this is despite a strange subtlety in taking the conjugate of the form factor outlined in Appendix B.

Near the K-edge, the form factors change drastically. This is why it is particularly unacceptable to

interpolate linearly across this region. Furthermore, the International Tables of Crystallography tabulation

of the dispersion corrections to the form factors skip from 1.54052 Åto 0.70926 Å, a substantial range which

happens to hold the absorption K-edge of germanium, 11.103 keV�1.12Å—for this reason, we turn to NIST

data tabulating at much closer intervals near the K-edge; these are compared in Figure 3.2.

The linear interpolation yields the data of Figure 3.2, which is far from standards in literature due to

the effects discussed above. Slight differences between χ0h curves and curves computed in this paper arise

from the lack of corrections from effects of temperature and relativity.
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(a) Ge(400) at 11.00 keV. (b) Ge(400) at 11.05 keV.

(c) Ge(400) at 11.10 keV. (d) Ge(400) at 11.15 keV.

Figure 4.3: General computational agreement of varying Darwin curves with χ0h at different x-ray energies
near the K-edge.
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4.1.2 Generating Data

The computational method can be used to give useful information such as the penetration depth of a material

and absorption-corrected peak of a material. Tables 4.1 and 4.2 serve to check the validity of the code in

providing intermediate results such as the form factors and dispersion corrections at given angles and energies

for silicon and germanium, respectively.

111 λ=1.55 Å E �8.00 keV d �3.14 Å vc=160.2 Å3 θ=14.31�

f0p0q=14.00 f 1p0q �0.27 f2p0q �-0.33 f0pQq �10.54 f 1pQq �0.27 f2pQq �-0.33

Fatp0q=14.27-0.33i |Fatp0q|=14.3 |FatpQq|=10.8 FatpQq=10.81-0.33i

F0=114.14-2.67i |F0|=114.2 |F pQq|=61.2 F pQq=61.13-1.89i

g0=0.000395-0.000009i |g0|=0.000395 |g|=0.000212 g=0.000211-0.000007i

ζ0=0.000126-0.000003i Å x0=1.87 θ0=1.84 m�

r0 �0.29-0.00i |r0|2=0.084

Table 4.1: Si(111)σ̂ data.

400 λ=1.13 Å E �11.0 keV d �1.41 Å vc=180.0 Å3 θ=23.53�

f0p0q=31.98 f 1p0q �-4.13 f2p0q �-0.45 f0pQq �20.44 f 1pQq �-4.13 f2pQq �-0.45

Fatp0q=27.85-0.45i |Fatp0q|=27.9 |FatpQq|=16.3 FatpQq=16.31-0.45i

F0=222.81-3.64i |F0|=222.8 |F pQq|=130.5 F pQq=130.50-3.64i

g0=0.000139-0.000002i |g0|=0.000139 |g|=0.000081 g=0.000081-0.000002i

ζ0=0.000044-0.000001i Å x0=1.71 θ0=1.10 m�

r0 �0.32-0.00i |r0|2=0.105

Table 4.2: Ge(400)σ̂ data.

We further examine effects of different parameters on the Darwin curves to better understand its

variance with several properties.

Figure 4.4 examines the effect of different energies for Si(111)σ̂ to find that higher energies yield

narrower peaks. The peaks shift forward in angle as they spread with decreasing energy. The higher energies

also correspond to a lower penetration depth, which will present itself in our data as a more pronounced

change in the interplanar spacing at higher energies, due to the x-rays only probing a small depth of the

crystal, about where it has been strained. On the other hand, at smaller energies—particularly near the

bandgap when the energies becomes very much smaller suddenly—the x-rays penetrate very deep into the

crystal.

The more involved effect of changing Miller planes is presented in Figure 4.5 for Ge of constant energy

8.05 keV for some allowed reflection planes. Shape, as well as spread and angle change with changes in the

Miller plane.

An analysis wouldn’t be complete without examination of different materials, presented in Figure 4.6.

This includes diatomic silicon blende structures such as GaAs and InSb. Different materials have different
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Figure 4.4: The effect of varying energies on Sip111q.

Figure 4.5: Effects of varying Miller planes on the Darwin curve for Ge at 8.05 keV.

natural interplanar spacings due to their differing lattice parameters. This causes variance in their relative

Bragg angles, as shown in Figure 4.6. Note the large relative angle of carbon (diamond) compared to the

less dense crystals.
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Figure 4.6: This is the effect of different zinc blende materials at Miller index 111. These have not been centered to
show the relative offsets (different Bragg angles) due to the variant d-spacings.

4.2 Modeling strain

While the most accurate fit to our Darwin curve data is a proper Darwin curve, the graphs of Figure 4.7 show

that it is just as fitting to fit with a Lorentzian curve. With data fine enough to contain the characteristic

asymmetry of the Darwin curves, a chi-square fit of a Darwin curve yields more accurate data such as the shift

in bragg angle (and therefrom, average interplanar spacing) and HWHM. However, Figure 4.7 demonstrates

no asymmetry in shape in its resolution, validating the use of a Lorentzian chi-square fit, which more readily

yields the center and HWHM. The Lorentzian curve is given by

Lpθq � L0σ
2
HWHM

pθ � θ0q2 � σHWHM

(4.1)

where L0 is the peak height of the Lorentzian, σHWHM is the half-width-half-max, and θ0 is the x-offset of

the Lorentzian’s center. These three parameters are fit using the least square method. For finer data, the

chi-square method scales very well to general functions, including the Darwin curve.

4.2.1 Patterns in Data

The code of Appendix B.5 parses the data into 232 sets of “Scan” objects, each containing an energy

value and the strained and unstrained rocking curve data. Immediately after being read, each data set is

normalized according to the unstrained rocking curve—this includes a translation of both curves along the

x-axis correcting the unstrained Bragg angle based on the energy to account for tiny movements of the crystal
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(a) High energy (b) Middle energy (c) Low energy

Figure 4.7: Darwin plots of strained (Bon) and unstrained (Boff) rocking curves for Ge(400) at decreasing
energies (increasing penetration depths), used to model the strain profile. Fits are Lorentzian.

throughout the experiment, and a scaling along the y-axis to the maximum of the unstrained curve, though

this is for aesthetic purposes only. The resulting data is of the form of Figure 4.7, which shows three plots of

increasing penetration depth, along with their Lorentzian fits. Several trends are observed in at these chosen

energies and other energies:

First, the volume of the strained crystal curve is larger than its unstrained counterpart for energies

below the K-edge. This is discussed in the next section. Second, the strained (“laser on”) peak is always at

a lower reflection angle than the unstrained data. This implies by Bragg’s Law that the average interplanar

spacing is higher after the Ge crystal has been strained by the laser pulse than before at all probed energies.

Third, the lesser strained peak angle approaches the unstrained peak angle with increasing penetration

depth, at energies above the K-edge. This implies above the K-edge that the average interplanar spacing

decreases towards the natural (unstrained) average interplanar spacing of the crystal.

It is more intuitive to analyze the data with respect to penetration depth, rather than the x-ray

energies. The penetration depth can be solved from Equation 2.25 to yield

Λpxq � d

2Re pηq �
d

2Re
�
g
?

1� x2
� , (4.2)

which is decidedly not linear to E. Figure 4.8 graphs both the (nonlinear) penetration depth and relative

average interplanar spacing against energy (top and bottom graphs, respectively). In our aim to plot the

relative average interplanar spacing against penetration depth for insight into the one-dimensional strain

profile of the crystal, we mention noteable features of the plot. An subtle trait of the relative average

interplanar spacing data is that it is always slanted upwards, and this turns out to be quite important. More

obviously, we see unmistakeable aberrations near the K-edge of germanium around 11.1 keV in both graphs.

The behavior of the penetration depth near the K-edge is expected and has been explained, but that of the
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Figure 4.8: Graph of relative difference between strained and unstrained lattice spacing against energy (top) and
extinction depth of energies (bottom). Note the abberant behavior near the K-edge of 11.1 keV for Ge (top), and
the nonlinearity about it in the bottom graph.

bottom graph leads to two very different results for average interplanar spacing at the same depths.

The discontinuity of the data about the K-edge is not understood by the author. Above the K-edge, x-

rays have sufficient energy to expell K-edge electrons, which are then filled by higher shell electrons resulting

in the emission of either fluorescent x-ray emission or excite a higher shell auger electron. The only relevant

effect observed in the original raw data (of the form of Figure 4.7) is the increased volume of the strained

curves below the K-edge. Below the K-edge, both the width and height of the strained data surpasses that of

the unstrained, and while not the subject of this paper, this is elaborated upon in Section 5.1. The remainder

of this chapter focuses on the data above the k-edge, which is plotted using the transformation of Figure 4.8

in Figure 4.9.

49



4.2.2 Results

By translating the independent axis nonlinearly according to the penetration depth illustrated in Figure 4.8

(top), we can recast the bottom figure of relative average interplanar spacing to be in terms of penetration

depth instead of energy, as in Figure 4.9. Before examining this figure, let’s work backwards from a strain

profile to build an expectation of what the figure should look like given a strain profile.

The lattice constant of germanium is 5.64 Å(see §3.2.1), which places its interplanar (111) spacing on

the order of angstroms. With the justification of the (albeit nonlinear) lower resolution of the data presented

in Figure 4.9, we make the approximation that our depth profile is continuous. When the crystal is pulsed by

the laser, a longitudinal phonon pulse travels through the material in one dimension as outlined in Section

3.1, and this pulse has velocity 5510 m
s

8. Our strained data is taken 250 ps after the laser pulse, so the

pulse should be located at a depth 1.3 µm, which is beyond the penetration depths reachable by our energies

as given in Figure 4.8 by about .3 µm.

The laser pulse has created a phonon pulse which travels down the crystal and is at an unreachable

depth of 1.3 µm at the time of our depth-varying snapshots. When the laser first excites the material at

its top boundary, the pulse is created and travels downwards. This provokes a restoring force in the layers

above which, stretched, pull the layers above them, creating a second, lesser phonon pulse travelling down

the material. The depth profile is then expected to exhibit periodicity with an amplitude increasing with

depth up to the original phonon pulse of maximum compression. The cumulative average over such a profile

is likewise periodic and with diminishing amplitude.

While our actual result in Figure 4.9 doesn’t match our predictions, the figure holds important infor-

mation. First, note that if the depth profile did match our theoretical one, the amplitude of its cumulative

average lattice spacing would very quickly dissipate to much less than the original amplitude, since we are

calculating a cumulative average; since we only started around .8 µm, this could be a region dominated

by noise. Second, note that the strained lattice spacing is always larger ; this implies either that the depth

profile’s periodic wavelength is at least twice our range of penetration depths, or that the profile is not

periodic, or that an effect of thermal expansion has been neglected. Unfortunately, without more insight

into the form of the depth profile at the time of our snapshot, it is difficult to separate noise from feature.

For example, one might interpret the peak-trough-peak feature from .83 to .86 µ m to be the cumulative

average over a sinusoidal profile, but it is more constructive to work backwards from the theoretical depth

profile, which is beyond the scope of this paper, to ensure that one is not analyzing noise.

One major trend that is clear across all measured energies above the K-edge is a downward slope in

expansion as penetration depth increases. This means that the more we measure, the closer we get to the
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Figure 4.9: Cumulative average interplanar spacing difference ratio, this time as a function of penetraton depth.

unstrained depth, which is what we would expect from any strain profile.
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Chapter 5

Conclusions

By analyzing data of cumulative average interplanar distance obtained from Darwin curves of a laser-strained

and unstrained crystal lattice at the same snapshot in time, we have observed a crystal whose layers are

expanded in our depth regime, whose average interplanar distance nears the unstrained interplanar spacing

with increasing depth. We have concluded that while a compression pulse is known to be located at 1.3 µm

within the material at our snapshots all taken 250 ps after the laser pulse strain, the K-edge (the highest-

reaching edge) only reaches just above 1 µm where the depth profile is not known, making discernment

between features and noise difficult. Nevertheless, an overall slope of the strained average interplanar spacing

tending towards the unstrained spacing is a promising feature.
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5.1 Future Work

Many areas of this paper call for further analysis in multiwavelength x-ray diffraction. The most fundamental

such expansion is multiwavelength x-ray diffraction over a known depth profile with maximal data resolution

(ie, data at more closely spread energies near the K-edge, and at more angles). The resolution would call for

the adaptation of the code to perform chi-square fits with Darwin curves instead of Lorentzians to account

for the asymmetry that comes with higher resolution data, whereas the known depth profile can help discern

data from noise. With this two-front approach, a method can be validated for understanding the depth

profile from the average relative interplanar spacing. As mentioned in §4.2, the chi-square method is not

difficult to scale in this regard.

Further analysis is also warranted on the volume of the Darwin curves; below the K-edge, the strained

peak is wider and taller than the unstrained, whereas the opposite is true of the curves above the K-edge.

The interplanar spacing data exhibits irregularities about the K-edge implying discontinuity, which could

point to distortion of the electrons in the material above the K-edge, and this has not been examined. The

volumes should also play a part in normalization and accuracy of the chi-square fit over the Darwin curve

mentioned above. Most importantly, the relative volume gives key insight into the density of planes in going

from the cumulative average spacing from one penetration depth to the next, which can contribute to results

concerning the depth profile.

With a theoretical depth profile to discern noise and an analysis of the volume as well as the interplanar

spacing, methods for the reformulation of the depth profile can be derived and validated.
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Appendix A

Matlab Code

A.1 populateGlobals.m—Imports scattering coefficients and cor-
rection factors from custom file.

%% Load scattering coefficients and correction factors
% From converted Crystallographic Tables data

function []=populateGlobals(dataPath)
% Inputs:
% dataPath*: Absolute path of scatcoef.txt and corrfax.txt
% converted files.
% Outputs: None. Instead updates global variables:
% scatcoef: Scattering coefficients in the form
% {{'elementName' [a1 b1 a2 b2 a3 b3 a4 b4 c]},..}
% corrfax: Correction factors, of the form
% {{'elementName' [9 f' values] [9 f'' values]},...}
% at different energies as per the code.
% paperDir Directory of Paper folder, to which everything is relative.

global scatcoef corrfax paperDir

% Set Paper directory to two directories higher (remove two ending /)
paperDir=regexprep(cd,'[/\\][ˆ/\\]*[/\\][ˆ/\\]*[/\\]?$','/');

if(nargin==0)
dataPath=[paperDir 'Code/Data/coefs/CTs'];

end

[fid,msg]=fopen(strcat(dataPath,'scatcoef.txt'),'r');
if(fid==�1)

disp(msg)
return

end
tline=fgetl(fid);
scatcoef={};
while ischar(tline)

s=regexp(tline,'\t','split');
s{1}=regexprep(regexprep(s{1},'+','PLUS'),'�','MINUS');
%s{2}=[str2num(s{2})];
%scatcoef{end+1}=s;
%disp(scatcoef{end}{2}(1))
scatcoef.(s{1})=[str2num(s{2:end})];
%scatcoef(end+1)={{s(1) [str2num(char(s(2:end)))]}};
tline=fgetl(fid);

end
fclose(fid);
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[fid,msg]=fopen(strcat(dataPath,'corrfax.txt'),'r');
if(fid==�1)

disp(msg);
return

end
tline=fgetl(fid);
corrfax={};
while ischar(tline)

s=regexp(tline,'\t','split');
corrfax.(s{1})=[str2num(s{2});str2num(s{3})];
%disp(corrfax{end}{2}(1,:))
tline=fgetl(fid);

end
fclose(fid);
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A.2 f0.m—Atomic form factor

%% Returns the atomic form factor
% Run populateGlobals.m first
%
% Inputs:
% ele: ��� Element name
% a: \AA Element Lattice Parameter
% Q: 1/m Difference wavevector
% Outputs:
% lef0: Form factor without corrections or absorption

function [lef0]=f0(ele,Q)

global scatcoef

if(ele=='Si') % Match CT
ele='Siv';

end
ele=regexprep(regexprep(ele,'+','PLUS'),'�','MINUS');

i=1;
while(i<length(scatcoef) && scatcoef{i}{1}˜=ele)

i=i+1;
end

lef0=scatcoef.(ele)(9);
for(i=1:4)

lef0=lef0+scatcoef.(ele)(2*i�1)*exp(�scatcoef.(ele)(2*i)*(Q/(4*pi))ˆ2);
end

A.3 fp.m—Correction & Absorption factors

%% Return constant reduction factors
% Run populateGlobals.m first
%
% Inputs:
% ele: ��� Element name
% E: eV Energy of incident x�ray
% wavelength: m wavelength of incident x�ray, overrides E
% Outputs:
% f'�i f'': Correction factor, from Crystallographic tables.

function [lefp]=fp(ele,wavelength)
global corrfax

% The following accords with the data gathered from the CTs
wavelengths=[2.74851 2.28962 1.93597 1.788965 1.54052 0.70926 0.55936 0.215947 ...

0.20901 0.180195]*1E�10;

fpp=interp1(wavelengths',corrfax.(ele)',wavelength);
lefp=fpp(1)�1j*fpp(2);
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A.4 F.m—Atomic form factor

%% F.m: Return atomic form factor
% Be sure to run populateGlobals.m first.
% Run as F(ele,a,wavelength,hkl). Set flags to enter energy instead of
% wavelength or angle instead of Miller index. See examples for details.
%
% Inputs:
% ele: ��� Element name
% a: \AA Element Lattice Parameter
% wavelength: m Wavelength of incident beam (default)
% hkl: ��� Miller index, in the form hkl for single integers
% or [h k l] for multi�integer or negative indices.
% E: eV Energy of incident beam (overrides wavelength)
% angle: rad Angle (overrides hkl)
% flag*: ��� To enter energy instead of wavelength, flag 'E'
% to enter angle instead of miller index, flag 'a'
% for both, flag 'Ea'.
% Outputs:
% leF: Atomic form factor
%
% Examples:
% F(ele,a,E ,hkl)
% F(ele,a,wavelength,hkl, 'w')
% F(ele,a,E ,angle,'a')
% F(ele,a,wavelength,angle,'wa')

function [leF]=F(ele,a,varargin)
% F(ele,a,wavelength[E],hkl[angle],'[Ea]'*)

PlanckH=4.135667516E�15;
c=299792458;

if(nargin˜=4 && nargin ˜=5)
disp('Incorrect usage F. Requires 4 or 5 inputs. See "help F".');
return

end

if(nargin==5 && ˜isempty(strfind(varargin{3},'E'))) % energy passed
E=varargin{1};
wavelength=PlanckH*c/E;

else % wavelength passed
wavelength=varargin{1};
E=PlanckH*c/wavelength;

end

if(nargin==5 && ˜isempty(strfind(varargin{3},'a'))) % angle specified
Q=4*pi*sin(varargin{2})/wavelength;

else % hkl specified
if(length(varargin{2})==1)

hkl=num2cell(str2num(regexprep(sprintf('%03d',varargin{2}),'(\d)','$1 ')));
[h,k,l]=hkl{:};

else
hkl=num2cell(varargin{2});
[h,k,l]=hkl{:};

end
if(h==k && k==l && l==0)

Q=0;
else

d=a/sqrt(h*h+k*k+l*l);
Q=2*pi/d;

end
angle=asin(Q*wavelength/(4*pi));

end

leF=f0(ele,Q)+fp(ele,wavelength);
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A.5 Fuc.m—Unit cell form factor

%% Fuc.m: Return unit cell form factor of 2�element zinc�blende structure
% Be sure to run populateGlobals.m first
% Run as F(ele1,ele2,a,wavelength,hkl). Set flags to enter energy instead of
% wavelength or angle instead of Miller index. See F.m help for details.
%
% Inputs:
% ele1: ��� First element name
% ele1: ��� Second element name
% a: \AA Element Lattice Parameter
% wavelength: m Wavelength of incident beam (default)
% hkl: ��� Miller index, in the form hkl for single integers
% or [h k l] for multi�integer or negative indices.
% E: eV Energy of incident beam (overrides wavelength)
% angle: rad Angle (overrides hkl)
% flag*: ��� To enter energy instead of wavelength, flag 'E'
% to enter angle instead of miller index, flag 'a'
% for both, flag 'Ea'.
% Outputs:
% leFuc: Atomic form factor

function [leFuc]=Fuc(ele1,ele2,a,varargin)
% Fuc(ele1,ele2,a,wavelength[E],hkl[angle],'[Ea]')

PlanckH=4.135667516E�15;
c=299792458;

if(nargin==6)
flags=varargin{3};

elseif(nargin==5)
flags='';

else
disp('Incorrect usage Fuc. Requires 5 or 6 inputs. See "help Fuc".');
return

end

% Parse flags
if(nargin==6 && ˜isempty(strfind(varargin{3},'E'))) % energy passed

E=varargin{1};
wavelength=PlanckH*c/E;

else % wavelength passed
wavelength=varargin{1};
E=PlanckH*c/wavelength;

end

if(nargin==6 && ˜isempty(strfind(varargin{3},'a'))) % angle specified
Q=4*pi*sin(varargin{2})/wavelength;

else % hkl specified
if(length(varargin{2})==1)

hkl=num2cell(str2num(regexprep(sprintf('%03d',varargin{2}),'(\d)','$1 ')));
[h,k,l]=hkl{:};

else
hkl=num2cell(varargin{2});
[h,k,l]=hkl{:};

end
if(h==k && k==l && l==0)

Q=0;
else

d=a/sqrt(h*h+k*k+l*l);
Q=2*pi/d;

end
angle=asin(Q*wavelength/(4*pi));

end

leFuc=F(ele1,a,varargin{1},varargin{2},flags)*...
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abs(1+exp(2*pi*1j*(h/4+k/4+l/4)))*...
(1+exp(1j*pi*(h+k))+exp(1j*pi*(k+l))+exp(1j*pi*(h+l)));

if(false)
disp(ele1);
disp(ele2);
disp(a);
disp(varargin{1});
disp(varargin{2});
disp(varargin{3});
disp(exp(2*pi*1j*(h/4+k/4+l/4)));
disp((1+exp(1j*pi*(h+k))+exp(1j*pi*(k+l))+exp(1j*pi*(h+l))));

end

A.6 Darwin.m—Darwin plot

%% Darwin.m: Plot Darwin rocking curve
% Be sure to run populateGlobals.m first
% Run as Darwin(ele1,ele2,a,wavelength,hkl). Set flags to enter energy instead of
% wavelength or angle instead of Miller index. See F.m help for details.
%
% Inputs:
% ele1: ��� First element name
% ele1: ��� Second element name
% a: \AA Element Lattice Parameter
% wavelength: m Wavelength of incident beam (default)
% hkl: ��� Miller index, in the form hkl for single integers
% or [h k l] for multi�integer or negative indices.
% E: eV Energy of incident beam (overrides wavelength)
% angle: rad Angle (overrides hkl)
% flag*: ��� single characters that combine, 6th fn parameter.
% Flags:
% E: Treat parameter 4 as energy instead of wavelength
% a: Treat parameter 5 as angle instead of Miller index
% n: No absorption
% s: Save image (predetermined path/name), can be overriden by
% extra 'S' argument.
% h: Hide plot (do not show figure)
% Extra Args: Extra arguments may be specified beginning with the
% 7th parameter (you can leave flags as an empty
% string) in the form Darwin(...,'X0h','Si10kev').
% X0h: Specify X0h file for comparison on the same figure
% S: Save with this filename instead of the default.
% Outputs:
% leFuc: Atomic form factor

function []=Darwin(ele1,ele2,a,varargin)
% Darwin(ele1,ele2,a,wavelength[E],hkl[angle],'[Ea]')

global paperDir

PlanckH=4.135667516E�15; % eVs Planck's in eV s (NIST/hev)
c=299792458; % m/s Speed of light (NIST/c)
r0=2.8179403267E�5; % \AA Electron radius (NIST/re)

if(nargin>=6)
flags=regexprep(varargin{3},'[n]',''); % These flags make it no further
if(nargin>6) % Extra arguments

if(˜mod(nargin,2)==0)
disp('Incorrect usage of Darwin; see help file on extra arguments.');
return

end
for i=4:2:nargin�3

switch varargin{i}
case 'X0h'
X0hName=varargin{i+1};
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case 'S'
saveName=varargin{i+1};

otherwise
disp(['Unrecognized option ' varargin{i} '; see "help ' ...

'Darwin".']);
end

end
end

elseif(nargin<=5)
flags='';
if(nargin<5)

disp('Incorrect usage Darwin. Requires 5 or 6 inputs. See "help Darwin".');
return

end
end

% Parse flags
if(nargin>=6 && ˜isempty(strfind(varargin{3},'E'))) % energy passed

E=varargin{1};
wavelength=PlanckH*c/E;

else % wavelength passed
wavelength=varargin{1};
E=PlanckH*c/wavelength;

end

if(nargin>=6 && ˜isempty(strfind(varargin{3},'a'))) % angle specified
Q=4*pi*sin(varargin{2})/wavelength;
d=lambda/(2*sin(theta)); % (m) Assume first order

else % hkl specified
if(length(varargin{2})==1)

hkl=num2cell(str2num(regexprep(sprintf('%03d',varargin{2}),'(\d)','$1 ')));
[h,k,l]=hkl{:};

else
hkl=num2cell(varargin{2});
[h,k,l]=hkl{:};

end
if(h==k && k==l && l==0) % This should never be called.

Q=0;
else

d=a/sqrt(h*h+k*k+l*l);
Q=2*pi/d;

end
angle=asin(Q*wavelength*1E10/(4*pi));

end

% Start Rocking Curve calculations

vc=aˆ3; % \AAˆ3 Unit cell volume
m=1;

F0=Fuc(ele1,ele2,a,varargin{1},0,flags);
F=Fuc(ele1,ele2,a,varargin{1},varargin{2},flags);
if(nargin>=6 && ˜isempty(strfind(varargin{3},'n'))) % no absorption

F=abs(F);
F0=abs(F0);
nowith='no';
absno=0;

else
nowith='with';
absno=1;

end
g0=2*dˆ2*r0/vc*F0;
g=2*dˆ2*r0/vc*F;

x=�5:.01:5;
zetas=real(g0/pi+x.*g/pi);
xc=pi.*zetas/g�g0/g;
thetas=zetas.*tan(angle)*180000/pi;
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Rs=abs(r(xc)).ˆ2;

hold off;plot(thetas,Rs,'b�');hold on;

if(ele1==ele2)
ele12=ele1;

else
ele12=[ele1 ele2];

end
plotName=sprintf('%s(%d%d%d)%d',ele12,h,k,l,absno);
if(˜exist('saveName'))

saveName=plotName;
end

basepath=regexprep(cd,'/[ˆ/\\]*/[ˆ/\\]*[/\\]?$','/'); % Up to Paper directory
tmptitle=[plotName ' wavelength=' num2str(round(wavelength*1E12)/100) ...

' Angstroms, ' nowith ' absorption'];
title(tmptitle,'Interpret','tex');
xlabel('\omega (millidegrees)');
ylabel('Intensity reflectivity');
% Plot X0h
if(exist('X0hName'))

xoh=load([paperDir 'Code/Data/X0h/' X0hName '.dat']);
plot(xoh(:,1)/3.6,xoh(:,2),'k��');
legend('me','X0h');

end

print('�dpng',[paperDir 'Images/Background/X0h Comps/matlab/' ...
saveName]);

function [R]=r(xc)
R=[xc(real(xc)<=�1)+sqrt(xc(real(xc)<=�1).ˆ2�1) ...

xc(abs(real(xc))<1)�1j*sqrt(1�xc(abs(real(xc))<1).ˆ2) ...
xc(real(xc)>=1)�sqrt(xc(real(xc)>=1).ˆ2�1)];
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A.7 extractspec.m—Code for parsing spec file, written by G. Jack-
son Williams 2013

% extractspec�Written by G Jackson Williams, Summer 2013
% Extracts from a given .spec file 'filename' the specified scan(s) 'scan'.
function Data = extractspec(filename, scan)

%% Convert to a format matlab will like
% Test to see if the .spec needs to be edited
[fid, message] = fopen(filename,'r','b');
if(fid < 0)

fprintf('Warning: No such file exists in directory! \n');
fprintf(' Please choose new filename \n');
disp(message)
Data = [];
return

end
tline = fgetl(fid);
if(strcmp(tline(1),'#'))

fprintf('\nConverting original .spec into something Matlab will like!\n');
tic
i = 1;
while ischar(tline)

tline = strrep(tline,'#','%');
NewFile{i} = tline;
i = i+1;
tline = fgetl(fid);

end
fclose(fid);

fid new = fopen(filename, 'w');
for n = 1:i�1

fprintf(fid new,'%s\n',NewFile{n});
end
fclose(fid);
pause(0.1);
t = toc;
fprintf(['Conversion took ' num2str(t,3) ' seconds\n']);

end

%% Handle all lines
% List the indexes of where the scans start
[fid, message] = fopen(filename,'r','b');
i = 1;
k = 1;
ScanData = cell(scan,1); % cell(a,b) creates an a x b cell array of empty matrices

% The 'scan' size is due to not reading more
% than we need.

% The following while loop reads every line, so the code in it must call
% every case.
while ischar(tline) % Originally set in ln. 17

if(isempty(tline))
tline = fgetl(fid);
continue

end

% The line with %S gives you the scan number
if(strncmp(tline,'%S ',3))

for j = 4:length(tline)
if(double(tline(j)) == 32) % 32 is space ASCII

break
end

end
ScanNum(k,1) = str2double(tline(4:j�1));% Just scan number: 4 skips the "%S #", ends at

space
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ScanHeader{k} = tline; % Save entire line to SH
ScanIndex(k,1) = i;

% Remember that scan can be a vector.
if(ScanNum(k,1) == max(scan(:))+1) % Don't read more than needed

break
end

end
if(strncmp(tline,'%L ',3)) % These are column headers

Header{k} = tline;
k = k+1;

end

if(strcmp(tline(1),'%')) % Ignore further comments
else

% Put the data as a new col in ScanData{ScanNum(see ln. 70)}
% sscanf returns a column vector of all %gs read.
ScanData{ScanNum(k�1)} = [ScanData{ScanNum(k�1)}; sscanf(tline,'%g')'];
i = i+1;

end
tline = fgetl(fid);

end

if(scan > k � 1) % Didn't find your scan #, reached eof
fprintf(['Warning: This spec file does not have a Scan #' num2str(scan) '\n']);
fprintf([' The maximum scan number for this file is ' num2str(k�1) '\n']);
Data = [];
return

end

%% Formulate Data struct to return
%data = load(filename);
data = ScanData{scan}; % Only return those scans we asked for

% strread: read a string based on a delimiter
headerparts = strread(ScanHeader{k�1},'%s','delimiter',' ');% Get scan header (%S SCANNUMBER ...)
headerp = strread(Header{k�1},'%s','delimiter',' '); % Get data header (%L COLNAMES ...)

Data.scantype = headerparts{3}; % Send back in struct with metadata
Data.motorname = headerparts{4};
Data.startpos = str2double(headerparts{5});
Data.endpos = str2double(headerparts{6});
Data.numsteps = str2double(headerparts{7});
Data.counttime = str2double(headerparts{8});
Data.dataheader = headerp;
Data.data = data;
imax = length(headerp) � 1; % Return each column in its own member
for i = 1:imax;

eval(['Data.' headerp{i+1} ' = data(:,' num2str(i) ');']);
end

%% Close file
status = fclose('all');
if(status < 0)

fprintf('Warning: Opened files did not close properly!');
end

end
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Appendix B

Python Code

B.1 MakePlots.py—Code generating figures in this paper.

#!/usr/bin/python2
import re,os,sys
from cmath import *
import matplotlib.pyplot as plt
from numpy import arange
from scipy import interpolate

import FormFactor.formfactor as ff
import Spec.Spec as spec
import Darwin.Darwin as dwn
import MDA.MDA as mda

saveDir='/'.join(os.path.dirname(os.path.realpath( file )).split('/')[:�2])+'/Images/'

# Define physical constants
PlanckH=4.135667516E�15; # eVs Planck's in eV s (NIST/hev)
c=299792458; # m/s Speed of light (NIST/c)
r0=2.8179403267E�5; # \AA Electron radius (NIST/re)

def main(show=False,save=True):
"""Create and save every figure used in the paper."""
ff.init(['Ge','Si','Ga','As','In','Sb','C'])

Fig 2 10(show,save)
Fig 2 13(show,save)
Fig 2 14(show,save)
Fig 2 16(show,save)
Fig 3 02(show,save)
Fig 3 03(show,save)
Fig 3 04(show,save)
Fig 4 01(show,save)
Fig 4 02(show,save)
Fig 4 03(show,save)
Fig 4 04(show,save)
Fig 4 05(show,save)
Fig 4 06(show,save)
Fig 4 07(show,save)
Fig 4 08(show,save)
Fig 4 09(show,save)

def Fig 2 10(show=False,save=True):
"""Kinematical result for many layers as given by Equation 2.35, with diverging parts

replaced by | r N |ˆ2=1."""
x=arange(0.001,10,.01)
a=lambda x: 1/(x�4)**2 # zeta 0/m=1
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plt.plot(x,[min(a(s),1) for s in x])
plt.xticks([4],[r'$\frac{\zeta 0}{m}$'])
plt.ylim([0,1.03])
plt.ylabel('Intensity reflectivity',rotation=90)
plt.xlabel(r'$\zeta$')
plt.tick params(axis='x',labelsize=20)
if save: plt.savefig(saveDir+'2 10 Kinematical.png',dpi=200)
if show: plt.show()
plt.clf()

def Fig 2 13(show=False,save=True):
"""Darwin curve without absorption effects���the reflectivity is 100% in the middle, but

tapers off to the sides. The intensity reflectivity is the square of the amplitude
reflectivity given in Equation 2.42 when |x|>=1 and equals 1 (the product of the complex
number and its conjugate in Equation 2.42) when |x|<=1"""

dwn.plotRockingCurve('Si','Si',5.4309,111,wavelength=1.5495e�10,xaxis='xc',absorption=False,
normalShift=True,save=save,show=show,saveAs='2 13 DarwinNoAbsorption.png',xwidth=3,
plotTitle='Darwin Curve Without Absorption')

def Fig 2 14(show=False,save=True):
"""Darwin reflectivity curve for Ge(111) probed with an 8 keV at sigma orientation."""
dwn.plotRockingCurve('Ge','Ge',5.6461,111,E=8000.,save=save,saveAs='2 14 DarwinNoAbsorption.

png',show=show,absorption=False,plotTitleEnergy=True,normalShift=True)

def Fig 2 16(show=False,save=True):
"""Darwin reflectivity curve for Ge(111) probed with an 8 keV at sigma orientation accounting

for absorption effects."""
dwn.plotRockingCurve('Ge','Ge',5.6461,111,E=8000.,save=save,saveAs='2 16 DarwinAbsorption.png

',show=show,absorption=True,plotTitleEnergy=True,normalShift=True)

def Fig 3 02(show=False,save=True):
"""Graph of dispersion corrections from the Crystallographic Tables 5 (top) and NIST 9 (

bottom). The NIST data is more abundant near the band edges, where the form factors
display erratic behavior. The lines are the linear interpolation (used in this paper)
between the points, which represent energies for which the source provides explicit data.
"""

global PlanckH,c

a=5.6461;hkl=111;
energies=arange(5,30,.01)

Nfs=[[q.real,q.imag] for q in [ff.fp('Ge',E=E*1000,source='NIST') for E in energies]]
Cfs=[[q.real,q.imag] for q in [ff.fp('Ge',E=E*1000,source='CTs') for E in energies]]
[Nfp,Nfpp]=zip(*Nfs)
[Cfp,Cfpp]=zip(*Cfs)

[NIP,CIP]=[ff.getInterpPoints(source=sources,ele='Ge') for sources in ['NIST','CTs']]
[Nfpo,Nfppo]=zip(*[[q.real,q.imag] for q in [ff.fp('Ge',E=E*1000,source='NIST') for E in NIP

]])
[Cfpo,Cfppo]=zip(*[[q.real,q.imag] for q in [ff.fp('Ge',wavelength=wl,source='CTs') for wl in

CIP]])

f1,(ax1,ax2)=plt.subplots(2,sharex=True,sharey=True)

CIPE=[PlanckH*c/q/1000. for q in CIP]
ax1.plot(energies,Cfp,'b�')
ax1.plot(energies,Cfpp,'r�')
ax1.plot(CIPE,Cfpo,'bo')
ax1.plot(CIPE,Cfppo,'ro')
axfp,=ax1.plot([1e4],[1e4],'ro�')
axfpp,=ax1.plot([1e4],[1e4],'bo�')
ax1.legend([axfp,axfpp],["f'","f''"],loc=4)
ax1.set ylabel('Crystallographic Tables')

ax2.plot(energies,Nfp,'b�')
ax2.plot(energies,Nfpp,'r�')
ax2.plot(NIP,Nfpo,'bo')
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ax2.plot(NIP,Nfppo,'ro')
axfp,=ax2.plot([1e4],[1e4],'ro�')
axfpp,=ax2.plot([1e4],[1e4],'bo�')
ax2.legend([axfp,axfpp],["f'","f''"],loc=4)
ax2.set ylabel('NIST')

ax1.set title('Dispersive Form Factor Corrections for Ge(111)')
plt.xlabel('Energy (keV)')
plt.ylim([�7,1])
plt.xlim([5,30])

if save: plt.savefig(saveDir+'3 02 ff.png',dpi=200)
if show: plt.show()
plt.clf()

def Fig 3 03(show=False,save=True):
"""Raw data for energies at the extremum and median of data, unnormalized and shifted from

Bragg angle."""
AnalyzeFrame(fitL=False,save=save,show=show,scanNums=[1,124,232])

def Fig 3 04(show=False,save=True):
"""Superposition of raw data with Lorentz fits at different energies. This demonstrates the

variance of fluctuations in height, width, and absolute angle between energies, none of
which play a major role in data gathering thanks to reference data of the unstrained
crystal for each measurement."""

Ge=mda.MDA('7idd 0046.mda','all',['7cart:m3.VAL','S16','S15'])
ax=[]
colors=['c','r','b','k']
for scan,c in zip([Ge.scans[q] for q in [231,194,80,1]],colors):

x=[xx*1000. for xx in scan.data['7cart:m3.VAL']]
p=scan.fitLorentzian(x,scan.data['S15'])
xxs=arange(min(x),max(x),(max(x)�min(x))/1000.)

plt.errorbar(x,scan.data['S15'],yerr=[sqrt(q) for q in scan.data['counts2']],fmt=(c+'o'))
axi=plt.errorbar(1e4,1e4,yerr=.01,fmt=c+'o�')
axL1,=plt.plot([xx for xx in xxs],[scan.Lorentzian(p[0],xx) for xx in xxs],c+'�')
ax.append([axi,r'$E$=%.3f keV'%scan.Y])

plt.xlabel(r'$\theta$ (millidegrees)')
plt.ylabel('Counts (per 10 s)')
plt.title('Effect of energy on strained rocking curves')

plt.legend(*zip(*ax),loc=2)
plt.ylim([0,1150])
plt.xlim([�16,6])
if save: plt.savefig(saveDir+'3 04 merGe.png',dpi=200)
if show: plt.show()
plt.clf()

def Fig 4 01(show=False,save=True):
"""Darwin curves for Gesigma at different miller indices, compared with X0h."""
dwn.plotRockingCurve('Ge','Ge',5.6461,400,1.54056e�10,X0hComp='Ge400 154',save=save,show=show

,saveAs='4 01 Ge 400',absorption=True,noabsorbbg=True)
dwn.plotRockingCurve('Ge','Ge',5.6461,111,1.54056e�10,X0hComp='Ge111 154',save=save,show=show

,saveAs='4 01 Ge 111',absorption=True,noabsorbbg=True)

def Fig 4 02(show=False,save=True):
"""Gallium Arsenide at miller index 400."""
dwn.plotRockingCurve('Ga','As',5.6461,400,wavelength=1.54056e�10,X0hComp='GaAs400',absorption

=True,save=save,saveAs='4 02 GaAs 400',show=show,noabsorbbg=True)

def Fig 4 03(show=False,save=True):
"""General computational agreement of varying Darwin curves with X0h at different x�ray

energies near the K�edge."""
for i in range(11000,11151,50):

dwn.plotRockingCurve('Ge','Ge',5.6461,400,E=i,X0hComp='Ge'+str(i),saveAs='4 03 Ge(400)'+
str(i),absorption=True,save=save,show=show,noabsorbbg=True)
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def Fig 4 04(show=False,save=True):
"""The effect of varying energies on Si(111)"""
# Different energies of Si(111)
a=5.4309;hkl=111;wavelength=None

axnames=[] # plot handles
for E in [5000,10000,50000]:

[wavelength,E,Q,angle,[h,k,l]]=ff. parseParameters(a,hkl,wavelength,E)
[thetas,rs]=dwn.RockingCurve('Si','Si',a,hkl,wavelength,E,'thetas',absorption=True,

normalShift=False)
axi,=plt.plot(thetas,rs)
axnames.append([axi,r'$E$=%d keV'%E])

plt.title('Darwin curves of Si(111) for varying energies')
plt.xlabel(r'$\omega$ (millidegrees)')
plt.ylabel(r'Intensity reflectivity')
plt.legend(*zip(*axnames))
plt.ylim([0,1.05])

if save==True: plt.savefig(saveDir+'4 04 Si(111)E.png',dpi=200)
if show: plt.show()
plt.clf()

def Fig 4 05(show=False,save=True):
"""Effects of varying Miller planes on the Darwin curve for Ge at 8.05 keV"""
axnames=[]
# Ge at different Miller indices
minds=[111,200,220,113,222,400]
a=5.6461;wavelength=1.5405e�10;
for mind in minds:

[wavelength,E,Q,angle,[h,k,l]]=ff. parseParameters(a,mind,wavelength)
[thetas,rs]=dwn.RockingCurve('Si','Si',a,mind,wavelength,E,'thetas',absorption=True,

normalShift=False)
axi,=plt.plot(thetas,rs)
axnames.append([axi,str(mind)])

plt.title('Darwin curves of Ge at different Miller indices (E=%.2f keV).'%(E/1000.))
plt.xlabel(r'$\omega$ (millidegrees)')
plt.ylabel(r'Intensity reflectivity')
plt.legend(*zip(*axnames))
plt.ylim([0,1.05])

if save==True: plt.savefig(saveDir+'4 05 GeIndex.png',dpi=200)
if show: plt.show()
plt.clf()

def Fig 4 06(show=False,save=True):
"""This is the effect of different zinc blende materials at Miller index 111. These have not

been centered to show the relative offsets (different Bragg angles) due to the variant d�
spacings."""

axnames=[]
# Si, Ge, GaAs, InSb, diamond on same graph
ases={'Si':5.4309,'Ge':5.6461,'Ga':5.6535,'In':6.48,'C':3.5668}
eles=[['Si','Si'],['Ge','Ge'],['Ga','As'],['In','Sb'],['C','C']]
wavelength=1.5405e�10;hkl=111
for ele1,ele2 in eles:

[wavelength,E,Q,angle,[h,k,l]]=ff. parseParameters(ases[ele1],hkl,wavelength)
[thetas,rs]=dwn.RockingCurve('Si','Si',ases[ele1],hkl,wavelength,E,'thetas',absorption=

True,normalShift=False)
axi,=plt.plot(thetas,rs)
ele12=ele1 if ele1==ele2 else ele1+ele2
axnames.append([axi,ele12])

plt.title('Darwin curves of different silicon blende materials, (111).')
plt.xlabel(r'$\omega$ (millidegrees)')
plt.ylabel(r'Intensity reflectivity')
plt.legend(*zip(*axnames))
plt.ylim([0,1.05])

if save==True: plt.savefig(saveDir+'4 06 Eles(111).png',dpi=200)
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if show: plt.show()
plt.clf()

def Fig 4 07(show=False,save=True):
"""Darwin plots of strained (Bon ) and unstrained (Boff ) rocking curves for Ge(400) at

decreasing energies (increasing penetration depths), used to model the strain profile.
Fits are Lorentzian."""

AnalyzeFrame(fitL=True,save=save,show=show,scanNums=[1,124,232])

def Fig 4 08(show=False,save=True):
"""Graph of relative difference between strained and unstrained lattice spacing against

energy (top) and extinction depth of energies (bottom). Note the abberant behavior near
the K�edge of 11.1 keV for Ge (top), and the nonlinearity about it in the bottom graph.
"""

f,(ax1,ax2)=plt.subplots(2,sharex=True)

Es=arange(11020,11500,.1)
Ds=[dwn.extDepth('Ge','Ge',5.6461,400,theta=0,E=E,source='NIST') for E in Es]
ax1.plot([E/1000. for E in Es],[D*1.e6 for D in Ds],'b�')

nistPts=ff.getInterpPoints(source='NIST',ele='Ge')
Ds2=[dwn.extDepth('Ge','Ge',5.6461,400,theta=0,E=1000.*E,source='NIST') for E in nistPts]
ax1.plot([E for E in nistPts],[Ds2s*1.e6 for Ds2s in Ds2],'bo')
ax1.set ylabel(r'$\Lambda {ext}$ ($\mu$m)')
ax1.set ylim([.75,1.02])

Ge=mda.MDA('7idd 0046.mda','all',['7cart:m3.VAL','S16','S15'])
ds=[];Es=[]
for scan in Ge.scans:

scan.finddd2('7cart:m3.VAL','S16','S15',scan.Y,5.6461,400)
ds.append(scan.dd)
Es.append(scan.Y)

ax2.plot(Es,ds,'�')

ax1.set title('Extinction Depth and Strain, via Energy')
plt.xlabel(r'Energy (keV)')
plt.ylabel(r'$\frac{\Delta d}{d}$ (unitless)')
plt.xlim([11.02,11.5])

if save: plt.savefig(saveDir+'4 08 extDepthStrain.png',dpi=200)
if show: plt.show()
plt.clf()

def Fig 4 09(show=False,save=True):
"""Cumulative average lattice spacing difference ratio, this time as a function of penetraton

depth."""

Ge=mda.MDA('7idd 0046.mda','all',['7cart:m3.VAL','S16','S15'])
ds=[];Es=[]
for scan in Ge.scans:

scan.finddd2('7cart:m3.VAL','S16','S15',scan.Y,5.6461,400)
ds.append(scan.dd)
Es.append(scan.Y)

dEs=[[d,E] for (d,E) in zip(ds,Es) if E>11.11]
[ds,Es]=zip(*dEs)
Ds=[] # ds is the strain, Ds is the depth
for E in Es:

Ds.append(dwn.extDepth('Ge','Ge',5.6461,400,theta=0,E=1000.*E,source='NIST'))
plt.plot([D*1.e6 for D in Ds],ds)
plt.title('Strain vs. Extinction Depth')
plt.xlabel(r'$\Lambda$ ($\mu$m)')
plt.ylabel(r'$\frac{\Delta d}{d}$',rotation=0)

if save: plt.savefig(saveDir+'08 Ed.png')
if show: plt.show()
plt.clf()
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def createGifFromMDA():
"""Creates gif from MDA."""
AnalyzeFrame(save=True,show=False,errbars=True,dtxt=True,scanNums='all')
os.system('convert �delay 20 �loop 0 {0}Ge/Ge *.png {0}Ge.gif'.format(saveDir))

def AnalyzeFrame(fitL=True,x0hFile=None,dtxt=False,save=True,show=False,errbars=True,scanNums
=[1,124,232]):
Ge=mda.MDA('7idd 0046.mda','all',['7cart:m3.VAL','S16','S15'])
scanIter=Ge.scans if scanNums=='all' else [Ge.scans[q�1] for q in scanNums]
for scan in scanIter:

scanRaw='7cart:m3.VAL'+('' if fitL else 'raw') # unshifted angles for raw data plot
[x,y1,y2]=[scan.data[scanRaw],scan.data['S16'],scan.data['S15']]
[ERR1,ERR2]=[[sqrt(10*qq) for qq in scan.data[q]] for q in ['counts1','counts2']]

if fitL:
[p1,p2]=[scan.fitLorentzian(x,q) for q in [y1,y2]]
xxs=arange(min(x),max(x),(max(x)�min(x))/1000.)
axL1,=plt.plot([1000*xx for xx in xxs],[scan.Lorentzian(p1[0],xx) for xx in xxs],'b�'

)
axL2,=plt.plot([1000*xx for xx in xxs],[scan.Lorentzian(p2[0],xx) for xx in xxs],'r�'

)
if x0hFile!=None:

ax0h,=plt.plot(*dwn.getX0hData(x0hFile),linestyle='�',color='k')
x=[1000*xx for xx in x]
ax1=plt.errorbar(x,y1,yerr=ERR1,fmt='bo')
ax2=plt.errorbar(x,y2,yerr=ERR2,fmt='ro')
cheatfmt=['ro�','bo�'] if fitL==True else ['ro','bo']

plt.xlabel(r'$\theta$ (millidegrees)')
plt.ylabel('Counts (per 10 s)')
plt.title('Ge E=%.4f keV (scan #%d)'%(scan.Y,scan.scanNum))

if dtxt:
scan.finddd2('7cart:m3.VAL','S16','S15',scan.Y,5.6461,400)
plt.text(�13,.9,'d=%7.3f'%scan.d,ha='left',va='center')

lgdnames=['Laser Off']
lgdlist=[ax1]
if fitL:

lgdlist.append(axL1)
lgdnames.append('Lorentzian Fit (Off)')

lgdnames.append('Laser Off')
lgdlist.append(ax2)
if fitL:

lgdlist.append(axL2)
lgdnames.append('Lorentzian Fit (On)')

if x0hFile!=None:
lgdlist.append(ax0h)
lgdnames.append('X0h data')

plt.legend([ax2,ax1],['Laser On','Laser Off'])
saveText=('Ge/Ge %03d.png' if scanNums=='all' else ('4 07 Ge %03d.png' if fitL else '3

03 Ge Raw %03d'))
if save: plt.savefig(saveDir+saveText%scan.scanNum,dpi=200)
if show: plt.show()
plt.clf()

if name ==' main ':
main()
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B.2 Darwin.py—Darwin functions for diamond and zinc-blende
structures

#!/usr/bin/python2
import FormFactor.formfactor as ff
import re,os,sys
from cmath import *
import matplotlib.pyplot as plt
from numpy import arange

# Physical Constants
PlanckH=4.135667516E�15; # eVs Planck's in eV s (NIST/hev)
c=299792458; # m/s Speed of light (NIST/c)
r0=2.8179403267E�5; # \AA Electron radius (NIST/re)

def r(xc):
if xc.real>=1:

ret=xc�sqrt(xc**2�1)
elif xc.real<=�1:

ret=xc+sqrt(xc**2�1)
else:

ret=xc�1j*sqrt(1�xc**2)
return ret

def RockingCurve(ele1,ele2,a,hkl,wavelength=None,E=None,xaxis='thetas',source='NIST',absorption=
True,normalShift=False,xwidth=5):
"""Return x and y vectors of a rocking curve:
Inputs:

ele1,ele2: ��� Element names
a: Ang Lattice spacing
hkl: ��� Miller index as three�digit integer hkl

or three�element list [h,k,l]. REQUIRED
wavelength: m Wavelength of incident beam
E: eV Energy of incident beam (overrides wavelength)
xaxis: ��� What to return as x�axis.

Options 'x','thetas','zetas','xc'.
Optional inputs follow..

absorption: ? Include absorption effects?
source: ��� Where do we get form factors?

Options 'CTs' 'NIST'
normalShift: ? Should the curve be centered?
xwidth: ��� How many g/pi zetas should we plot?

Output:
[xaxis,yaxis]"""

# Calculate unpassed parameters
[wavelength,E,Q,angle,[h,k,l]]=ff. parseParameters(a,hkl,wavelength,E)
d=wavelength*1.e10/(2*sin(angle)) if Q!=0 else 0
vc=a**3

[F0,F]=[ff.Fuc(ele1,ele2,a,hkli,wavelength,source=source) for hkli in [0,hkl]]
if not absorption: [F,F0]=[abs(F),abs(F0)]
[g0,g]=[2*d**2*r0/vc*FF for FF in [F0,F]]

x=arange(�xwidth,xwidth,.01)

zetas=[(g0/pi+xs*g/pi).real for xs in x]
thetas=[((z�g0/pi*normalShift)*tan(angle)*180000./pi).real for z in zetas]
xc=[pi*z/g�g0/g for z in zetas]
rs=[abs(r(x))**2 for x in xc]

if xaxis=='thetas':
xax=thetas

elif xaxis=='xc':
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xax=xc
elif xaxis=='zetas':

xax=zetas
elif xaxis=='x':

xax=x
else:

print 'Unrecognized x axis '+str(xaxis)+'. See help(RockingCurve) for options.'
xax=None

return [xax,rs]

def plotRockingCurve(ele1,ele2,a,hkl,wavelength=None,E=None,xaxis='thetas',source='NIST',
absorption=True,normalShift=False,xwidth=5,X0hComp=None,save=False,saveAs=None,latexOut=False
,latexOutput=None,show=False,plotTitleEnergy=False,plotBragg=False,plotTitle=None,noabsorbbg=
False):
"""Plot a rocking curve:
Inputs:

ele1,ele2: ��� Element names
a: \AA Lattice spacing
hkl: ��� Miller index as three�digit integer hkl

or three�element list [h,k,l]. REQUIRED
wavelength: m Wavelength of incident beam
E: eV Energy of incident beam (overrides wavelength)

Optional inputs follow..
xaxis: ��� What to plot as x�axis.

Options 'x','thetas','zetas','xc'.
source: ��� Where do we get form factors?

Options 'CTs' 'NIST'
absorption: ? Include absorption effects?
normalShift: ? Should the curve be centered?
xwidth: ��� How many g/pi zetas should we plot?
X0hComp: path Superimpose X0h data by including .dat path here

(requires xaxis=='thetas')
save: ? Save figure?
saveAs: path Optional figure name for saving
latexOut: ? Output data in latex form?
latexOutput: path Set to a path to output all data in latex form.
show: ? Show the graph?
plotTitleEnergy:? In plot title, include energy instead of lambda?
plotBragg: ? Plot the bragg angle?

(requires xaxis=='thetas')
plotTitle: str (optional) plot title
noabsorbbg: ? Plot no absorption in the background?

(meaningless unless absorption==True)

Output:
None"""

if xaxis!='thetas':
X0hComp=None
plotBrag=False

if absorption==False:
noabsorbbg=False

[wavelength,E,Q,angle,[h,k,l]]=ff. parseParameters(a,hkl,wavelength,E)
[thetas,rs]=RockingCurve(ele1,ele2,a,hkl,wavelength,E,xaxis,source,absorption,normalShift,

xwidth)
if noabsorbbg:

[nothetas,nors]=RockingCurve(ele1,ele2,a,hkl,wavelength,E,xaxis,source,False,normalShift,
xwidth)

if noabsorbbg:
ax4,=plt.plot(nothetas,nors,'k�')

ax1,=plt.plot(thetas,rs,'b�')
if X0hComp!=None:

ax2,=plt.plot(*getX0hData(X0hComp),linestyle='��',color='r')
if plotBragg:

d=a/sqrt(h*h+k*k+l*l)
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braggAngle=asin(wavelength/d)
ax3,=plt.plot([braggAngle]*2,[0,1],'r�')

if latexOut:
print writeLatexData(ele1,ele2,a,[h,k,l],wavelength,filename='LatexOut')

if plotTitle==None:
nowith='with' if absorption else 'no'
ele12=ele1 if ele1==ele2 else ele1+ele2
titleEnergy=r'$E$=%.2f keV'%(E/1000.) if plotTitleEnergy else r'$\lambda$=%.2f $\AA$'%(

wavelength*1e10)
plotTitle=ele12+'('+''.join([str(s) for s in [h,k,l]])+r')$\hat\sigma$, '+titleEnergy+(''

if noabsorbbg else ', '+nowith+' absorption')
plt.title(plotTitle)
plt.ylabel(r'Intensity reflectivity')
xlabel=r'$\omega$ (millidegrees)'
if xaxis=='xc':

xlabel=r'$x$'
elif xaxis=='x': # should not be plotting x

xlabel=r'Arb.'
elif xaxis=='zetas':

xlabel=r'$\zeta$'
plt.xlabel(xlabel)

if noabsorbbg or X0hComp!=None or plotBragg: # no axes if only one plot
axLegend=[[ax1],[r'Computed']]
if X0hComp!=None:

axLegend[0].append(ax2)
axLegend[1].append(r'$\chi {0,H}$')

if plotBragg:
axLegend[0].append(ax3)
axLegend[1].append(r'Bragg angle')

if noabsorbbg:
axLegend[0].append(ax4)
axLegend[1].append(r'No Absorption')

plt.legend(*axLegend)

plt.ylim([0,1.05])

saveDir='/'.join(os.path.dirname(os.path.realpath( file )).split('/')[:�3])+'/Images/'

if save:
if saveAs!=None:

plt.savefig(saveDir+saveAs,dpi=200)
else:

plt.savefig(saveDir+ele12+'('+''.join([str(s) for s in [h,k,l]])+')'+('2' if
noabsorbbg else ('1' if absorption else '0'))+'.png',dpi=200)

if show: plt.show()
plt.clf()

def extDepth(ele1,ele2,a,hkl,theta,wavelength=None,E=None,source='NIST'):
"""Returns penetration depth; theta is the relative Braggish angle in millidegrees"""
global r0

[wavelength,E,Q,angle,[h,k,l]]=ff. parseParameters(a,hkl,wavelength,E)
d=wavelength*1.e10/(2*sin(angle)) if Q!=0 else 0
vc=a**3

[F0,F]=[ff.Fuc(ele1,ele2,a,hkli,wavelength,source=source) for hkli in [0,hkl]]
[g0,g]=[2*d**2*r0/vc*FF for FF in [F0,F]]

x=(pi/(180000.*tan(angle))*theta�g0/pi)*pi/g
x=0.

eta=g*sqrt(1�x**2)
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extDepth=d.real*1e�10/(2*eta.real) # in m

return extDepth

def writeLatexData(ele1,ele2,a,hkl,wavelength=None,E=None,filename=None):
"""Describe several parameters in the form of a specific LaTeX table.
Inputs:

ele1,ele2: ��� Element names
a: \AA Lattice spacing
wavelength: m Wavelength of incident beam
type: ��� Always 'zinc blende' for now
E: eV Energy of incident beam (overrides wavelength)
hkl: ��� Miller index as three�digit integer hkl

or three�element list [h,k,l]
filename: path If specified, write to file [filename] (in working dir)

Output:
Data in specific LaTeX format, if filename=None."""

r0=2.8179403267E�5; # \AA Electron radius (NIST/re)

[wavelength,E,Q,angle,[h,k,l]]=ff. parseParameters(a,hkl,wavelength,E)
d=a/sqrt(h*h+k*k+l*l)
vc=a**3
theta=asin(wavelength*1e10/(2*d))

f00=ff.f0(ele1,0)
fp0=ff.fp(ele1,wavelength=wavelength).real
fpp0=ff.fp(ele1,wavelength=wavelength).imag
f0Q=ff.f0(ele1,Q)
fpQ=ff.fp(ele1,wavelength=wavelength).real
fppQ=ff.fp(ele1,wavelength=wavelength).imag
Fat0=ff.F(ele1,a,0,wavelength)
FatQ=ff.F(ele1,a,[h,k,l],wavelength)

ele12=ele1 if ele1==ele2 else ele1+ele2

F0=ff.Fuc(ele1,ele2,a,0,wavelength)
F=ff.Fuc(ele1,ele2,a,[h,k,l],wavelength)
g0=2*d**2*r0/vc*F0
g=2*d**2*r0/vc*F
zeta0=g0/pi
x0=pi*zeta0/g
theta0=(zeta0*tan(theta)*180000./pi).real
rr0=r(x0)

text=r"""\begin{table}[htpb]\centering
\begin{tabular}{|*{6}{>{\centering\arraybackslash}m{2.1cm}|}}

\hline
%(hkl)s & $\lambda$=%(wavelength).2f \AA & $E=$%(E).2f keV & $d=$%(d).2f \AA & $v c$=%(vc

).1f \AA$ˆ3$ & $\theta$=%(theta).2f$\deg$\\ \hline
$fˆ0( 0)$=%(f00).2f & $f'( 0)=$%(fp0).2f & $f''( 0)=$%(fpp0).2f & $fˆ0( Q)=$%(f0Q).2f &

$f'( Q)=$%(fpQ).2f & $f''( Q)=$%(fppQ).2f \\ \hline
\multicolumn{2}{|c |}{$F {\mbox{\small at}}( 0)$=%(Fat0)s} & $\abs{F {\mbox{\tiny at}}( 0)

}$=%(Fat0a).1f & $\abs{F {\mbox{\tiny at}}( Q)}$=%(FatQa).1f & \multicolumn{2}{c |}{
$F {\mbox{\small at}}( Q)$=%(FatQ)s} \\ \hline

\multicolumn{2}{|c |}{$F 0$=%(F0)s} & $\abs{F 0}$=%(F0a).1f & $\abs{F( Q)}$=%(FQa).1f & \
multicolumn{2}{c |}{$F( Q)$=%(FQ)s} \\ \hline

\multicolumn{2}{|c |}{$g 0$=%(g0)s} & $\abs{g 0}$=%(g0a).6f & $\abs g$=%(ga).6f & \
multicolumn{2}{c |}{$g$=%(g)s} \\ \hline

\multicolumn{2}{|c |}{$\zeta 0$=%(z0)s \AA} & \multicolumn{2}{c |}{$x 0$=%(x0).2f} & \
multicolumn{2}{c |}{$\theta 0$=%(theta0).2f m$\deg$} \\ \hline

\multicolumn{3}{|c |}{$r 0=$%(rr0)s} & \multicolumn{3}{c |}{$\abs{r 0}ˆ2$=%(rr0a2).3f} \\ \
hline

\end{tabular}
\caption{ %(caption)s }
\label{tbl:%(label)s}

\end{table}"""%{'hkl':''.join([str(s) for s in [h,k,l]]),'wavelength':wavelength*1e10,
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'E':E/1000.,'d':d.real,'vc':vc,'theta':theta.real*180./pi,
'f00':f00.real,'fp0':fp0,'fpp0':fpp0,'f0Q':f0Q.real,'fpQ':fpQ,'fppQ':fppQ,
'Fat0':writeRI(Fat0),'Fat0a':abs(Fat0),'FatQa':abs(FatQ),'FatQ':writeRI(FatQ),
'F0':writeRI(F0),'F0a':abs(F0),'FQa':abs(F),'FQ':writeRI(F),
'g0':writeRI(g0,'6'),'g0a':abs(g0),'ga':abs(g),'g':writeRI(g,'6'),
'z0':writeRI(zeta0,'6'),'x0':x0.real,'theta0':theta0.real,
'rr0':writeRI(rr0),'rr0a2':abs(rr0)**2,
'caption':ele12+'('+''.join([str(s) for s in [h,k,l]])+r')$\ha\sigma$ data.',
'label':ele12+'data'}

if filename!=None:
with open(filename+'.txt','wa') as lf:

lf.write(text)
else:

return text

def writeRI(comp,prec='2'):
"""Return formatted string of complex float"""
return ("%."+prec+"f%+."+prec+"fi")%(comp.real,comp.imag)

def getX0hData(filename,plot=False):
ledata=[]
X0hPath=os.path.normpath(os.path.join(os.getcwd(),'../Data/X0h'))+'/'
with open(X0hPath+filename+'.dat','r') as data:

for line in data:
ledata.append([float(s) for s in re.split('\s+',line)[1:3]])

ledata=list(zip(*ledata))
ledata[0]=[dat/3.6 for dat in ledata[0]]
if plot:

ax,=plt.plot(*zip(*ledata))
plt.grid()
plt.yscale('log')
plt.show()

return ledata
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B.3 formfactor.py—Form factor module

#!/usr/bin/python2

import re,os,sys,json
import matplotlib as mpl
import matplotlib.pyplot as plt
from time import time
from numpy import arange,matrix,linalg
from cmath import *
from scipy import interpolate

# Define physical constants
PlanckH=4.135667516E�15; # eVs Planck's in eV s (NIST/hev)
c=299792458; # m/s Speed of light (NIST/c)
r0=2.8179403267E�5; # \AA Electron radius (NIST/re)

# import Crystallographic Table data (form factors and correction coefficients):
dataPath=os.path.normpath(os.path.join(os.getcwd(),'../Data/coefs/'))+'/'
with open(dataPath+'CTs/scatcoef.json','r') as f:

scatcoef=json.loads(f.read())
with open(dataPath+'CTs/corrfax.json','r') as f:

corrfax=json.loads(f.read())
with open(dataPath+'NIST/factors.json','r') as f:

NISTfax=json.loads(f.read())
NISTintrp={}

def init(eles):
"""Initialize interpolation(s) for element for faster processing."""
global NISTintrp
for ele in eles:

NISTintrp[ele]= \
[interpolate.interp1d(NISTfax[ele]['E'],NISTfax[ele]['f1'],'linear'),
interpolate.interp1d(NISTfax[ele]['E'],NISTfax[ele]['f2'],'linear')]

def getInterpPoints(source='NIST',ele=None):
if source=='NIST':

return NISTfax[ele]['E']
elif source=='CTs':

return [q*1.e�10 for q in [2.74851,2.28962,1.93597,1.788965,1.54052,
0.70926,0.55936,0.215947,0.20901,0.180195]]

def f0(ele,Q):
"""Atomic form factor without absorption or reductions. Uses CTs.
Inputs:

ele: ��� Element name
Q: 1/m Magnitude of difference vector

Output:
The atomic form factor of the given element at the given index or angle

* Returns 0 on error."""

ele = ele=='Si' and 'Siv' or ele # Based on Crystallographic Tables
return sum([scatcoef[ele][2*i]*exp(�scatcoef[ele][2*i+1]*(Q/(4*pi))**2) for i in range(4)])+

scatcoef[ele][8]

def fp(ele,E=None,wavelength=None,source='NIST'):
"""Return constant reduction factors:
Inputs:

ele: ��� Element name
wavelength: m Wavelength of incident ray �or�
E: eV Energy of incident ray
source: ��� Source, 'CTs' or 'NIST'*

*Note that the NIST f' is actually f'+Z!
Outputs:

f'�if'': Correction factor to atomic form factor,
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taken from Crystallographic Tables."""
PlanckH=4.135667516E�15; # eVs Planck's in eV s (NIST/hev)
c=299792458; # m/s Speed of light (NIST/c)

if source=='CTs':
if E!=None:

wavelength=PlanckH*c/E
#print wavelength
wavelengths=[a*1e�10 for a in [2.74851,2.28962,1.93597,1.788965,1.54052,

0.70926,0.55936,0.215947,0.20901,0.180195]]
intrp=[interpolate.interp1d(wavelengths[::�1],corrfax[ele][0][::�1]),

interpolate.interp1d(wavelengths[::�1],corrfax[ele][1][::�1])]
return intrp[0](wavelength)�1j*intrp[1](wavelength)

elif source=='NIST':
if E==None:

E=PlanckH*c/wavelength
energies=NISTfax[ele]['E']
return NISTintrp[ele][0](E/1000.)�f0(ele,0)� \

1j*NISTintrp[ele][1](E/1000.)
else:

print 'Unrecognized source '+source+' in F.'
return

def F(ele,a,hkl,wavelength=None,E=None,source='NIST'):
"""Total atomic form factor.
Inputs:

ele: ��� Element name
a: \AA Lattice parameter
wavelength: m Wavelength of incident xray
hkl: Miller index as three�digit integer hkl

or three�element list [h,k,l]
E: eV Energy (overrides wavelength)
source: ��� Do we get f,f',f'' from NIST or CTs?"""

[wavelength,E,Q,angle,[h,k,l]]= parseParameters(a,hkl,wavelength,E)

return f0(ele,Q)+fp(ele,E,wavelength,source)

def Fuc(ele1,ele2,a,hkl,wavelength=None,E=None,source='NIST'):
"""Unit cell form factor.
Inputs:

ele1: ��� First element name
ele2: ��� Second element name
a: \AA Lattice parameter
wavelength: m Wavelength of incident xray
hkl: Miller index as three�digit integer hkl

or three�element list [h,k,l]
E: eV Energy (overrides wavelength)

Output:
The unit cell form factor of the given element at the given index or angle"""

[wavelength,E,Q,angle,[h,k,l]]= parseParameters(a,hkl,wavelength,E)

# The conjugate of everything EXCEPT fs are taken:
[fa,fb]=[F(ele,a,hkl,wavelength,source=source) for ele in [ele1,ele2]]
latticeSum=(1+exp(1j*pi*(h+k))+exp(1j*pi*(k+l))+exp(1j*pi*(h+l)))
fafb=fa+fb*exp(1j*pi/2.*(h+k+l))
fafbhalfconj=fa+fb*exp(�1j*pi/2.*(h+k+l))
return sqrt(fafb*fafbhalfconj)*latticeSum

def rFuc(ele1,ele2,a,hkl,wavelength=None,E=None,source='NIST'):
"""Same as Fuc, without the funky step���used to calculate extinction depth as Als�Nielsen

does."""

[wavelength,E,Q,angle,[h,k,l]]= parseParameters(a,hkl,wavelength,E)

[fa,fb]=[F(ele,a,hkl,wavelength,source=source) for ele in [ele1,ele2]]
latticeSum=(1+exp(1j*pi*(h+k))+exp(1j*pi*(k+l))+exp(1j*pi*(h+l)))
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return (fa+fb*exp(1j*pi/2.*(h+k+l)))*latticeSum

def printOutfpfpp(eles):
"""To be exported into LaTeX."""

global scatcoef,corrfax
print '\t'+('\t%.3f'*10)%tuple( \

[2.74851,2.28962,1.93597,1.788965,1.54052,
0.70926,0.55936,0.215947,0.20901,0.180195])

for ele in eles:
print ele+"\tf'"+('\t%.3f'*10)%tuple(corrfax[ele][0])+'\n'+ \

"\tf''"+('\t%.3f'*10)%tuple(corrfax[ele][1])

print '\n'*3
for ele in eles:

ele = ele=='Si' and 'Siv' or ele # Based on Crystallographic Tables
print '\t'.join([ele]+[str(j) for j in scatcoef[ele]])

def printOutNISTfpfpp(eles,indepVar='Energy'):
"""Same as above, for NIST data."""

Es=[.01069,.8739896,6.915365,22.98,39.19543,51.18542,139.2553,181.8539,271.3869,405.0001]
wls=[PlanckH*c/E for E in Es]
table={'Es':Es,'wls':wls}
for ele in eles:

fpEs=[[float(q.real),float(q.imag)] for q in [fp(ele,E=E*1000,source='NIST') for E in Es
]]

table[ele]=zip(*fpEs)
tableText=r"""

\begin{table}[htbp]
\begin{center}
\begin{tabular}{|l |l |r |r |r |r |r |r |r |r |r |r | }
\hline
\multicolumn{ 12}{|c |}{Selected NIST Forward�Scattering Dispersion Corrections to Form Factors}

\\ \hline\multicolumn{2}{|c |}{"""+(r"$E$ (keV)" if indepVar=='Energy' else r"$\lambda$ (\AA)"
)+'} '+('& {:.2f} '*len(Es)).format(*(table['Es'] if indepVar=='Energy' else table['wls']))+r
""" \\ \hline"""
for ele in eles:

tableText+=r"""
\multirow{2}{*}{"""+ele+"""} & f' """+('& {:.3f} '*10).format(*table[ele][0])+r""" \\ \cline

{2�12}
& f'' """+('& {:.3f} '*10).format(*table[ele][1])+r""" \\ \hline"""

tableText+=r"""
\end{tabular}
\end{center}
\caption{Dispersion corrections for forward scattering, provided by NIST.\cite{NISTcff} Data is

more abundant than the Crystallographic Tables near the band edges, making this the optimal
data source for our calculations. Note that NIST provides $f'+fˆ0$ and $f''$, and the atomic
form factor $fˆ0$ was subtracted from the latter in compiling this table.}

\label{tbl:NISTcff}
\end{table}"""

print tableText

def parseParameters(a,hkl,wavelength=None,E=None):
"""Calculates wavelength from energy, angle from Miller index, returns them all.
Inputs:

a: \AA Lattice parameter
wavelength: m Wavelength of incident xray
hkl: Miller index as three�digit integer hkl

or three�element list [h,k,l]
E: eV Energy (overrides wavelength)

Output:
As a single list, [wavelength,E,Q,angle,[h,k,l]]."""

PlanckH=4.135667516E�15; # eVs Planck's in eV s (NIST/hev)
c=299792458; # m/s Speed of light (NIST/c)
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if E!=None: # Override wavelength
wavelength=PlanckH*c/E

elif wavelength!=None:
E=PlanckH*c/wavelength

else:
print 'parseParameters received neither wavelength nor energy.'
return

if isinstance(hkl,list): # [h,k,l]
[h,k,l]=hkl

else:
[h,k,l]=[int(q) for q in '%03d'%hkl]

if h==k and k==l and l==0:
Q=0

else:
d=a/sqrt(h*h+k*k+l*l)
Q=2*pi/d
#print 'pp',d.real,a

angle=asin(Q*wavelength*1.e10/(4*pi))

return [wavelength.real,E.real,Q.real,angle.real,[h,k,l]]
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B.4 Spec.py—Module for parsing data from spec files, with heavy
contributions from Appendix A.7

#!/usr/bin/python2

import re,os,sys
import matplotlib as mpl
import matplotlib.pyplot as plt

class Scan():
"""Scan class: represents a single scan.

Argument 'data' is a dictionary of both scalars (like T) and lists (like 'Cbon')"""

def init (self,scanNum,scanTime,data):
self.scanNum=scanNum
self.scanTime=scanTime
self.data=data

def printValues(what):
"""Prints to stdout the values of Scan[argument]"""
if not what in self.data:

print 'No such argument. Arguments include: %s.'%', '.join([s for s in self.data])
return

for s in self.data:
print '%s: '%s,self.data[s];

for i in range(10):
print ''

class Spec:
"""Spec class: Represents all of the data in a single spec file as a list of Scans."""
specPath=os.path.normpath(os.path.join(os.getcwd(),'../../Data/Spec/'))+'/'

def init (self,filename,scannums,filedir=specPath):
self.filename=filename
self.scannums=scannums
self.filedir=filedir
self.scans=[]
self.availScans=[] # Array of available scans in spec file
self.readSpecFile()

def readSpecFile(self):
# Open data and scan in only what we need to conserve memory

with open(''.join([self.filedir,self.filename]),'rb') as f:
x=1
unwantedScan=True
scanNumbers=[] # The scans we pick up, in order
scanTimes=[]
data=[]
currentScan=�1
for line in f:

#print 'We are on line',x
if line[0]=='#' or line[0]=='%': # Something we can process

if line[1]=='S': # We've hit a new scan
tmpScanNum=int(re.search(r'\s(\d+)\s',line).group(1))
self.availScans.append(tmpScanNum)
#print 'Found scan #%d.'%tmpScanNum
if tmpScanNum in self.scannums:

#print 'Found wanted scan',tmpScanNum
unwantedScan=False
currentScan+=1
scanNumbers.append(tmpScanNum)

else:
unwantedScan=True
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elif unwantedScan:
pass # Do nothing

elif line[1]=='D':
#print 'Found date!'
pass

elif line[1]=='T':
tmpTime=float(re.search(r'\s([\d.�]+)\s',line).group(1))
#print 'This scan has time',tmpTime
scanTimes.append(tmpTime)

elif line[1]=='L':
#print 'Found values: ',re.findall('\s(\w+)\s',line[2:])
data.append([])
data[currentScan].append(re.findall('\s(\w+)\s',line[2:]))

elif not line in ('\n','\r\n') and not unwantedScan:
#print re.split('\s+',line.strip())
data[currentScan].append([float(s) for s in re.split('\s+',line.strip())])

else:
# print 'line',x,'is empty!'
pass

x+=1

# Error checking
if len(scanNumbers) != len(self.scannums):

for j in self.scannums:
if not j in scanNumbers:

print 'Alert: did not find scan #%d!'%j

realLen=len(data)
if len(scanTimes)!=realLen:

print 'Alert: Scan time missed!'
if len(scanNumbers)!=realLen:

print 'Alert: Scan numbers do not match!'

# Makes Scan objects out of data
for j in range(len(data)):

data[j]=zip(*data[j]) # Simply transpose data matrix of jth scan
q=dict()
for i in range(len(data[j])): # Assign to each column its list of values

q[str(data[j][i][0])]=data[j][i][1:]
self.scans.append(Scan(scanNumbers[j],scanTimes[j],q))
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B.5 MDA.py—Module for parsing MDA data

#!/usr/bin/python2

import re,os,sys,time
import matplotlib.pyplot as plt
from cmath import *
from string import strip
from numpy import arange
from scipy import interpolate,optimize
from FormFactor.formfactor import parseParameters as pp
import Darwin.Darwin as dwn

class Scan():
"""Scan class: Represents single imported MDA scan"""

def init (self,scanNum,scanTime,Y,data):
self.scanNum=scanNum
self.scanTime=scanTime
self.Y=Y
self.data=data
self.data['counts1']=self.data['S16']
self.data['counts2']=self.data['S15']
self.dtheta=self.normalizeCurvesLorentz('7cart:m3.VAL','S16','S15')

def normalizeCurvesLorentz(self,x,y1,y2):
"""Normalize the position (not width) of both curves
according to a Lorentzian fit to y1. Scales self.data[x].
Returns distance between centroids in units of x.
Inputs:

x: independent variable, common to y1 and y2
y1: guiding (more constant) dependent variable
y2: other dependent variable

Outputs:
d: Distance between centroids in units of x"""

[sx,sy1,sy2]=[self.data[x],self.data[y1],self.data[y2]]
[hwhm,x0,h]=self.fitLorentzian(sx,sy1)[0]
self.data[x+'raw']=self.data[x] # preserve raw data
self.data[x]=[xx�x0 for xx in sx]
#self.data[y1]=[yy/h for yy in sy1]
#self.data[y2]=[yy/h for yy in sy2]
[hwhm,x0,h]=self.fitLorentzian(self.data[x],self.data[y2])[0]
return �x0*1000

def fitLorentzian(self,x,y):
"""Fits curve on, returns Lorentzian fit factors.
Inputs:

x,y: Independent and dependent variable.
Outputs:

p: List of fit params HWHM, x�displacement, peak height."""
return optimize.leastsq(self. errorL,self. estimates(x,y),args=(x,y))

def Lorentzian(self,p,x):
"""Returns a Lorentzian based on parameters p
and independent variable x.
Inputs:

p: HWHM, x�displacement, peak height
x: independent variable

Outputs:
Calculated lorentzian (used for leastsq fit)"""

[hwhm,x0,h]=p
return h*hwhm**2/((x�x0)**2+hwhm**2)

def finddd2(self,x,y1,y2,E,a,hkl):
"""Same as finddd, but we assume y1 at the Bragg angle and offset y2. This accounts for
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small fluctuations in crystal position"""
[hwhm2,x02,h2]=self.fitLorentzian(self.data[x],self.data[y2])[0]
[wavelength,E,Q,angle,[h,k,l]]=pp(a,hkl,E=1000.*E)
d=a/sqrt(h*h+k*k+l*l)
x02=x02*pi/180.+angle
d2=wavelength*1.e10/(2*sin(x02)) # Ang
self.d,self.dd=[d2.real,((d2�d)/d).real]

def finddd(self,x,y1,y2,E):
PlanckH=4.135667516E�15; # eVs Planck's in eV s (NIST/hev)
c=299792458; # m/s Speed of light (NIST/c)
wavelength=PlanckH*c/(1000*E) # don't forget E was in keV
"""Run this before normalizing���takes absolute thetas, then subtracts d."""
[hwhm1,x01,h1]=self.fitLorentzian(self.data[x],self.data[y1])[0] # find th1
[hwhm2,x02,h2]=self.fitLorentzian(self.data[x],self.data[y2])[0]
[x01,x02]=[q*pi/180. for q in [x01,x02]]
d1=(wavelength*1.e10/(2*sin(x01))).real
d2=(wavelength*1.e10/(2*sin(x02))).real

[wavelength,E,Q,angle,[h,k,l]]=pp(5.6578,400,E=self.Y)
d=5.6578/sqrt(h*h+k*k+l*l)
return (d2�d1)/d1

def findd(self,a,hkl,E):
[wavelength,E,Q,angle,[h,k,l]]=pp(a,hkl,E=self.Y)
d=a/sqrt(h*h+k*k+l*l)
theta0=asin(wavelength*1.e10/(2*d))*180000./pi # mdeg
thetanew=(theta0�self.dtheta)*pi/180000. # rad
return d�wavelength*1.e10/(2*sin(thetanew)) # Ang

def errorL(self,p,x,y):
return y�self.Lorentzian(p,x)

def estimates(self,x,y):
"""Estimates the Lorentzian parameters of dataset (x,y).
Inputs:

x: xaxis list
y: yaxis list

Outputs:
p: HWHM, x�displacement, peak height"""

# Rough but effective
hwhm=.0005

# For x0, just find the middle x
x0=x[len(x)/2]
return [hwhm,x0,max(y)]

def normalizeCurvesDarwin(self,x,y1,y2):
[sx,sy1,sy2]=[self.data[x],self.data[y1],self.data[y2]]
[scaley,ashift]=self.fitLorentzian(sx,sy1)[0]
self.data[x]=[xx�ashift for xx in sx]
self.data[y1]=[yy/scaley for yy in sy1]
self.data[y2]=[yy/scaley for yy in sy2]
[scaley,ashift]=self.fitDarwinCurve(self.data[x],self.data[y2])[0]
return �ashift*1000

class MDA():
"""MDA class: Represents all imported data in a single MDA file as a list of scans."""

def init (self,filename,scannums,scanvars,filedir='../../Data/MDA/',darwinParams=None,
darwinDyn=['Y','E']):
self.filename=filedir+filename
self.scannums=scannums
self.scanvars=scanvars
self.scans=[] # list of Scan objects, to be populated
self.availScans=[] # available scan numbers
self.darwinParams=darwinParams
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self.darwinDyn=darwinDyn
self.readMDAFile(scannums,scanvars)

def readMDAFile(self,scannums,scanvars):
with open(self.filename,'r') as f:

currentScan=�1
x=0
nowon='header'
columnTime=False # '# Column Descriptions:' tag not unique
for line in f:

x=x+1
if nowon!='scan' and line[0]!='#':

continue
if currentScan==�1 and not 'Scan Divider' in line:

continue # skip file header information
if 'Scan Divider' in line:

currentScan+=1
nowon='header'
columns=[]
data=[]
wantedColumns=[]
wantedScan=False
continue

elif 'Column Descriptions:' in line:
if not columnTime:

columnTime=True
else:

columnTime=False
nowon='column'
continue

elif '1�D Scan Values' in line:
nowon='scan'
continue

if nowon=='header':
if '# Current point =' in line:

scanNum=int(re.search('=\s+(\d+)\s*of\s*\d*\s*$',line).group(1))
self.availScans.append(scanNum)
if scannums=='all' or scanNum in scannums:

wantedScan=True
if '# Scan time =' in line:

scanTime=re.search('= (.*)$',line).group(1)
elif '# 2�D Scan Values:' in line:

y=float(re.search(':\s*(\S+).*$',line).group(1))
elif nowon=='column' and wantedScan==True:

m=re.search('#\s+(\d+)\s*\[\s*(.+)\s*\]\s*(.*)$',line)
for ss in scanvars:

if scanvars=='all' or ss in m.group(3): # We want this column
columns.append(m.groups())
wantedColumns.append([int(m.group(1)),ss])

elif nowon=='scan' and wantedScan==True:
if line[0]=='#':

continue
elif line[0]=='\n': # Scan finished

data=zip(*data) # swap rows/columns
ledata={}
for column in wantedColumns:

ledata[column[1]]=data[column[0]�1]
self.scans.append(Scan(scanNum,scanTime,y,ledata))

else:
data.append([float(q) for q in re.split('\s*',strip(line))])
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B.6 Gatherer.py—Scrapes Crystallographic Tables and NIST fac-
tor data into JSON [2014]

#!/usr/bin/python
import urllib2,re,string,sys,os,json
from time import sleep
from bs4 import BeautifulSoup as bs

# This file gathers coefficient data and outputs them to the proper folders with the proper
formats.

# Data parsed by this file includes:
# Crystallographic Tables data for f', f'': from CTs/CT Tables/ to CTs/
# NIST form factor data for f', f'': from the NIST websites to NIST/

def load scatcoef(eles='all'):
"""This function goes through Table 6.1.1.1 of the Crystallographic Tables to find selected
mean atomic scattering factors.
Input: eles List of elements for which to load data

All elements loaded if left empty
Output: {elementName: [a 1 b 1 a 2 b 2 a 3 b 3 a 4 b 4 c]}"""
url='../6 1 1 4 data.html' # HTML stripped of all but this table
returndata={}
with open(url,'r') as data:

s=data.read().replace("&#8722;",'�')
s=bs(s).table.find all('table')[2].tbody.find all('tr')
for elem in s:

ele=re.sub(r'[ˆA�Za�z0�9\+�]','',elem.td.getText())
# getText() concatenates all child strings
#print ele
if eles=='all' or ele in eles:

returndata[ele]=[float(r.span.string) for r in elem.find all('td')[2:11]]
return returndata

def load corrfax(eles='all'):
"""This function goes through Table 4.2.6.8 of the Crystallographic Tables to find selected
correction factors for forward scattering f' and f''.
Input: eles List of elements for which to load data

All elements loaded if left empty
Output: {elementName: [[f'],[f'']],...}"""
url='../4 2 6 8 data.html' # HTML stripped of all but this table
returndata={}
with open(url,'r') as data:

s=data.read().replace("&#8722;","�")
s=bs(s).table.find all('table')[2].tbody.find all('tr')
for i in range(len(s)/2):

ele=s[2*i].td.span.string.strip() # Element name
if eles=='all' or ele in eles:

q1=[float(r.span.string) for r in s[2*i].find all('td')[2:]] # f'
q2=[float(r.span.string) for r in s[2*i+1].find all('td')[1:]] # f''
returndata[ele]=[q1,q2]

return returndata

def createCTJSON(eles='all'):
"""This function creates a file with JSON dump of selected elements.
Input: eles List of elements for which to load data

All elements loaded if left empty
Output: None"""
# Modified for matlab use (no native JSON)
corrfax=load corrfax(eles)
scatcoef=load scatcoef(eles)

with open('CTs/corrfax.txt','w') as f: # For matlab
for s in corrfax:

f.write('\t'.join([s,' '.join([str(q) for q in corrfax[s][0]]),
' '.join([str(q) for q in corrfax[s][1]])])+'\n')
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# Each line has 21 values: [elementName]\t10*[f's ] 10*[f''s ]
with open('CTs/scatcoef.txt','w') as f: # For matlab

for s in scatcoef:
f.write('\t'.join([s,' '.join([str(q) for q in scatcoef[s]])])+'\n')
# Each line has 10 elements [ele]\t[a1 b1 a2 b2 a3 b3 a4 b4 c]

with open('CTs/corrfax.json','w') as f:
json.dump(corrfax,f)

with open('CTs/scatcoef.json','w') as f:
json.dump(scatcoef,f)

def convertNISTDB(Z):
"""Convert NIST formfactor data from
http://physics.nist.gov/cgi�bin/ffast/ffast.pl?Z=[ZVALUE]&gtype=4
Using http://physics.nist.gov/PhysRefData/FFast/Text2000/sec02.html#eq04 and
http://physics.nist.gov/PhysRefData/FFast/Text2000/sec08.html into JSON format"""

url="http://physics.nist.gov/cgi�bin/ffast/ffast.pl?Z=%s&gtype=4"%str(Z)
site=bs(urllib2.urlopen(url).read())
eleName=re.match('\s*(\w+)',site.dl.b.contents[0]).group(1)
print 'Parsing '+eleName+'..'
text=''.join([q for q in site.dl.get text() if ord(q)<128]) # strip non�unicode

m=re.search((r'\s*(?P<ele>\S+)\s*\(Z.*Relativistic correction estimate[ˆ\n]+,'
r'\s*(?P<frel>\S+)\s*e.*Nuclear Thomson correction[ˆ\n]+='
r'\s*(?P<fNT>\S+)\s*e'),text,re.DOTALL)

ele=m.group('ele')
frel=float(m.group('frel'))
fNT=float(m.group('fNT'))

rawData=[]
for line in site.find all('pre')[�1].contents[50].split('\n')[1:�1]:

rawData.append([float(q) for q in re.split('\s+',line)])
rawData=zip(*rawData)[:3]

return [eleName,fNT,frel,rawData[0],rawData[1],rawData[2]];

def createLocalArchiveNIST():
"""Convert data to JSON for easier parsing."""
allEles={}
for Z in range(1,93):

sleep(2)
[ele,fNT,frel,E,f1,f2]=convertNISTDB(Z)
allEles[ele]={'fNT':fNT,'frel':frel,'Z':Z,

'E':E,'f1':f1,'f2':f2}
with open('NIST/factors.json','w') as f:

json.dump(allEles,f)

createLocalArchiveNIST()
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Appendix C

Data

C.1 Sample MDA Data

# ****************************** Scan Divider ******************************

# 2�D Scan Point
# Current point = 1 of 251
# Scanner = 7idd:scan2
# Scan time = Feb 05, 2006 16:32:14.596798416

# Column Descriptions:
# 1 [2�D Positioner 1] 7id:HHLM:energy set, , LINEAR, keV, 7id:HHLM:energy get.VAL, , keV

# 2�D Scan Values: 11.5000007

# 1�D Scan
# Points completed = 21 of 21
# Scanner = 7idd:scan1
# Scan time = Feb 05, 2006 16:32:24.730131344

# Positioner: name, descr, step mode, unit, rdbk name, rdbk descr, rdbk unit
# Detector: name, descr, unit

# Column Descriptions:
# 1 [ Index ]
# 2 [1�D Positioner 1] 7cart:m3.VAL, , LINEAR, deg, 7cart:m3.RBV, Huber Theta, deg
# 3 [1�D Detector 16] 7idd:scaler1.S1, ,
# 4 [1�D Detector 17] 7idd:scaler1.S2, ,

[...]

# 47 [1�D Detector 60] 7idd:scaler1.S16, ,
# 48 [1�D Detector 61] 7idd:scaler1.S11, ,
# 49 [1�D Detector 62] 7idd:scaler1.S13, ,
# 50 [1�D Detector 63] 7idd:scaler1.S14, ,
# 51 [1�D Detector 64] 7idd:scaler1.S15, ,

# 1�D Scan Values
# 1 2 3 4 5 6 7 8 9 10 11 12 13 14
# 15 16 17 18 19 20 21 22
# 23 24 25 26 27 28 29 30 31
# 32 33 34 35 36 37 38 39 40 41
# 42 43 44 45 46 47 48 49 50 51

1 22.1402988 10000000 23416 0 956 0 0 37 29913 2400 70750 29.4791660 0.636758983
0.636758983 2.5333333 3.8006001e�06 1.428571463 0.219593495 102.219688 24.8647499 11.55019
�75.4308472 0.462000579 �6.71698856 0.156793401 11.5 7.52733660 1.81200886 447.064728
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�950.166992 2.53820633e+11 �0.974999964 89.6338959 22.1402988 46.3866997 314.5 3.3499999
0 0 13.4931192 13.1827192 �381.25 �1000 0 �10 7 0 0 30649 10

2 22.1415997 10000000 23385 0 942 0 0 68 37174 2314 75274 32.5298195 0.637369335
0.637369335 2.5333333 3.8006001e�06 2.857142925 0.219837397 102.179123 24.8647499
11.55019 �75.4306488 0.462127775 �6.72246408 0.156813204 11.5 7.52849245 1.81628132
447.803070 �949.402100 2.53484597e+11 �0.974999964 89.6338959 22.1415997 46.3866997
314.5 3.3499999 0 0 13.4931192 13.1827192 �381.25 �1000 0 �10 7 0 0 38257 20
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