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Abstract

This research presents an innovative approach to improving visual-spatial at-
tention using a research tool based on the web. Recognizing the significant role
visual-spatial attention plays in everyday life and cognitive function for humans,
this research was undertaken with the aim of developing a user-friendly, acces-
sible web-based tool called Attention Visual (attentionvisual.com) to enhance
this crucial cognitive skill. This tool also facilitates data collection, potentially
accelerating the pace and enhancing the quality of related research.

Both qualitative and quantitative methods were utilized for data collection
and analysis. In order to stimulate improvements in visual-spatial attention,
the tool’s algorithm was structured to adjust task difficulty according to the
user’s performance; heightened performance would yield more challenging tasks,
whereas lower performance would result in easier tasks, fostering an adaptive
and progressive learning environment.

The main hypothesis that underlies this research was that regular use of this
tool could result in measurable enhancements in visual-spatial attention. This
has potential benefits for various population groups, from athletes to individuals
with certain cognitive conditions.

The results of the research validate this hypothesis, demonstrating the ef-
fectiveness of the web-based tool in enhancing visual-spatial attention and in-
dicating that the design elements of the tool have a positive impact on user
performance. The research additionally highlighted a wide range of participant
diversity, thanks to the online nature of the tool, enhancing the robustness and
generalizability of the data collected.

These findings contribute significantly to the fields of cognitive science, neu-
roplasticity, and digital tool development, offering valuable insights for future
research. They demonstrate the effectiveness of web-based tools in cognitive
science research and suggest potential avenues for future investigation, such as
exploring other aspects of visual cognition or the application of such tools in
practical settings like cognitive therapy and rehabilitation.

http://attentionvisual.com
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Chapter 1

Introduction

1.1 Overview of the research problem and its
significance

Accessibility and ease of data collection are significant obstacles in scientific re-
search. Especially in the field of cognitive studies, access to a broad participant
base is vital for enhancing the validity and generalizability of the research find-
ings. This research project aims to address these challenges by creating an ac-
cessible, web-based application, namely Attention Visual (attentionvisual.com),
designed to facilitate data collection from diverse global participants. This ap-
proach not only promises to make cognitive research more inclusive but also
aims to enhance the amount and diversity of data that researchers can gather.

The pertinence of this goal has been highlighted during the COVID-19 pan-
demic, which has necessitated a shift toward remote operations in many sectors,
including research. Thus, harnessing the power of the digital world for research
purposes is a crucial step forward.

Our main research problem focuses on understanding and enhancing visual-
spatial attention through a gamified approach. Visual-spatial attention, a cog-
nitive ability critical for many daily tasks, can be improved through targeted
exercises. However, traditional methods of conducting such exercises have been
constrained by physical logistics, access to resources, and participant engage-
ment. Our web application aims to alleviate these issues by providing an en-
gaging, accessible platform that allows users to practice these exercises from the
comfort of their homes.

Furthermore, the application aims to analyze the users’ performance imme-
diately, providing real-time data that can be used to understand their progress
and areas of improvement. The use of such an application holds promise not
only for individual users looking to improve their visual-spatial attention but
also for researchers looking to gather large-scale data about human cognition.

In the long run, the successful implementation of this tool will pave the
way for more comprehensive and inclusive research. By enabling researchers to
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collect more data and access wider participant demographics, we can enhance
our understanding of human cognition and develop better cognitive training
tools. Moreover, the learnings from this project could be applied to create
similar tools for other domains, thus accelerating the pace and improving the
quality of scientific research.

1.1.1 Research Questions and Hypotheses

Our research is guided by several key questions:

1. Can a web-based application effectively be used to enhance visual-spatial
attention?

2. Will increased accessibility and participant diversity improve the quality
and validity of research data in the field of visual cognition?

3. How does the use of animations, color choices, and shapes in the applica-
tion interface affect user engagement and performance?

4. What is the overall user experience and feedback regarding the use of a
web-based tool for this kind of research?

Based on these questions, formulated the following hypotheses:

1. A web-based application, with its wider reach and ease of use, can serve
as an effective tool for enhancing visual-spatial attention.

2. Increased participant diversity, achieved through the online nature of the
application, will provide more generalizable and robust data, thereby im-
proving the quality of research in visual cognition.

3. Thoughtful application design choices, such as the use of specific anima-
tions, colors, and shapes, can positively influence user engagement and
performance.

4. Given the current trend towards digital solutions, the web-based research
tool in this research received positive feedback from users globally. It’s
accessibility and online nature allowed it to reach people worldwide, lead-
ing to more diverse and varied data. This endorses the use of such digital
tools for research into visual cognition and supports their role in future
studies.

1.2 Methodology Summary

The methodology for this research project is designed to combine quantitative
and qualitative approaches to analyze the potential for improving visual spatial
attention through an accessible, real-time application.
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The first phase involves the development of the application itself. Given
the purpose of the application, a user-centered design approach is adopted,
ensuring the application is intuitive and engaging for users. The design choices
are informed by established principles of visual attention and neuroplasticity,
and the application features a variety of tasks intended to stimulate and measure
visual spatial attention.

The second phase of the research involves deploying the application to a
diverse set of users across the globe. This step allows us to collect both primary
and secondary data. Primary data collection is achieved through in-app metrics
that record user interaction with the tasks, measuring their visual spatial atten-
tion over time. Secondary data is collected through user feedback and surveys
which provide qualitative insights into the user experience.

The final phase involves the analysis of the collected data. Quantitative
data is subjected to statistical analysis to identify trends and correlations. The
software tools used for this purpose allow for a thorough investigation of the
relationships between the recorded metrics. The qualitative data is analyzed
through thematic analysis to identify recurring themes and sentiments in user
feedback.

Throughout all phases of the research, ethical considerations are taken into
account. The project respects user privacy and confidentiality, and informed
consent is obtained for data collection and analysis. Data handling and storage
practices are designed to minimize risk and uphold the integrity of the research.

The overarching goal of this methodology is not only to assess the viabil-
ity of the application as a tool for improving visual spatial attention but also
to understand the broader implications of the research for neuroplasticity and
cognitive health.

1.3 Chapter Summaries

In order to provide a comprehensive understanding of the research, the thesis is
organized into distinct chapters, each addressing a specific aspect of the project.
The following is a brief outline of each chapter:

1.3.1 Chapter 1: Introduction

This chapter sets the context for the research, presenting the research problem
and its significance. It also outlines the research questions and hypotheses that
this research aims to address.

1.3.2 Chapter 2: Literature Review

This chapter provides a comprehensive review of relevant literature and theories
in the fields of visual spatial attention, neuroplasticity, and application design.
The literature review lays the theoretical foundation for the development of the
application and the overall research approach.
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1.3.3 Chapter 3: Methodology

In this chapter, the research design and strategy are outlined. It includes details
of the data collection methods and data analysis methods used in this research,
along with the ethical considerations taken into account during the research.

1.3.4 Chapter 4: Results and Discussions

In this chapter, we will present the empirical data collected during the user
studies and analyze the findings. This will involve detailed discussions on the
effects of different animations on the participants’ visual attention, which will
be understood through statistical analyses.

A thorough exploration of the data will aim to uncover trends and relation-
ships that directly address the research questions and hypotheses. Following
the presentation of results, we will interpret these findings in the context of the
research questions and hypotheses.

The implications of the findings will then be discussed with regard to visual-
spatial attention, neuroplasticity, and application design. This comprehensive
exploration and discussion of the results will provide valuable insights into the
intersection of these three important areas.

1.3.5 Chapter 5: Conclusion

The final chapter concludes the research, summarizing the key findings and
discussing their implications. It also suggests future directions and reflections
on the limitations of the research.

1.4 Research Tool Illustration

1.4.1 /home Page

The home page shown in Figure 1.1 serves as the welcoming platform for users
who have signed up and logged in to the research tool. This page provides a
friendly greeting and an immediate summary of the tool, its functions, and its
benefits.

The page begins by expressing appreciation for user participation and then
presents a clear description of what users can do with the “Attention Visual”. It
outlines the opportunities to participate in various gaze tracking tests, offering
insights into individual visual attention and cognitive patterns.

Moreover, the users are informed about the availability of real-time data
visualization, a feature that would allow them to gain a better understanding
of their own visual attention patterns. This is a compelling feature that ensures
users are actively involved and personally invested in the process.

The page also assures the users about continuous updates and improvements
to the platform. It promises upcoming features like advanced data analysis and
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customizable tests, building anticipation and ensuring user engagement over
time.

Overall, the homepage serves as a comprehensive guide, giving users a clear
understanding of the research tool’s functionalities and what to expect as they
navigate through the platform.

Figure 1.1: Home page

1.4.2 /myData Page

The Data Page shown in Figure 1.2 is the central hub where users can engage
interactively with the progress they have made through their sessions. This
page provides an enriching experience by offering a visually intuitive scatter
plot graph, which displays session scores plotted against session dates.

8



Figure 1.2: User Sessions Data

Navigating this graph is remarkably user-friendly. It allows users to zoom
in and out by simply scrolling, providing them the opportunity to view their
data in both detailed and broader perspectives. By hovering over individual
data points, users can instantly view the summary of each session as shown in
Figure 1.3, including the session number, score, and date. This offers a practical
and instant snapshot of their performance for each session, and when viewed
in context of the entire graph, it facilitates an understanding of progress over
time.

Figure 1.3: User Session Summary on hovered Session Data Point

For a deeper dive into individual sessions, users can click on the correspond-
ing data point. This action triggers a modal window that presents a detailed
breakdown of the tests within the chosen session as shown in Figure 1.4. This
feature caters to users who wish to analyze their performance on a more granular
level.
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Figure 1.4: User Tests Data on Chosen Session

The Tests section is designed to provide a more complete understanding of
the user’s performance on an overall basis. It features a bar graph that displays
the total response time against the test number, providing a clear visualization
of the user’s response speed throughout their participation.

A line representing the average response time is superimposed on the bar
graph, acting as a benchmark for users and enabling them to easily identify
instances when they were slower than their average speed.

The Tests section offers interactive elements, such as the individual bars
on the graph. Hovering over a bar pulls up detailed information about the
corresponding test, including the test number, the illusion employed in that
test, the total response time for that test, the cognitive speed (represented by
the total time gazed on the point), and the difficulty level of the test as shown
in Figure 1.5.
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Figure 1.5: User Test Summary on hovered Test Data Bar

This comprehensive level of detail contributes to a more complete under-
standing of the user’s performance, highlighting not just their speed but also
their interaction with different illusions and various difficulty levels. The Tests
section is integral to enabling users to gain thorough insights into their progress
and performance.

1.4.3 /myApp Page

Upon entering the myApp section, users are introduced to the functionality and
benefits of participating in various gaze tracking tests. The text on the page
as shown in Figure 1.6 informs users that engaging in these tests contributes
to a better understanding of their own visual attention and helps improve the
platform’s performance. It emphasizes the use of advanced AI and machine
learning techniques to collect and analyze user data.

The myApp page also instructs users to disable any ad or tracker blockers
and refresh the page to view the content. This step ensures that users can
successfully initiate the gaze tracking application and engage in the tests.
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Figure 1.6: Application Launching page

Once the application is launched, the user is greeted with a set of instruc-
tions as shown in Figure 1.7) aimed at optimizing their experience and results.
These include suggestions to find a well-lit spot, position themselves properly in
relation to the screen, and follow the on-screen instructions for the calibration
process. The instructions emphasize comfort and relaxation while using the ap-
plication. Users have the choice to proceed with the tests by clicking the “I’m
ready” button or postpone participation by selecting “Some other time”.

The emphasis on user comfort and readiness ensures that the data collected is
representative of a user’s typical visual attention and cognitive patterns, rather
than being influenced by external factors such as discomfort or haste.
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Figure 1.7: First instructions

After a user clicks on “I’m ready”, they are led to the “Calibration Magic”
stage as shown in Figure 1.8). This stage is a critical preliminary step in prepar-
ing the gaze tracking algorithm for the actual tests. The calibration process is
designed to enhance the accuracy and quality of the tracked data by accounting
for individual differences in gaze patterns.

Once users click on the “Continue” button, they are introduced to their gaze
cursor, named “Gaze Turtle”. This icon, appearing alongside a grid of points,
visually represents the user’s gaze position on the screen during the tests. Users
are reminded that Gaze Turtle may not move as rapidly as their eyes due to
the inherent limitations of the tracking algorithm, but it strives to provide as
accurate a representation as possible.
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Figure 1.8: Introduction for calibration

The calibration process involves interacting with a grid of points displayed
on the screen as shown in Figure 1.9. The users are instructed to click on or tap
each point, causing it to turn gray. This transformation signifies that the gaze
tracker algorithm has successfully registered the user’s gaze at that particular
location. Once all points have turned gray, the calibration process is complete.

Figure 1.9: Calibration screen

After calibration, users are introduced to the Visual Attention Training Ses-
sion, where the actual interaction and gaze data collection take place. The
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instructions for the session, displayed in Figure 1.10 and Figure 1.11, are struc-
tured into a series of simple, easy-to-follow steps.

Figure 1.10: Introduction for the test after calibration is completed
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Figure 1.11: Introduction for the test after calibration is completed, continued

Users initiate the session by pressing the “Start Session” button. The fol-
lowing step unveils the AI-powered challenge where a complex machine learning
algorithm adjusts the difficulty level according to the user’s performance. This
real-time adaptation entails presenting more shapes, colors, and a higher density
of points as the user progresses through the session.

The main task of the session involves identifying an animated point among a
multitude of distractions. The animations, referred to as illusions, could involve
resizing, recoloring, reshaping, rotating, or blinking of a point. The goal for
users is to click on the animated point as swiftly and accurately as possible.
The session also includes a scoring mechanism where users gain three points for
each correct click, while a wrong click results in a deduction of one point.

One vital instruction emphasized throughout the session is the need to stay
relaxed and focused. Users are reminded that the key to success lies not only in
accumulating points but in improving their visual attention over time. Regular
participation is encouraged as it aids in enhancing cognitive abilities, which
aligns with the core objective of the Attention Visual tool.

Now, with the “Start Session” button, the users are all set to embark on their
journey of visual attention training using the advanced, AI-powered Attention
Visual tool. The actual training session is illustrated in Figure 1.12, where
users interact with the application interface, and their gaze data are recorded
for subsequent analysis.
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Figure 1.12: Demonstration of a Test

1.4.4 Exploring the Illusions

Each test in the Attention Visual platform is designed around various visual
illusions, designed to challenge and train the user’s visual attention. In the
following, each illusion used in the platform is described in detail, accompanied
by illustrative screenshots for better understanding.

Recolor Illustration

The Recolor illusion is one of the visual challenges encountered during the At-
tention Visual tests. This illusion involves a change in color of a point on the
screen amidst several other distracting points. The colors used in these illusions
are tones of red, orange, yellow, green, blue, and violet.

During a Recolor illusion, a point’s color transitions between two of these six
colors. The challenge for the user lies in quickly identifying the point undergoing
the color change and accurately clicking on it.

Figure 1.13 provides an illustrative example of a Recolor illusion, where a
point changes color from blue to violet.
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Figure 1.13: Recolor Example

Reshape Illustration

The Reshape illusion represents another type of visual challenge within the
Attention Visual tests. This illusion involves a point on the screen altering its
shape among a number of distractors. The shapes employed in these illusions
are circles, squares, and triangles.

In a Reshape illusion, a point changes its form from one of these three shapes
to another. The user’s task is to promptly identify and accurately click on the
point undergoing the shape change.

Figure 1.14 illustrates an example of a Reshape illusion, depicting a trans-
formation from a circle to a triangle.

Figure 1.14: Reshape Example

Resize Illustration

The Resize illusion adds an additional dimension of challenge to the Attention
Visual tests. In this type of illusion, a point on the screen undergoes a change
in size among a collection of distractor points.

In a Resize illusion, a point will change its size to either 0.5, 0.67, 1.5, or
2 times its original size. Users must identify and click on the point that is
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changing size.
Figure 1.15 illustrates an example of a Resize illusion, showing a point re-

ducing to 0.5 of its original size.

Figure 1.15: Resize Example

Rotate Illustration

The Rotate illusion provides a unique twist in the Attention Visual tests. In this
illusion, a point on the screen starts to rotate among a bunch of static points,
either clockwise or counter-clockwise.

Figure 1.16 illustrates an example of a Rotate illusion, showcasing a point
rotating in a clockwise direction. Users must spot this rotating point among
the crowd of static ones.

Figure 1.16: Rotate Example

Blink Illustration

The Blink illusion represents the final category of animations used in our tests.
This illusion involves a point with an eye icon that transitions from an open to
a closed state, mimicking the action of blinking.
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Figure 1.17 illustrates an example of a Blink illusion. Amid a group of
open-eyed points, one point distinguishes itself by blinking.

Figure 1.17: Blink Example
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Chapter 2

Literature Review

2.1 Attentional Capture

2.1.1 General Concept

Attentional capture refers to the involuntary process by which certain stimuli
can attract our attention, disrupting ongoing cognitive activities. It plays a
crucial role in selective attention, particularly when it comes to perceiving and
processing stimuli in our environment [1].

2.1.2 Role of Motion Onset

Motion onset has been shown to be a potent mechanism in attention capture.
That is, the initiation of motion in a previously static stimulus has the capacity
to draw our attention effectively. However, the reasons for this selective atten-
tion to motion onset have been a subject of debate. Studies have substantiated
the robustness of attention capture by motion onsets, providing ground for the
debate between the “unique-event” account and the “motion onset” account [2].

Unique-Event vs.Motion Onset Account

The “unique-event” account posits that attention is captured by any event or
change that is temporally unique, such as motion onsets or color changes [3].
The “motion onset” account, on the other hand, proposes that the initiation
of motion in a previously static object automatically prioritizes the object over
other stimuli, irrespective of the presence of other changes.

Role of Jerkiness and Abrupt Displacement

Studies have shown that the jerkiness of motion onset, as opposed to smooth
motion onset, captures attention. Researchers argue that this effect is due to
an abrupt displacement of the moving item, creating a temporal or spatial gap
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between the preceding and succeeding frames, and thereby escaping masking
[3].

2.1.3 Implications for the Current Research

These findings have important implications for this research. Given that the
research involves the role of motion in attention capture, understanding the
unique effects of motion onset, and the conditions under which it can effectively
capture attention, can guide the design of experiments and the interpretation
of results. The debate between “unique-event” and “motion onset” accounts
can offer theoretical foundations for expecting outcomes in this research. Ad-
ditionally, the findings about the role of jerkiness and abrupt displacement in
attention capture can be particularly relevant if the stimuli of interest involve
motion-related changes.

2.2 Overt vs.Covert Attention

2.2.1 Definitions and Differences

Overt attention refers to the act of directing sensory organs, such as the eyes,
towards a stimulus to focus attention on it. Covert attention, on the other hand,
is the mental focus on a stimulus without the direct alignment of sensory organs
[4, 5, 6]. This allows us to attend to a stimulus in the periphery of our visual
field without directly looking at it [7].

2.2.2 The Posner Cueing Paradigm

The Posner Cueing Paradigm, developed by Michael Posner, is a well-known
experimental protocol used to investigate covert attention [7]. In this task, par-
ticipants are required to maintain their gaze on a central point while responding
to peripheral stimuli [8]. While this task primarily measures covert attention,
there is an element of overt attention involved, particularly when a participant
fails to maintain central fixation and involuntarily moves their eyes towards the
peripheral cue or target [5].

2.2.3 Implications for Our Research

In the context of our research, both overt and covert attention are likely con-
tributing to the observed effects. The experimental paradigm we employ, which
is based on the Posner cueing task, primarily aims to measure covert atten-
tion. However, the possible occurrence of overt attentional shifts, particularly
under certain experimental conditions like when manipulating target probabil-
ities, could complicate the interpretation of our results [8, 9].

In our research, the “statistics of the environment” are the recorded response
times and distances from the initial gaze point to the chosen point in the grid.
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These statistics are collected after each participant’s interaction with the illu-
sion and over time, these accumulated statistics form patterns that reflect how
participants typically respond to the illusions. This learned information may
then guide the allocation of attention in future interactions. For example, if
the statistics show that certain areas of the grid are more likely to contain the
point of interest, participants may be more likely to direct their attention (either
overtly or covertly) to these areas in subsequent interactions. This is a demon-
stration of how strategic, top-down influences can modulate the allocation of
attention based on the learned statistics of the environment [8, 4].

The possible influence of overt attention might be especially pronounced
under certain conditions, and it remains an exciting avenue to explore in our
future studies. We intend to measure the distance between the point of attention
and the initial point the user looks at. This measure will allow us to capture
the extent to which overt attentional shifts are occurring and to what extent
they are influencing the observed effects [6].

The distinction between overt and covert attention provides a useful concep-
tual framework for understanding the attentional phenomena observed in this
research. The interplay between these two forms of attention, in response to
manipulations of target probabilities and the effects of this interplay on perfor-
mance in the Posner cueing task, represent key findings of our research [9].

2.3 Eye Movement and Decision Making

Eye-tracking methodologies are an increasingly prevalent tool in the area of
decision-making processes, mainly due to the growing consensus that gaze be-
havior, as measured by these methodologies, is tightly interconnected with the
process of decision making [10, 11].

One study presented an extensive review of the involvement of eye move-
ments in decision-making processes [10]. The research highlighted that visual
attention is frequently used as a proxy for cognitive processing during tasks that
require decisions to be made, suggesting that options receiving a higher amount
of visual attention are more likely to be chosen.

Further exploring this relationship, another study presented a review of mod-
els that connect visual attention with choices made by individuals [11]. Their
work not only highlighted opportunities for future research to enhance our un-
derstanding and predictive capacity of decision-making behaviors but also intro-
duced a framework for synthesizing existing models that consider a multitude
of factors influencing the outcome of decisions, ranging from perceptual and
cognitive processes to bottom-up and top-down influences.

2.3.1 Implications for Our Research

Applying these findings to interactive environments indicates that the decision
to engage with an animated point, such as clicking on it, could be influenced by
the quantity and quality of visual attention that the point receives. The more

23



attention a user pays to a specific point, the more likely they are to interact
with it. This principle can guide the design of user interfaces and the creation
of strategies to effectively draw users’ attention.

The reviewed literature underscores the potential of eye-tracking technolo-
gies not only in understanding decision-making processes but also in predicting
and influencing decision outcomes. However, more research is needed to val-
idate these models in various contexts, understand the dynamics of attention
and value accumulation in decision making, and account for factors such as
task-switching and visual factors that are currently underrepresented in exist-
ing models [11].

The research of eye movements and decision making provides invaluable
insights into the perceptual, cognitive, and evaluative processes underlying de-
cision making. As eye-tracking technology advances, our understanding of these
processes will continue to deepen, ultimately allowing us to predict and enhance
decision-making behaviors in practice.

2.4 Time Course of Visual Attention

Visual attention plays a pivotal role in shaping our perceptual experiences by
acting akin to a spotlight, selectively illuminating certain regions in our visual
field [12]. A critical aspect of visual attention is its time course, which concerns
the time it takes for attention to shift from one object or location to another,
and the duration of attentional focus on a specific object.

2.4.1 Dwell Time and Sequential Selection

Dwell time, the duration for which attention “dwells” or remains focused on
a particular stimulus, is a crucial factor in the time course of visual attention
[12]. Evidence suggests that attention can be “tied up” for several hundred
milliseconds after a target has been detected. However, this duration doesn’t
seem to represent a mandatory minimum dwell time for successful processing.

The dwell times inferred from Rapid Serial Visual Presentation (RSVP)
tasks are on the order of 500 milliseconds per item, while visual search tasks
suggest much shorter dwell times of about 50 milliseconds per item [12]. This
discrepancy might be due to the complexity or difficulty of the tasks used in
these studies, where more complex or difficult discriminations might necessitate
longer attentional focus.

2.4.2 Shift of Attention

The nature of attention shifts has also been a subject of inquiry. The question
is whether these shifts are continuous, like a spotlight gradually moving across
a stage, or abrupt, with attention instantaneously relocating to a new location
[12]. Studies suggest that attention might relocate instantaneously, regardless
of the distance covered. These findings continue to enhance our understanding
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of the intricate mechanics of visual attention and its dynamic nature, offering
rich insights into the workings of the mind and the brain.

2.4.3 Implications for Our Research

The time course of visual attention has significant implications for our research.
Understanding how attention shifts and how long it dwells on specific objects
can provide invaluable insights into the nature of attentional control and the
representation of visual stimuli. It can potentially guide the design of experi-
ments to investigate the characteristics of visual attention in different scenarios
and populations, and inform the development of computational models of visual
attention. This area of research continues to bridge the gap between psychology,
neuroscience, and computer science, suggesting promising future directions for
the research [12].

2.5 Signal Detection Theory

Signal Detection Theory (SDT) provides a mathematical model to quantify
decision-making in the presence of uncertainty [13, 14]. This theory has been
applied in various fields, including visual search tasks to analyze responses and
attention to stimuli [15, 16].

Signal Detection Theory (SDT) was applied to three types of visual search
tasks: identification, yes/no detection, and localization [15]. This demonstrated
that SDT, based on foundational principles [13], can help understand the mecha-
nisms underlying performance in these tasks, including the processes of attention
engagement and decision-making.

SDT has also been valuable in understanding visual search and attention,
analyzing and interpreting data regarding the balance between hits and false
alarms, and the role of attention in modulating these factors [16, 14].

2.5.1 Implications for Our Research

The application of Signal Detection Theory (SDT) to visual search tasks, based
on the principles laid out by previous studies [13, 14], is directly relevant to
our research. Our work focuses on the effectiveness of an animation in a web
interface, observing user interaction and its ability to draw attention to key
points [15, 16].

In the context of data visualization, SDT could provide a robust framework
for understanding the effectiveness of the animation in drawing attention and the
decision process of the user when clicking on points. In essence, the animation
could be seen as a signal in the presence of noise on the web page, and the user’s
interaction could be interpreted as a detection or miss of this signal.

Analyzing response times and hit rates in the context of SDT will allow
for a more detailed understanding of user behavior and the effectiveness of the
animation. The balance between hits and false alarms, as described by other
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studies [16, 14], could provide crucial insights into the user’s decision-making
process when interacting with the animation. Similarly, the application of SDT
as demonstrated by prior research [15] could elucidate the role of attention in
the user’s interaction with the animation.

2.6 Saliency Map Models

2.6.1 Saliency Map Models: An Overview

Saliency Map Models serve as an important tool in the study of visual atten-
tion as they encapsulate both the bottom-up and top-down influences on visual
attention [17]. These models predict the regions in an image that are likely to
attract attention, by combining features such as color, intensity, and orienta-
tion. They create a topographical map where higher intensity regions signify
areas that are more likely to draw attention [18]. However, the limitations of
these models lie in their general inability to account for the influence of specific
features such as characters in a visual scene [19].

2.6.2 Bottom-up and Top-down Processes

Visual attention, a prominent topic in cognitive science, is generally guided by
two intertwined processes: bottom-up and top-down [20]. Bottom-up attention,
driven by the saliency or uniqueness of the stimulus in the visual scene, is an
automatic and fast process, propelled by external factors. It operates relatively
independently of the viewer’s goals [20]. However, this process is not entirely
autonomous; it can be modulated by top-down influences.

Top-down attention, on the other hand, is a slower, more deliberate pro-
cess, guided by the viewer’s personal goals, expectations, and prior knowledge
[20]. This process tends to be influenced by cognitive factors such as task de-
mands and relevance to the viewer’s goals [18]. Importantly, top-down signals
can actively bias the perception created by bottom-up stimuli, underlining the
interdependency of these two processes.

Furthermore, visual attention is not an isolated cognitive process and can be
influenced by other sensory inputs. For example, concurrent auditory stimuli
can affect the way visual attention is allocated, suggesting an interplay of sensory
modalities in shaping attention dynamics.

2.6.3 Implications for Our Research

Understanding the principles of Saliency Map Models and the impact of charac-
ter saliency on visual attention could be highly beneficial to our research. The
models’ ability to incorporate both bottom-up and top-down processes, factor-
ing in the unique features of stimuli and the observer’s cognitive state, provides
a useful tool for predicting areas of high attention in a visual scene [17].

Particularly, the research identified in a specific study [19], which identifies
the specific visual saliency associated with different character types, offers an
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important avenue for our research. If our work involves the analysis of visual
scenes containing these character types, such as Hiragana, alphabet letters, and
Thai characters, these findings could be instrumental. They could provide a
valuable foundation for predicting how such characters will draw attention in
our visual scenes.

Moreover, considering the differences in saliency among different character
types could lead to a more nuanced understanding of visual attention patterns
in our analysis. It could also inspire further modifications to the Saliency Map
Models used, tailoring them to more accurately represent the stimuli in our
work.

Finally, the conclusions are drawn in this study [19] open up opportunities for
future research, such as investigating the impact of other character features on
visual saliency. This could add another layer of depth to our research, potentially
leading to further insights and discoveries.

2.7 Neuroplasticity and Visual Attention

2.7.1 Neuroplasticity: An Overview

Neuroplasticity, also known as brain plasticity, refers to the brain’s capability
to reorganize and adapt its structure and function throughout an individual’s
lifespan. This adaptation occurs in response to new experiences, and learning
processes, as well as after injury or disease [21]. Neuroplastic changes occur at
multiple levels, ranging from molecular to cellular and network changes, result-
ing in alterations in cognitive and behavioral functions [21]. This characteristic
of the brain provides the biological basis for the adaptability of cognition and be-
havior, making it a fundamental aspect of neurological health and functionality
[21].

2.7.2 Neuroplasticity and Visual-Spatial Attention

Visual-spatial attention, a cognitive function responsible for processing and re-
sponding to visual and spatial information in our environment, is highly in-
fluenced by the brain’s neuroplastic properties. Neuroplasticity can enhance
visual-spatial attention, allowing individuals to develop and adapt their abili-
ties to notice and process visual cues [22]. Activities and exercises that stimulate
visual and spatial cognition can result in neuroplastic changes in the brain re-
gions associated with these functions, leading to improvements in visual-spatial
attention.

2.7.3 Web-based Applications and Neuroplasticity

In the digital era, web-based applications offer novel opportunities to leverage
neuroplasticity for cognitive improvement, including the enhancement of visual-
spatial attention. By incorporating features such as engaging animations, vi-
brant colors, and dynamic shapes, these applications can stimulate the user’s
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visual and spatial cognition, thereby promoting neuroplasticity [23]. The inter-
active nature and accessibility of these tools make them an effective approach
for enhancing cognitive functions, including visual-spatial attention.

2.7.4 Implications for Our Research

The understanding of neuroplasticity and its role in visual-spatial attention pro-
vides valuable insights for our research. The development of web-based applica-
tions that stimulate neuroplasticity could serve as an effective tool to enhance
visual-spatial attention. By strategically incorporating features that engage the
user’s visual and spatial cognition, these applications can facilitate cognitive
improvement and contribute to overall neurological health.

2.8 Gaze Tracking

WebGazer is an innovative eye tracking technology that we have employed in
this research to capture gaze data [24]. It capitalizes on the ubiquitous nature
of webcams in today’s devices, training a model to map eye features to positions
on the screen in real time. This model self-calibrates as users interact with the
system, enhancing its accuracy over the course of usage.

WebGazer’s design addresses the inherent challenge of webcam-based eye
tracking, namely the varied local environments and human features. By contin-
uously learning from the user interactions and adjusting the model accordingly,
it demonstrates a capability to approximate gaze location with reasonable ac-
curacy.

WebGazer is compatible with various open-source eye detection libraries
and incorporates two gaze estimation methods. One of these methods detects
the pupil and uses its location to linearly estimate a gaze coordinate on the
screen, while the other treats the eye as a multi-dimensional feature vector and
employs regularized linear regression combined with user interactions. This level
of flexibility and adaptability makes WebGazer an ideal choice for our research
context.

2.8.1 Implications for Our Research

The use of WebGazer in our research allows for the collection of rich, real-time
gaze data during user interaction with the experimental interface. The algorithm
developed for this research continuously collects gaze data, providing valuable
insights into how visual attention is allocated throughout the interaction process.
This data serves as a critical element for understanding the relationship between
visual attention and decision making in our context.

WebGazer’s self-calibration feature also addresses potential accuracy issues
stemming from individual differences and environmental variability. As such,
the application of WebGazer in our research not only democratizes eye tracking
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in the context of this research but also provides a more precise, adaptive tool
for gaze tracking.

Our research, aided by WebGazer’s ability to track gaze in real-time, con-
tributes to the burgeoning field of gaze-based interaction studies and web user
understanding. It demonstrates the potential of eye-tracking technologies in
providing novel insights into user behavior and decision-making processes in
web environments [24].
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Chapter 3

Methodology

3.1 Research design and strategy

3.1.1 Introduction to Design Choices

The design choices for our attention assessment application were driven by a
blend of aesthetic, functional, and scientific considerations. Our primary goal
was to create an engaging, user-friendly interface that not only captures the
user’s attention but also accurately gauges it using various metrics and stimuli.

The layout and presentation of the grid, choice of colors and shapes, as
well as the use of dynamic animations, were all meticulously planned to opti-
mize the user’s experience while capturing valuable data about their attention
distribution. The introduction of a scoreboard and a timer aimed to enhance
engagement and introduce an element of competition and urgency into the task,
thereby potentially affecting the user’s performance.

The design choices extended beyond the visual aspects of the application
to include how the user interacts with it. Features such as the method of
response collection and the ability to terminate the test at will were incorporated
to provide a seamless interaction experience. Furthermore, real-time feedback
mechanisms were included to provide users with an understanding of how their
attention is distributed across the grid.

We were also mindful of the need for clear instructions and the provision of
training or practice sessions to ensure that users understood the task require-
ments. User feedback played a crucial role in refining the design and functioning
of the application, leading to iterative improvements in user experience and ap-
plication performance.

This section discusses in detail the impact of these design choices on the
functionality of our application and the resultant user experience.
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3.1.2 Impact of Animations

The high degree of variability in the design of the animations has been a cru-
cial factor in the development of the application. By incorporating numerous
variables that each have several possible options, the application can generate
a considerable number of unique tests. Let’s break down how this variability is
achieved:

1. Grid Size: There can be n points on each side, yielding n2 points. The
value of n ranges from 3 to 10.

2. Difficulty Levels: There are three difficulty levels - easy, medium, and
hard. Each difficulty level changes the number of colors and shapes in
use.

3. Color Choices: There are 6 colors in total. For the easy level, two colors
are randomly chosen. For the medium level, four colors are chosen, and
for the hard level, all six colors are in play.

4. Shape Choices: There are three shapes in total. For easy level, one shape
is randomly chosen. For the medium level, two shapes are chosen, and for
the hard level, all three shapes are in play.

5. Animations: Each point is assigned a random animation from the options
- “resize”, “recolor”, “reshape”, “rotate”, “blink”.

6. Variations of Animations: Each animation has its own variations. “Re-
size” has 4 size options, “recolor” can choose from the remaining colors,
“reshape” can morph into the remaining shapes, “rotate” has two options
- clockwise and counter-clockwise, and “blink” has one option.

7. Duration: Each animation can occur for a random duration chosen from
- 1, 1.5, 2, 2.5, or 3 seconds.

Calculating the Number of Unique Tests

Based on the above variables, we can calculate the number of unique tests that
can be created for a single point on the grid for the easy, medium and hard
levels:

Number of unique tests per point for Easy Level =

No. of grid possibilities×No. of color possibilities×No. of shape possibilities×
Average No. of animations×Average No. of variations for each animation×
No. of duration possibilities

= 8×
(
6

2

)
×
(
3

1

)
× 5× 14

5
× 5

= 504, 000
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For the Medium Level, we have 4 color options and 2 shape options:

Number of unique tests per point for Medium Level =

No. of grid possibilities×No. of color possibilities×No. of shape possibilities×
Average No. of animations×Average No. of variations for each animation×
No. of duration possibilities

= 8×
(
6

4

)
×
(
3

2

)
× 5× 14

5
× 5

= 3, 024, 000

For the Hard Level, we have 6 color options and 3 shape options:

Number of unique tests per point for Hard Level =

No. of grid possibilities×No. of color possibilities×No. of shape possibilities×
Average No. of animations×Average No. of variations for each animation×
No. of duration possibilities

= 8×
(
6

6

)
×
(
3

3

)
× 5× 14

5
× 5

= 4, 032, 000

The total number of unique tests across all levels can be calculated as:

Total number of unique tests across all levels

= Average number of unique tests per point×Average number of grid points

=
504, 000 + 3, 024, 000 + 4, 032, 000

3
× (6.52)

= 2, 520, 000× 42.25

= 106, 425, 000

However, it’s important to note that due to the high level of randomness and
parameter interaction, these calculations only provide an estimate of the number
of unique tests. The actual number of test variations that a user experiences
can be significantly higher, making each user’s experience unique.

• Furthermore, each of the non chosen points in the grid also has their color
and shape assigned randomly based on the difficulty level. This introduces
additional variability, leading to an even higher potential number of unique
tests. However, many of these additional variations might not result in
a noticeably different test from the user’s perspective. Therefore, the
estimate calculated here should be considered a lower bound on the total
number of unique tests.
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3.1.3 Color Choices and their Impact

The role of color in cognitive research is substantial. Colors, their distinct
attributes, their classification into primary and secondary categories, their per-
ceived temperatures, and transitions between them all play significant roles in
influencing a user’s visual spatial attention and response. Our choices of colors
for this research are based on their ability to guide and measure visual attention
effectively.

Color Choices, Classification, and Temperature

The color palette chosen for our research includes a spectrum of primary and
secondary colors, along with their perceived temperatures. These are distinctly
identifiable and therefore serve as effective tools for guiding and assessing visual
attention. The color palette is shown in Figure 3.1 below.

• Primary Colors - Red, Blue, Yellow: Primary colors are often asso-
ciated with fundamental emotional responses. Red, a warm color, is often
linked to alertness and urgency. Blue, a cool color, is associated with calm-
ness and stability, and yellow, another warm color, evokes cheerfulness and
energy.

• Secondary Colors - Green, Orange, Violet: Secondary colors, being
a blend of primary colors, may elicit more nuanced emotional responses.
For instance, green, a cool color, could evoke feelings of harmony and
balance. Orange, a warm color, might induce a sense of warmth and
enthusiasm, while violet, often perceived as cool, can be associated with
luxury and ambition.
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Figure 3.1: The color palette chosen for our research

Color Transitions and User Response Expectations

Transitions between colors, particularly between primary and secondary colors
and between warm and cool colors, can influence user response. This is based
on the inherent contrast these transitions offer and the subsequent psychological
effects they carry.

• Psychological Effects: Changes from primary to secondary colors (or
vice versa) or between warm and cool colors might lead to shifts in atten-
tion due to the associated emotional changes. For example, transitioning
from a calming cool color like blue to an energizing warm color like orange
might induce a sense of increased alertness, potentially leading to quicker
user responses.

• Saliency and Attentional Capture: Certain colors and transitions
between colors may be more salient and thus more likely to capture at-
tention. For example, transitions involving highly saturated and luminant
colors like yellow could heighten attention capture.

• Color Associations: Personal, cultural, and societal color associations
could also influence the user’s attention. Transitions to colors like red, of-
ten associated with warnings in many cultures, could heighten the user’s
sense of alertness. Although location data was not utilized in this research,
recognizing these cultural differences and integrating location data in fu-
ture studies could further refine the understanding of the impact of color
associations on user attention.

34



• Color Contrast: The contrast between consecutive colors can influence
their visibility and saliency. High contrast transitions, such as moving
from a cool color like blue to a warm color like yellow, could enhance
visibility and attract more immediate attention.

By analyzing the impact of color choices, their temperatures, and their tran-
sitions on user responses, we aim to draw valuable insights into how visual spatial
attention is influenced. These insights will further inform the development of
effective cognitive training strategies within our application.

3.1.4 The Role of Shapes in Design

Shapes, much like colors, play a crucial role in guiding visual attention and have
their own set of considerations. The selection of shapes ( Square, Circle, Tri-
angle) in this research are simple, distinct, and universally recognized, making
them suitable for a visual attention task. The selection of shapes are shown in
Figure 3.2 below.

Figure 3.2: The selection of shapes (Square, Circle, Triangle) for our research

• Gestalt Principles and Shape Perception: According to Gestalt
principles of perceptual organization[25], our brain recognizes and orga-
nizes shapes in specific ways. Principles such as similarity, continuity,
closure, and symmetry can influence how we perceive and attend to differ-
ent shapes. For instance, a triangle amidst circles might “stand out” and
attract attention quickly due to its dissimilarity. By using these shapes,
we can manipulate the visual environment to test various aspects of visual
attention, such as whether certain shapes are more salient or attract more
attention than others.
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• Psychological Associations of Shapes: Shapes can carry psycholog-
ical implications, similar to colors. For instance, circles often symbolize
wholeness and completion, squares are associated with stability and order,
and triangles might signify tension or conflict. These associations could
subtly influence the attentional priorities of the viewers.

• Shape Complexity: The complexity of a shape can influence its saliency
and the amount of cognitive effort required for its processing. Typically,
simpler shapes are easier to process and more likely to attract attention.

• Shape Contrast: The contrast between shapes and the other elements in
the visual field can influence their visibility and saliency. Shapes distinct
from their surroundings are usually more visible and more likely to attract
attention.

• Shape Size: The size of shapes can also affect their visibility and saliency.
Larger shapes are typically more visible and more likely to attract atten-
tion.

Further, the interplay of shapes with colors - such as a red triangle among
blue circles - can create more complex attentional scenarios, allowing us to probe
the intricacies of visual attention mechanisms more deeply.

3.1.5 Design of the Gaze Turtle Icon

As part of creating a distinct identity for this research tool, a unique icon named
“Gaze Turtle” was designed as shown in Figure 3.3. This icon combines the
imagery of an eye and a sea turtle, capturing the essence of vision and steady
progress or longevity, respectively.

Figure 3.3: Gaze Turtle icon
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In crafting the Gaze Turtle, we aimed to subtly communicate the primary
intent of the tool – to facilitate the enhancement and sustainability of visual-
spatial attention. The design balances both elements, allowing viewers to per-
ceive either the eye or the turtle depending on their visual focus. This dynamic
reflects the very nature of visual perception and attention, themes central to
the research project.

We believe that the Gaze Turtle, beyond serving as an identifiable symbol
of the research tool, adds to the overall user experience. Its unique design could
potentially influence user engagement and feedback, contributing to the efficacy
of the research tool.

3.1.6 Other Design Factors

• Grid Layout: The points on the grid are equally distributed both hori-
zontally and vertically. This uniform layout aims to avoid any positional
bias in user attention, ensuring that each point is equally likely to be
noticed based on its position alone.

• Scoreboard and Timer Design: The application includes a timer set
for 5 minutes and a scoreboard that awards +3 points for correct responses
and -1 point for incorrect ones. These elements add a sense of urgency
and competitive motivation, potentially influencing user behavior.

• User Interface (UI) Design: The overall design of the user interface,
encompassing aspects such as button placement, color scheme, typogra-
phy, and feedback mechanisms, is user-friendly, and significantly influences
the usability and user experience of the application.

• Video Box and Gaze Tracking: The application includes a video box
showing the user’s face and an icon that tracks and indicates the user’s
gaze on the screen. This real-time feedback can help users understand
how their attention is distributed across the grid.

• Test Termination: Users are given the flexibility to terminate the test
at any point, providing them with control over their participation and
potentially influencing their level of engagement and performance.

• Response Collection: The application is designed to collect user re-
sponses using both mouse clicks and gaze tracking data. This dual-mode
response system not only enhances the richness of collected data but also
offers insights into different aspects of user behavior. The methods of re-
sponse collection have been designed with an emphasis on seamless user
interaction, affecting the efficiency and fluidity of the test experience.

• Instructions and Training: Clear and concise instructions are provided
to the user at the start of each test, explaining the task and the scoring
system. A short, non-scored practice session precedes the actual test to
allow users to familiarize themselves with the mechanics of the test. This
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practice ensures that users are well-informed about the task demands, thus
minimizing the potential for confusion or misinterpretation, and enhancing
the accuracy of test results.

3.1.7 User Feedback on Design Choices

Early users provided verbal and written feedback on the functionality, user guid-
ance, and overall design and experience, which played a crucial role in refining
the design and functioning of our application. Several valuable insights were
gained, which subsequently led to enhancements in the overall user experience
and application performance.

One key aspect of the application design that came out of the iterative
feedback loop was the adaptive test difficulty. The application is designed to
adjust the test difficulty based on the user’s performance. This is determined
by the time the user takes to respond after their first gaze at the chosen point.
This dynamic adjustment of test difficulty ensures that the application remains
challenging and engaging for users across a range of abilities.

• Instructions: Initial feedback indicated that the instructions provided to
users were not entirely clear, potentially affecting their understanding of
the task and overall performance. In response, we revised the instructions
to be more clear and explicit, making it easier for users to understand the
task requirements and what’s expected of them during the test.

• Color Choices: The color scheme of our application was largely influ-
enced by the feedback from our early users. The chosen colors not only
provide an engaging and visually pleasing user interface but also aid in
differentiating the various elements on the screen. This facilitates the easy
identification of different shapes during the test, thereby enhancing user
experience.

• Browser Compatibility: We discovered through user feedback that
some browsers were unable to adequately support the gaze tracking feature
of our application, leading to a disruption in data collection and affect-
ing the overall user experience. We are currently working on rectifying
this issue and expanding the compatibility of our application to ensure a
seamless user experience across all browsers.

Despite these enhancements, we recognize that user experience is a con-
tinually evolving aspect. We remain open to feedback and are committed to
making iterative improvements to ensure that our application offers a seamless
and engaging experience for all users.

3.1.8 Conclusion: Reflecting on Design Choices

The attention assessment application we developed represents a synthesis of
thoughtful design choices aimed at creating a user-friendly and engaging envi-
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ronment that effectively captures and measures attention distribution. Through-
out the design process, we placed a strong emphasis on ensuring that the ap-
plication is visually appealing, interactive, and easy to use, while also being
capable of providing robust data on attention metrics.

Reflecting on the design choices, we recognize the value of the iterative de-
sign approach and the impact of user feedback in shaping the application. The
choice of colors, shapes, and animations were key in enhancing the visual appeal
and engaging nature of the application. Furthermore, the grid layout, response
collection method, and real-time feedback mechanisms have proven to be in-
strumental in facilitating user interaction and engagement.

The flexibility to terminate the test at will, the use of a scoreboard and
timer, as well as clear instructions and practice sessions, all contributed to a
more controlled and intuitive user experience. These factors also potentially
influenced the users’ test performance and their overall satisfaction with the
application.

While our design choices have led to a functional and engaging application,
we acknowledge that there are always opportunities for further refinement and
improvement. Future iterations of the application may explore new design el-
ements and functionalities based on emerging research findings and continuous
user feedback. Despite the potential challenges, we are confident in the util-
ity and effectiveness of our current design choices and look forward to their
continued evolution.

3.2 Data collection methods

3.2.1 Data Collection Overview

The data collection process in this project was multifaceted and comprehensive,
incorporating a variety of data points to ensure a rich and in-depth analysis
of users’ visual attention. The primary source of data was the custom-built
web application, which was designed to record specific user interactions and
behaviors during each session. [26].

This web application is based on a grid layout, with each point having the
potential to exhibit a distinct animation at random intervals. A user’s task is
to identify and select these animated points as quickly and accurately as pos-
sible. During each session, various aspects of user interaction and response are
meticulously recorded. These include the total score, session date, the specific
characteristics of each test within the session, and extensive gaze data.

The collected gaze data includes the initial gaze location, the total time
spent gazing at the chosen point, the time until the first gaze at the chosen
point, and the time after the first gaze at the chosen point. Other variables,
such as distance from the first gaze point to the chosen point and the number
of wrong answers, are also collected to provide further context to the gaze data.
Moreover, the Frame Per Second (FPS) rate, an important parameter that can
vary across different computer systems and usage conditions, is also recorded
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for each session.
In addition, a user’s progress and performance over time can be tracked and

compared thanks to the recording of the session score and date. This feature
not only allows users to measure their improvement but also provides valuable
data for longitudinal analysis.

Further to the collected parameters, the response time of the user after their
first gaze at the chosen point is also diligently recorded. This metric forms a
critical part of the dynamic adjustment of test difficulty in subsequent tests.

Lastly, the project integrates a range of design choices and considerations
informed by existing theories and methodologies in the field of visual attention.
These include attentional capture, overt and covert attention, eye movement
in decision making, signal detection theory, and saliency map models, among
others. These theories inform the design of the tests and influence the type and
quality of data collected.

Overall, the data collection process is designed to provide a comprehensive
picture of user behavior, performance, and visual attention patterns, making
this project a valuable contribution to the ongoing research in the field of visual
attention.

3.2.2 Primary Data Collection

The primary data collection for this research was conducted through an inter-
active web-based application designed specifically for this research. All data
points are a result of user interaction with the application.

The MongoDB[27] database connected to the application holds three collec-
tions: User Data, Sessions, and Tests. The User Data collection stores informa-
tion about each participant, including their first name, last name, email, birth
date, gender, and associated session IDs.

The Sessions collection contains data for each user session, including the user
ID, session score, session date, and corresponding test IDs. Each session relates
to a unique instance of a user engaging with the application.

The Tests collection stores the specific details of each test within a session,
including variables such as the chosen point location, chosen point color, chosen
point shape, chosen animation, total response time, average frames per second
(FPS), total gazed time on the chosen point, distance from the first gaze point
to the chosen point, and initial gaze location. This collection represents the
heart of the data analysis as it records the primary outcomes from each test.

Another primary data point collected is the user’s response time after their
first gaze at the chosen point. This response time data is used for dynamically
adjusting the test difficulty to match the user’s performance.

The application uses the WebGazer [24] framework to track user gaze and
records a large array of data for each test. This rich dataset enables a detailed
exploration of user behavior and engagement with different design elements and
difficulty levels in the application.
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3.2.3 Integration of Existing Theories

While the primary data in this research originates directly from the custom web
application, the data analysis process has been informed by existing theories in
the field of visual attention. These theories have served as a secondary source
of information to shape the research design and interpret the collected data.

1. Attentional Capture: The concept of attentional capture suggests that
salient stimuli in our environment can involuntarily capture our attention.
The animations used in this research can be considered salient stimuli and
may attract users’ attention in this manner.

2. Overt vs.Covert Attention: This distinction was considered when com-
paring the location of the first gaze (overt attention) to the position of the
animated point (the target of covert attention).

3. Eye Movement and Decision Making: Existing research suggests
that the allocation of visual attention is closely linked to decision-making
processes. This concept is reflected in the design of the web application,
where users’ decision to click on an animated point may be influenced by
the amount and quality of visual attention that point receives.

4. Time Course of Visual Attention: The time course of attention to
the animated point was also considered during data analysis, looking at
factors such as the duration of the first fixation and the total dwell time.

5. Signal Detection Theory: This theory was applied to understand the
effectiveness of the animation in drawing attention and the decision pro-
cess of the user when clicking on points.

6. Saliency Map Models: These computational models aim to predict
where people will look in a scene, based on the saliency (or distinctiveness)
of different areas. The saliency of the animated point was considered in
light of these models.

7. Neuroplasticity and Visual Attention: Neuroplasticity, the brain’s
ability to change and adapt, plays a significant role in the enhancement
of visual-spatial attention. Understanding this concept could provide in-
sights into how visual attention can be manipulated and improved through
targeted interventions such as a carefully designed web application. The
potential of the web application to promote neuroplastic changes and
thereby enhance users’ visual attention is considered within the frame-
work of this theory.

By integrating these theories, the research aims to contribute to a broader
understanding of visual attention and eye movements, while also providing in-
sights into specific user behaviors in the context of the web application.
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3.2.4 Data Recording Techniques

The following techniques were employed to record and quantify the data col-
lected from this research:

• Session Score and Date Recording: The application records the user’s
session score and the date of each session. This enables users to track
their progress over time, offering an opportunity to understand and reflect
on their performance under different conditions (e.g., tiredness, increased
focus, etc.).

• Calculating Gaze Duration: A vital element of data recording in this
research was the accurate calculation of gaze duration. For this, the FPS
(Frames per Second) of the user’s computer was utilized. The application
checks the gaze position at an interval of 10 milliseconds (ms), which
results in 100 checks per second. Each time the gaze is detected on the
chosen point, the application records the duration for that 10ms interval.
However, since the actual gaze duration accumulated in each interval is
10ms, it was necessary to divide the total gaze duration by the interval
duration (10 in this case) to convert it back into seconds. This ensures
that the recorded gaze duration accurately reflect the time users spent
gazing at the chosen point.

• Distance and Location Measurement: The application records the
distance and location of gaze points and the chosen point in pixels. To
translate these measurements into a more tangible unit, the application
utilizes the standard conversion that equates 96 pixels to an inch. This
conversion enables a more intuitive understanding of the distances and
locations involved in this research.

3.2.5 Data Quality Assurance

A variety of measures were employed in this project to ensure the validity and
reliability of the collected data. These measures ensured a high level of preci-
sion and consistency in the recorded measurements across different users and
sessions, thereby boosting the quality of the data.

• Consistent User Experience: By maintaining equal distances between
points, employing a standard test duration, and other consistent design
factors across different sessions, a standardized user experience was en-
sured. This uniformity mitigates the introduction of extraneous variables
that could potentially skew the data.

• Precision in Gaze Data: The WebGazer[24] framework was utilized for
tracking user gaze data. This robust tool offers high precision, making it
possible to capture nuanced changes in gaze behavior.
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• Accuracy in Measurements: Carefully designed data recording tech-
niques were implemented to ensure the accuracy of measurements. This
includes the algorithm to calculate gaze duration, and the conversion ratio
of pixels to inches (96 pixels = 1 inch), allowing for universally understand-
able measurements.

• Handling Variability in FPS: Acknowledging the potential variability
in frames per second (FPS) rates across different computers and usage
conditions, an algorithm was developed to calculate this value for each
unique user scenario. This approach ensures that the gaze data collected
remains accurate and reliable, despite varying FPS rates. The adaptive
nature of this algorithm helps maintain the integrity of the data, making
it suitable for cross-comparison.

• Managing Potential Sources of Error: Potential sources of error, such
as different screen sizes or resolutions, were proactively addressed. This
includes adjustments in the app design and data recording techniques to
accommodate these differences and maintain the quality of data collected.

These data quality assurance measures have been instrumental in building a
rich and reliable data set, thereby setting a strong foundation for the subsequent
stages of data analysis and interpretation.

3.2.6 Conclusion: Reflecting on Data Collection Methods

Reflecting on the data collection methods employed in this project, careful
planning, advanced tracking techniques, and user-centered design were utilized.
These components facilitated the collection of a comprehensive data set that
captures both individual user interactions and broader patterns of visual atten-
tion.

The primary data, collected directly from the web application, provides a
detailed record of user interaction, gaze behavior, and test performance. The
use of an algorithm to calculate gaze duration based on the computer’s FPS
rate ensured that the data collected would be consistent and accurate across
different users and conditions.

Moreover, the integration of various theories of visual attention into the
design of the tests has facilitated the collection of data that is both rich and
contextually relevant to the field. The methodologies and techniques incorpo-
rated in the design not only provide a foundation for analyzing the collected
data but also offer potential avenues for future research and exploration.

Challenges, such as varying FPS rates and ensuring consistency in data
collection, were successfully navigated through careful planning and algorithm
design. The result is a data set that is not only large in volume but also high
in quality, making it a valuable resource for exploring and understanding visual
attention.

In conclusion, the data collection methods used in this project underscore
the importance of a user-centered approach, rigorous data recording techniques,
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and informed design choices in collecting high-quality data for research in visual
attention.

3.3 Data analysis methods

3.3.1 Overview of Data Analysis

The primary method for data analysis in this research project involves a blend of
qualitative and quantitative approaches. Due to the nature of the data collected,
which consists of continuous measures, timestamps, and user interactions, quan-
titative analysis methods are primarily used. The collected data is analyzed in a
comparative manner, investigating the influence of different factors (animation
type, animation variation, distance of first gaze point to the chosen point, ani-
mation duration, test difficulty) on various performance metrics (total response
time, time until gaze, time after gaze, gaze duration on the chosen point).

In addition to the main analysis, a longitudinal analysis of three specific users
– two young and one middle-aged adults – is performed. The purpose of this
detailed user-level analysis is to understand the effectiveness of the application
over time and the progression of individual users.

Qualitative data analysis also plays a part, primarily through the interpre-
tation of the quantitative results in the context of theories of visual attention
and cognitive processing. This helps generate insights and hypotheses about
user behavior, attention, and interaction with the application.

A vital aspect of the analysis is the pre-processing of data, especially those
that depend on gaze tracking. This step is necessary to handle potential data
quality issues arising from gaze tracking inaccuracies, ensuring that the final
analysis and interpretation are based on reliable, high-quality data.

3.3.2 Qualitative Data Analysis

While the majority of data analysis in this research project is quantitative, there
is a complementary qualitative component. This qualitative aspect primarily
consists of interpreting the quantitative findings within the context of the ex-
isting theoretical frameworks in cognitive psychology and visual attention.

For instance, the users’ interaction patterns and gaze behaviors are inter-
preted in light of theories such as attentional capture, overt vs. covert attention,
and saliency map models. This involves understanding not just the numbers,
but the cognitive processes underlying those numbers. While a quantitative
analysis can tell us “how much” or “how fast”, qualitative interpretations help
us understand the “why” and “how”.

Moreover, the qualitative analysis also assists in diagnosing potential issues
and anomalies in the data. For example, inconsistencies or outliers in the gaze
tracking data may be investigated from a qualitative perspective to understand
whether they are due to technical issues, user behavior anomalies, or other
factors.
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Ultimately, the integration of qualitative analysis with quantitative methods
enables a more comprehensive understanding of the data and the user behavior
it represents, providing a holistic perspective that considers not just the mea-
surable outcomes, but the human aspects and cognitive processes involved as
well.

3.3.3 Quantitative Data Analysis

The backbone of the data analysis in this project is quantitative, leveraging the
rich numerical data generated by the gaze-tracking application. A wide variety
of quantitative analyses are performed to extract meaningful insights from the
collected data. These include:

• Performance analysis: The performance of the users on the tests, as
measured by the total response time, time till first gaze, time after first
gaze, and gaze duration on the chosen point, are analyzed in detail. This
provides insights into the users’ speed and accuracy, as well as their at-
tention allocation strategies.

• Animation type analysis: The impact of different animation types on
user performance is investigated. This includes both a general analysis
comparing the animation types, as well as a more detailed analysis con-
sidering the variations within each animation type.

• Animation duration analysis: The effects of animation duration on
user performance are studied. This helps to understand the optimal timing
of animations for attracting visual attention.

• Distance analysis: The distances between the initial gaze point and the
chosen point are examined to shed light on the spatial characteristics of
gaze behavior.

• Difficulty analysis: The influence of test difficulty on user performance
and gaze behavior is explored. This analysis is conducted for each level of
difficulty across all the test types.

• Mistake analysis: The number of mistakes made by users is analyzed
in relation to the different test types and their respective difficulty levels.
This provides insights into the common pitfalls and challenges faced by
users.

Each of these analyses is conducted using a variety of statistical techniques,
including descriptive statistics, inferential statistics, and graphical methods.
The goal is to provide a robust, comprehensive, and nuanced understanding
of the data, which can guide the further development and refinement of the
gaze-tracking application.
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3.3.4 Software Tools

The data analysis process in this project was supported by a collection of ver-
satile software tools:

• MongoDB: Utilized as the primary database platform, MongoDB[27], a
source-available document-oriented database program, was instrumental
in storing and managing the wealth of data generated by the gaze-tracking
application.

• Python: The core analytical tasks were undertaken using Python, a pro-
gramming language renowned for its simplicity, readability, and the po-
tency of its libraries in scientific computation and data analysis.

• Pandas: The Pandas Python library was crucial for handling and ma-
nipulating the structured data. Its diverse range of features for handling
numerical tables and time-series data made it an invaluable asset for this
project.

• Matplotlib and Seaborn: These libraries served as the foundation of
data visualization in this project. Matplotlib, noted for its adaptability,
supported the creation of static, animated, and interactive visualizations,
while Seaborn, which builds upon Matplotlib, offered a simplified interface
for producing aesthetically appealing statistical graphics.

The careful selection and integration of these software tools significantly
streamlined the process of managing, analyzing, and visualizing the gathered
data, thus facilitating the distillation of meaningful insights to refine the gaze-
tracking application.

3.3.5 Data Interpretation

In terms of data interpretation, this research strived to maintain a rigorous,
analytical approach. The analyses and visualizations constructed through the
software tools mentioned previously were invaluable for deriving meaningful
insights and trends from the dataset.

Consideration was given to potential sources of error and variance in the
data, such as differences in lighting conditions or user movements, which could
affect the quality of gaze tracking. These sources of variation were accounted
for as much as possible in the interpretation of the results. Also, understanding
the possibility of inaccuracies in gaze tracking data, a focus was placed on total
response time, a high-quality data metric that does not rely on gaze tracking,
along with gaze-related metrics.

The interpretation of the data also entailed understanding the impact of the
animation types and their variations, and how the distance from the first gaze
point to the chosen point affected the response. A deep analysis was done to
understand how the animation duration affected the results and the variation
in response for different levels of test difficulty.
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The data interpretation was not only limited to general trends, but also
involved a detailed analysis of individual user data. This approach provided
insights into how user performance evolved over time and how they responded
to different tests. By tracking the progress of individual users, it was possible
to validate whether the application indeed helped improve their attention over
time.

The data interpretation was crucial in this research as it provided the con-
text and understanding necessary to connect the data analysis results to the
research questions, and ultimately, to the wider implications for the field of
visual attention.

3.3.6 Conclusion: Reflecting on Data Analysis Methods

The data analysis methods adopted in this research have been instrumental in
unraveling valuable insights from a substantial set of complex, multidimensional
data. The integration of both qualitative and quantitative methodologies en-
sured a comprehensive understanding of the various facets of visual attention
that were captured in this research.

The use of Python’s robust data analysis libraries, namely Pandas, Mat-
plotlib, and Seaborn, allowed for an efficient and effective exploration of the
data. These tools facilitated the creation of intuitive visualizations and the ap-
plication of statistical analyses, which further enhanced the interpretability of
the data.

In hindsight, the recognition and treatment of potential sources of error
and variance in gaze tracking data were crucial to ensuring the reliability of
the results. The quality of gaze tracking data was taken into account during
the data interpretation, and care was taken to substantiate the results using
high-quality data metrics like total response time.

Moreover, the personalized analysis of individual user data provided a nu-
anced understanding of the effectiveness of the web application in improving
users’ attention over time. This approach not only validated the practical use-
fulness of the application but also enriched the research findings with real-world
implications.

Overall, the data analysis methods implemented in this research have proven
to be successful in providing significant insights into the study of visual atten-
tion. It is the hope that these methods, and the findings they have helped unveil,
will contribute to future research and applications in this fascinating field.
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Chapter 4

Results and Discussions

4.1 Summary of the Data Collected

In this research, we collected data from a total of 32 users who participated from
various countries, including Germany, Turkey, the United States of America, and
France. The age range of the participants spanned from 21 to 56 years. The
research was conducted over a period of one month, during which users signed
up at various times.

Due to the convenient and mobile nature of our web-based research tool,
these users could engage with the tests even while on the move.

Among all the participants, we observed three highly active users: an adult
with 33 sessions, and two young adults with 14 and 22 sessions, respectively.
We analyzed the data from these users to discern potential improvements in
cognitive skills over time.

Across all users, a total of 4093 tests were completed. This extensive dataset
was used to perform analyses on the average response time and total mistakes
made during the tests, as these data points remained unaffected by any tracking
blockers installed on the users’ devices.

However, it’s worth noting that the use of tracker blockers, such as ad-
blockers, limited our ability to collect data, resulting in lower quality and po-
tentially inaccurate data. We inferred the usage of tracker blockers when the
time until the first gaze value was negative.

To ensure the accuracy and reliability of our analyses, we preprocessed the
collected data and removed all low-quality data, resulting in 1788 high-quality
data points. These were used for analyzing the average response time after the
first gaze, the average time gazed on the chosen point, and the distance of the
first gaze to the chosen point.

The following sections will present the results and analyses based on these
data for each illusion type.
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4.2 Consistent Users

4.2.1 User Performance Over Time

Young adult 1

The following Figure 4.1 presents a scatter plot with a regression line, illustrating
the relationship between the session score and the session date for a young adult.
Each point on the scatter plot corresponds to a single session, with its date on
the x-axis and its score on the y-axis. The regression line drawn through the
scatter plot represents the trend in the session scores over time.

The equation of the regression line is y = 4.75x−3509297.26. This equation
tells us that, on average, for each unit increase in the ordinal date (1 day), the
session score increases by approximately 4.75 points.

Figure 4.1: Scatter Plot with Regression Line of Session Score vs.Session Date
for Young Adult 1

Young adult 2

The following Figure 4.2 illustrates a scatter plot with a regression line showing
the relationship between the session score and the session date for another young
adult (referred to as Young Adult 2). Each point on the scatter plot corresponds
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to a single session, with the date of the session on the x-axis and the session
score on the y-axis. The regression line represents the trend in the session scores
over time.

The equation of the regression line is y = 1.90x−1404072.22. This equation
suggests that, on average, for each unit increase in the ordinal date (1 day), the
session score increases by approximately 1.90 points.

Figure 4.2: Scatter Plot with Regression Line of Session Score vs.Session Date
for Young Adult 2

Adult

The following Figure 4.3 illustrates a scatter plot with a regression line showing
the relationship between the session score and the session date for an adult.
Each point on the scatter plot corresponds to a single session, with the date of
the session on the x-axis and the session score on the y-axis. The regression line
represents the trend in the session scores over time.

The equation of the regression line is y = 2.94x−2168451.19. This equation
suggests that, on average, for each unit increase in the ordinal date (1 day), the
session score increases by approximately 2.94 points.
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Figure 4.3: Scatter Plot with Regression Line of Session Score vs.Session Date
for Adult

4.2.2 User Performance Over Time Discussion

The results of this research provide empirical evidence that supports the po-
tential of a web-based application for enhancing visual-spatial attention. The
observed increase in session scores over time for all three participants suggests
that users’ visual-spatial attention may have improved due to the use of the
application.

This positive trend aligns with the concept of neuroplasticity, which pro-
poses that the brain is capable of changing and adapting, thereby facilitating
improvement in cognitive functions such as visual-spatial attention [23]. Specif-
ically, the regression lines with positive slopes for all participants (2.94 for the
adult, 4.75 for young adult 1, and 1.90 for young adult 2) validate the hypothe-
sis that cognitive abilities can be enhanced through targeted exercises, offering
evidence of neuroplastic changes in the brain over time.

The results, however, showed no significant effect of age on the rate of im-
provement among the participants, which is inconclusive and suggests that the
influence of age on neuroplasticity may not be straightforward. This finding
underscores the need for further research to provide a deeper understanding of
this aspect.
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These results not only substantiate the use of web-based applications for
cognitive training but also highlight their potential in facilitating user engage-
ment and recording progress, thus supporting the view that technology can be
effectively harnessed for cognitive enhancement [23].

The findings open up avenues for future research to explore how various
factors, including the design and features of the web-based application, might
influence the rate of cognitive improvement. Additionally, the sustainability of
cognitive improvements achieved through such applications and the long-term
effects of this form of cognitive training warrant further investigation.

4.3 Illusions

4.3.1 Illusions Results

Figure 4.4 displays a bar chart illustrating the average response time for each
illusion test. Each bar corresponds to a different test illusion, indicated on the
x-axis, with the height of the bar representing the average response time in sec-
onds, indicated on the y-axis. The bars are color-coded for easy differentiation
between the different illusions.

From left to right, the illusions are “blink”, “recolor”, “reshape”, “resize”,
and “rotate”. The average response times for these illusions are approximately
8.36 seconds, 10.12 seconds, 11.28 seconds, 7.76 seconds, and 4.61 seconds,
respectively.
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Figure 4.4: Bar Chart of Average Response Time for Each Illusion Test

4.3.2 Illusions Discussion

The results of the illusion tests highlight the influence of different animations
on participants’ response times, providing insights into which illusions are most
effective in capturing attention. The observed variances in the average response
times for the different illusions (“blink”, “recolor”, “reshape”, “resize”, and
“rotate”) may be interpreted in the context of existing theoretical frameworks
on visual attention.

The “rotate” illusion elicited the fastest response time (approximately 4.61
seconds), which could be indicative of its strong attention-capturing ability.
This aligns with the concept of “Attentional Capture”, where certain dynamic
visual stimuli are more likely to attract attention [23]. In the context of “Signal
Detection Theory”, the quicker response times might reflect a higher “signal-
to-noise” ratio, suggesting that the “rotate” illusion was more distinctive and
easier for the participants to identify amid potential visual “noise” [21].

On the other hand, the “reshape” illusion had the longest response time
(approximately 11.28 seconds), implying that it might have been less salient or
more difficult for participants to detect. This observation can be linked to the
“Saliency Map Models”, which propose that stimuli that are more distinct in
terms of features such as color, shape, or movement are more likely to be noticed
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[22].
Overall, these findings suggest that the type of animation or illusion used in

a web-based application may impact the user’s visual-spatial attention. Future
research could explore this relationship further, investigating how different illu-
sions influence not just response times but also other aspects of visual attention,
such as accuracy and the ability to focus on multiple stimuli simultaneously.

4.4 Duration Illusion

4.4.1 Duration Illusion Results

Total response time

Figure 4.5 displays a bar chart depicting the average response time for each
duration of the illusion test. Each bar corresponds to a different duration, as
indicated on the x-axis, with the height of the bar representing the average
response time in seconds, as indicated on the y-axis. The bars are color-coded
for easy differentiation between the different durations.

From left to right, the durations are 1.0 second, 1.5 seconds, 2.0 seconds,
2.5 seconds, and 3.0 seconds. The corresponding average response times are
approximately 8.35 seconds, 9.26 seconds, 8.78 seconds, 8.96 seconds, and 8.95
seconds, respectively.
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Figure 4.5: Bar Chart of Average Response Time by Duration of Illusion Test

Time after First Gaze

Figure 4.6 displays a bar chart illustrating the average time after the first gaze for
each duration of the illusion test. Each bar corresponds to a different duration,
as indicated on the x-axis, with the height of the bar representing the average
time after the first gaze in seconds, as indicated on the y-axis. The bars are
color-coded for easy differentiation between the different durations.

From left to right, the durations are 1.0 second, 1.5 seconds, 2.0 seconds, 2.5
seconds, and 3.0 seconds. The corresponding average times after the first gaze
are approximately 3.28 seconds, 3.95 seconds, 4.50 seconds, 4.35 seconds, and
3.67 seconds, respectively.
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Figure 4.6: Bar Chart of Average Time After First Gaze by Duration of Illusion
Test

Time gazed on point

Figure 4.7 displays a bar chart illustrating the average time gazed on the chosen
point for each duration of the illusion test. Each bar corresponds to a different
duration, as indicated on the x-axis, with the height of the bar representing the
average time gazed on the chosen point in seconds, as indicated on the y-axis.
The bars are color-coded for easy differentiation between the different durations.

From left to right, the durations are 1.0 second, 1.5 seconds, 2.0 seconds, 2.5
seconds, and 3.0 seconds. The corresponding average times gazed on the chosen
point are approximately 1.50 seconds, 1.70 seconds, 1.86 seconds, 1.85 seconds,
and 1.75 seconds, respectively.
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Figure 4.7: Bar Chart of Average Time Gazed on Chosen Point by Duration of
Illusion Test

Wrong answers

Figure 4.8 displays a bar chart illustrating the average number of wrong an-
swers for each duration of the illusion test. Each bar corresponds to a different
duration, as indicated on the x-axis, with the height of the bar representing
the average number of wrong answers, as indicated on the y-axis. The bars are
color-coded for easy differentiation between the different durations.

From left to right, the durations are 1.0 second, 1.5 seconds, 2.0 seconds, 2.5
seconds, and 3.0 seconds. The corresponding average numbers of wrong answers
are approximately 0.20, 0.18, 0.17, 0.15, and 0.18, respectively.
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Figure 4.8: Bar Chart of Average Number of Wrong Answers by Duration of
Illusion Test

4.4.2 Duration Illusion Discussion

The results of the duration tests provide an intriguing look at how the speed of
an illusion influences response times, the time after the first gaze, time gazed
on the point, and the number of incorrect responses. These results could offer
crucial insights when considering the “Time Course of Visual Attention”.

The response time data reveals that all durations (1.0, 1.5, 2.0, 2.5, and 3.0
seconds) resulted in average response times ranging from approximately 8.35
to 9.26 seconds, with the 1.5-second duration being the slowest. This could
suggest that a moderately fast-paced illusion, such as the 1.0-second duration,
can prompt quicker responses, aligning with the concept of transient attention
in the “Time Course of Visual Attention”, where quick, abrupt changes are
noticed faster [23].

The time after the first gaze and the time gazed on the point both increased
for longer durations, indicating that longer illusion durations might encourage
participants to fixate longer on the stimuli. This could be an indicator of sus-
tained attention, another aspect of the “Time Course of Visual Attention” [21].

Lastly, the number of incorrect responses slightly decreased as the duration
increased, indicating that slower illusions may lead to fewer mistakes, possibly
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due to giving participants more time to process the visual information [22].
These findings highlight the importance of the illusion’s duration in a web-

based application aiming to enhance visual-spatial attention. Further research
could delve into how variations in duration affect other aspects of visual atten-
tion and how these could be optimized to promote better visual-spatial atten-
tion.

4.5 Illusion: recolor

4.5.1 Recolor Results

Total response time

Figure 4.9 is a bar plot that illustrates the average response time for each color
transition during the “Recolor” illusion tests. The bars’ color gradients represent
the transitions between the two colors. For instance, a bar transitioning from
red to blue indicates that the original chosen point color was red, and it was
animated to turn blue during the test.

The average response times for the color transitions are as follows:

• Blue to Green: 11.44 seconds

• Blue to Orange: 6.76 seconds

• Blue to Red: 8.55 seconds

• Blue to Violet: 17.61 seconds

• Blue to Yellow: 6.72 seconds

• Green to Orange: 11.67 seconds

• Green to Red: 10.06 seconds

• Green to Violet: 7.51 seconds

• Green to Yellow: 13.57 seconds

• Orange to Yellow: 10.30 seconds

• Red to Orange: 23.08 seconds

• Red to Violet: 10.28 seconds

• Red to Yellow: 10.08 seconds

• Violet to Orange: 9.43 seconds

• Violet to Yellow: 7.37 seconds
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These values represent the average time it takes for a user to respond when
the color transition occurs from one to the other. For example, it takes on
average 11.44 seconds for a user to respond when the color transition is from
blue to green. The color transitions are sorted alphabetically by the color names.

Figure 4.9: Average Response Time for Each Color Transition in the “Recolor”
Illusion Tests

Time after First Gaze

Figure 4.10 is a bar plot that illustrates the average times after the first gaze
for each color transition in the “Recolor” test. The color of each bar represents
the color transition, ranging from the initial color to the final color. The y-axis
shows the average time in seconds after the first gaze, and the x-axis lists each
color transition.

• Blue to Green: 3.41 seconds

• Blue to Orange: 2.50 seconds

• Blue to Red: 6.93 seconds

• Blue to Violet: 10.78 seconds
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• Blue to Yellow: 1.78 seconds

• Green to Orange: 5.60 seconds

• Green to Red: 6.73 seconds

• Green to Violet: 1.60 seconds

• Green to Yellow: 5.73 seconds

• Orange to Yellow: 5.88 seconds

• Red to Orange: 10.44 seconds

• Red to Violet: 4.46 seconds

• Red to Yellow: 4.28 seconds

• Violet to Orange: 6.73 seconds

• Violet to Yellow: 2.14 seconds

These values represent the average time after the first gaze for each color
transition in the “Recolor” test. For example, the average time for a user to
respond after the first gaze is 3.41 seconds for the color transition from blue to
green. The color transitions are sorted alphabetically by the color names.
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Figure 4.10: Average Time After First Gaze for Each Color Transition in the
“Recolor” Illusion Tests

Time gazed on point

Figure 4.11 is a bar plot that illustrates the average time gazed on the chosen
point for each color transition during the “Recolor” illusion tests. The bars’
color gradients represent the transitions between the two colors. For instance, a
bar transitioning from red to blue indicates that the original chosen point color
was red, and it was animated to turn blue during the test.

The average times gazed on the chosen point for the color transitions are as
follows:

• blue to green: 1.48 seconds

• blue to orange: 1.66 seconds

• blue to red: 1.68 seconds

• blue to violet: 1.54 seconds

• blue to yellow: 1.56 seconds

• green to orange: 1.57 seconds
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• green to red: 1.59 seconds

• green to violet: 1.65 seconds

• green to yellow: 1.54 seconds

• orange to yellow: 1.56 seconds

• red to orange: 1.65 seconds

• red to violet: 1.52 seconds

• red to yellow: 1.61 seconds

• violet to orange: 1.62 seconds

• violet to yellow: 1.67 seconds

These values represent the average time a user gazes on the chosen point
when the color transition occurs from one to the other. For example, users gaze
at the chosen point for an average of 1.48 seconds when the color transition is
from blue to green. The color transitions are sorted alphabetically by the color
names.

Figure 4.11: Average Time Gazed on Chosen Point for Each Color Transition
during Recolor Test

63



Wrong answers

Figure 4.12 is a bar plot that illustrates the average number of wrong answers
for each color transition during the “Recolor” illusion tests. The colors of the
bars represent the transitions between the two colors. For example, a bar tran-
sitioning from blue to green indicates that the original chosen point color was
blue, and it was animated to turn green during the test.

The average number of wrong answers for the color transitions are as follows:

• Blue to Green: 0.250 wrong answers

• Blue to Orange: 0.105 wrong answers

• Blue to Red: 0.158 wrong answers

• Blue to Violet: 0.163 wrong answers

• Blue to Yellow: 0.037 wrong answers

• Green to Orange: 0.155 wrong answers

• Green to Red: 0.309 wrong answers

• Green to Violet: 0.172 wrong answers

• Green to Yellow: 0.111 wrong answers

• Orange to Yellow: 0.158 wrong answers

• Red to Orange: 0.326 wrong answers

• Red to Violet: 0.111 wrong answers

• Red to Yellow: 0.141 wrong answers

• Violet to Orange: 0.176 wrong answers

• Violet to Yellow: 0.122 wrong answers

These values represent the average number of wrong answers for a user when
the color transition occurs from one to the other. For example, on average, users
give 0.250 wrong answers when the color transition is from blue to green. The
color transitions are sorted alphabetically by the color names.
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Figure 4.12: Average Number of Wrong Answers for Different Color Transitions
in “Recolor” Illusion Tests

4.5.2 Recolor Discussion

The results from the “Recolor” illusion test give a comprehensive understanding
of how color transitions can influence response times, gaze patterns, and error
rates. They directly support and enhance several existing theoretical models.

Starting with the total response time, we see varying results depending on
the color transitions. It’s particularly noteworthy that transitions involving
closely related colors, such as red to orange, required the longest response time.
This suggests that closely related colors, despite their warm characteristics that
would typically command attention, can present detection challenges. This
observation can be explained through the lens of “Signal Detection Theory”.
This theory posits that the ability to discern between a signal (color change)
and noise (static color) can be affected by the signal’s intensity or, in this case,
its similarity to the noise. In other words, the color change from red to orange
might not be salient enough to be immediately detected, thus increasing the
response time.

Conversely, when color transitions were between warm and cold colors, such
as blue to orange, response times were faster. The high contrast between these
types of colors made the change more noticeable and thus quicker to respond
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to.
Regarding the time after the first gaze, some color transitions, such as blue

to violet, induce longer gaze times than others. This can be associated with
“Eye Movement and Decision Making” processes. The theory explains that
the amount of time spent gazing at a point after initial fixation can indicate
the cognitive load associated with processing the information at that point.
In this case, the cognitive load might be higher for certain color transitions
(particularly between cold colors, like blue to violet), possibly due to their less
attention-grabbing characteristics compared to warm colors.

The “Attentional Capture” theory helps interpret our results on the average
time gazed on the chosen point. Certain color transitions seem to retain users’
attention longer, potentially due to their saliency level. Notably, the change
from blue to green, despite being a transition between cold colors, held the
user’s gaze for longer periods. This could be due to the stark contrast between
these two colors, resulting in a more salient visual stimulus that captures and
holds attention.

Finally, the “Saliency Map Models” can be related to our observations from
the average number of wrong answers. It’s interesting to see that the number
of wrong answers increases for transitions involving closely related colors. As
per the model, stimuli that deviate significantly from their surroundings in
color, orientation, or intensity tend to be more salient. Therefore, when color
transitions involve similar colors (like red to orange), they might not be salient
enough, leading to a higher likelihood of errors.

In summary, these findings underscore the intricate dynamics of color per-
ception and attention. They suggest that both the choice of colors and their
transitions play pivotal roles in illusions intended to capture and guide attention.

4.6 Illusion: reshape

4.6.1 Reshape Results

Total response time

Figure 4.13 is a scatter plot that illustrates the average response time for each
shape transition during the “Reshape” illusion tests.

The average response times for the shape transitions are as follows:

• Circle: 19.07 seconds

• Square: 14.01 seconds

• Triangle: 10.33 seconds

These values represent the average time it takes for a user to respond when
the shape transition occurs. For instance, it takes on average 19.07 seconds for
a user to respond when the shape transition is to a circle. The shapes are sorted
alphabetically by the shape names.
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Figure 4.13: Average Response Time for Different Shape Transitions in the
“Reshape” Illusion Test

Time after First Gaze

Figure 4.14 is a scatter plot that illustrates the average time after the first
gaze for each shape during the “Reshape” illusion tests. Each point in the plot
represents a shape - circle, square, or triangle. The Y-coordinate of the point
denotes the average time after the first gaze for that shape.

The average times after the first gaze for the shapes are as follows:

• Circle: 12.12 seconds

• Square: 7.59 seconds

• Triangle: 4.15 seconds

These values represent the average time it takes for a user to respond after
first gazing at the shape when the shape transition occurs. For instance, it takes
on average 12.12 seconds for a user to respond after first gazing at the shape
when the shape transition is to a circle.
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Figure 4.14: Average Time After First Gaze for Different Shapes during the
“Reshape” Illusion Tests

Time gazed on point

Figure 4.15 is a scatter plot that illustrates the average time gazed on the chosen
point for each shape during the “Reshape” illusion tests. Each point in the plot
represents a shape - circle, square, or triangle. The Y-coordinate of the point
denotes the average time gazed on the chosen point for that shape.

The average times gazed on the chosen point for the shapes are as follows:

• Circle: 3.95 seconds

• Square: 2.47 seconds

• Triangle: 2.16 seconds

These values represent the average time a user spends gazing at the chosen
point when the shape transition occurs. For instance, on average, users spend
3.95 seconds gazing at the chosen point when the shape transition is to a circle.
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Figure 4.15: Average Time Gazed on the Chosen Point for Different Shapes
during the “Reshape” Illusion Tests

Wrong answers

Figure 4.16 is a scatter plot that illustrates the average number of wrong answers
provided by users for each shape during the “Reshape” illusion tests. Each point
in the plot represents a shape - circle, square, or triangle. The Y-coordinate of
the point denotes the average number of wrong answers for that shape.

The average numbers of wrong answers for the shapes are as follows:

• Circle: 0.622 wrong answers

• Square: 0.277 wrong answers

• Triangle: 0.261 wrong answers

These values represent the average number of wrong answers provided by
users when the shape transition occurs. For instance, when the shape transition
is to a circle, users provided an average of approximately 0.622 wrong answers.
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Figure 4.16: Average Number of Wrong Answers for Different Shapes during
the “Reshape” Illusion Tests

4.6.2 Reshape Discussion

Analyzing the data collected during the “Reshape” illusion tests, the results
revealed patterns of behavior with respect to different shapes - circle, square,
and triangle. The measurements of interest were the total response time, the
time after the first gaze, the time gazed on the point, and the average number
of wrong answers provided by users.

For the total response time, the data showed that we took the longest to
respond when the shape transitioned to a circle (19.07 seconds), followed by the
square (14.01 seconds), and the triangle (10.33 seconds). A similar pattern was
observed for the time after the first gaze, with the circle (12.12 seconds) requiring
more time than the square (7.59 seconds) and the triangle (4.15 seconds).

The average time spent gazing on the point was also highest for the circle
(3.95 seconds), followed by the square (2.47 seconds) and the triangle (2.16
seconds). The circle shape also led to the highest average number of wrong
answers (0.622), with the square and triangle shapes resulting in fewer errors
(0.277 and 0.261 wrong answers, respectively).

The obtained data could be examined in light of existing psychological and
cognitive models, such as the Signal Detection Theory, Attentional Capture, Eye
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Movement and Decision Making, and Saliency Map Models. For instance, Signal
Detection Theory might suggest that the increased response time and number of
errors associated with the circle might be due to the shape’s perceptual similarity
to a square, causing ambiguity and making the detection of a shape change more
difficult.

In terms of Attentional Capture and Saliency Map Models, these results
might imply that a triangle, being more distinct and arguably more “salient”
than the other two shapes, captures attention more readily. This could po-
tentially explain why transitions to a triangle result in faster response times,
shorter gaze durations, and fewer wrong answers.

While the Eye Movement and Decision Making model might suggest that
participants may take longer to make a decision when the shape is a circle due
to its similarity with a square, leading to prolonged gaze times and a higher
number of errors.

Unfortunately, an oversight in the experimental design led to a crucial piece
of data not being collected: the initial shape of the point prior to the transition.
This missing data could have provided valuable insights into the comparative
difficulty or ease of detecting transitions between specific pairs of shapes. For ex-
ample, transitions between the circle and square, which are perceptually similar,
might be harder to detect compared to transitions involving the more distinct
triangle shape. Thus, the hypothesis could have been that transitions involving
a triangle would result in faster response times, shorter gaze durations, and
fewer errors.

While it is unfortunate that this data was not collected, this oversight serves
as a crucial learning experience in the research process. Future studies should
consider collecting this information to offer a more nuanced understanding of
how different shape transitions impact visual attention and perception. It also
serves as a reminder of the importance of comprehensive data collection in
experimental design, a lesson that will be carried forward in future research
endeavors.

4.7 Illusion: resize

4.7.1 Resize Results

Total response time

Figure 4.17 is a scatter plot that illustrates the average response time for each
resize value during the “Resize” illusion tests. Each point in the plot represents
a resize value - 0.5, 0.67, 1.5, and 2. The Y-coordinate of the point denotes the
average response time for that resize value.

The average response times for the resize values are as follows:

• Resize 0.5: 8.51 seconds

• Resize 0.67: 10.29 seconds
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• Resize 1.5: 7.90 seconds

• Resize 2: 6.02 seconds

These values represent the average time it takes for a user to respond when
the resize value changes. For instance, it takes on average 8.51 seconds for a user
to respond when the resize value is 0.5. The size of the marker in the scatter
plot corresponds to the resize value.

Figure 4.17: Average Response Time for Different Resize Values during the
“Resize” Illusion Tests

Time after First Gaze

Figure 4.18 is a scatter plot that demonstrates the average time taken after the
first gaze for each resize value during the “Resize” illusion tests. Each point in
the plot represents a resize value - 0.5, 0.67, 1.5, and 2. The Y-coordinate of
the point denotes the average time after the first gaze for that resize value.

The average times after the first gaze for the resize values are as follows:

• Resize value 0.5: 3.37 seconds

• Resize value 0.67: 4.96 seconds
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• Resize value 1.5: 4.32 seconds

• Resize value 2: 2.08 seconds

These values represent the average time it takes for a user to respond after
first gazing at the shape when the resize transition occurs. For instance, it takes
on average 3.37 seconds for a user to respond after first gazing at the shape when
the resize value is 0.5.

Figure 4.18: Average Time After First Gaze for Different Resize Values during
the “Resize” Illusion Test

Time gazed on point

Figure 4.19 is a scatter plot that represents the average time users gazed at
the chosen point for different resizing factors during the “Resize” illusion tests.
Each point in the plot corresponds to a resizing factor - 0.5, 0.67, 1.5, and 2.
The Y-coordinate of the point indicates the average time users spent gazing at
the chosen point for that resizing factor.

The average times gazed at the chosen point for the resizing factors are as
follows:

• Resizing Factor 0.5: 1.57 seconds
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• Resizing Factor 0.67: 2.42 seconds

• Resizing Factor 1.5: 1.70 seconds

• Resizing Factor 2: 1.22 seconds

These values represent the average time users spend gazing at the chosen
point when the point is resized by the corresponding factor. For instance, on
average, users spend 1.57 seconds gazing at the chosen point when it is resized
by a factor of 0.5.

Figure 4.19: Average Time Gazed on the Chosen Point for Different Resize
Values during the “Resize” Illusion Test

Wrong answers

Figure 4.20 is a scatter plot that represents the average number of wrong answers
given by users for different resizing factors during the “Resize” illusion tests.
Each point in the plot corresponds to a resizing factor - 0.5, 0.67, 1.5, and 2.
The Y-coordinate of the point indicates the average number of wrong answers
for that resizing factor.

The average numbers of wrong answers for the resizing factors are as follows:

• Resizing Factor 0.5: 0.22 wrong answers
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• Resizing Factor 0.67: 0.09 wrong answers

• Resizing Factor 1.5: 0.08 wrong answers

• Resizing Factor 2: 0.20 wrong answers

These values represent the average number of wrong answers given by users
when the resize value is applied. For instance, on average, users give 0.22 wrong
answers when the resize factor is 0.5.

Figure 4.20: Average Number of Wrong Answers for Different Resize Values
during the “Resize” Illusion Test

4.7.2 Resize Discussion

In the “Resize” illusion test, we observed several trends in the data related to
the average response times, the average times after the first gaze, the average
times gazed on the chosen point, and the average numbers of wrong answers for
different resizing factors.

The average response times indicated that users took the longest time to
respond when the resize value was 0.67 (10.29 seconds), followed by 0.5 (8.51
seconds), 1.5 (7.90 seconds), and 2 (6.02 seconds). This pattern suggests that
users found it most challenging to discern changes when the resizing factor was
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around the mid-range of the scale, possibly due to the “detection threshold”
concept of Signal Detection Theory.

As for the time after the first gaze, users took the most time when the resize
value was 0.67 (4.96 seconds), followed by 1.5 (4.32 seconds), 0.5 (3.37 seconds),
and 2 (2.08 seconds). This might be interpreted through the lens of the Eye
Movement and Decision Making model, suggesting that users needed more time
to make a decision when the resize value was neither very small nor very large
(i.e., 0.67 and 1.5).

The average times gazed on the chosen point followed a similar trend. The
longest gaze time occurred with the resize value of 0.67 (2.42 seconds), followed
by 1.5 (1.70 seconds), 0.5 (1.57 seconds), and 2 (1.22 seconds). This observation
aligns with theories of Attentional Capture, suggesting that middle resize values
may not capture attention as effectively as the extremes.

Lastly, the average number of wrong answers was highest for the resize value
0.5 (0.22 wrong answers), followed by 2 (0.20 wrong answers), 0.67 (0.09 wrong
answers), and 1.5 (0.08 wrong answers). The higher number of errors at the
extreme resize values of 0.5 and 2 might suggest that these levels were more
challenging for the users, potentially due to the substantial change they rep-
resented compared to the original size of the shape, as postulated by Saliency
Map Models.

In summary, these results paint a complex picture of the interplay between
object resizing, attention capture, eye movements, decision-making, and error
rates. They underscore the need for further research to clarify these relationships
and refine the associated theoretical models.

4.8 Illusion: rotate

4.8.1 Rotate Results

Total response time

Figure 4.21 is a scatter plot that displays the average response time for each
rotation direction during the “Rotate” illusion tests. Each point in the plot rep-
resents a rotation direction - clockwise or counterclockwise. The Y-coordinate
of the point signifies the average response time for that rotation direction.

The average response times for the rotation directions are as follows:

• Clockwise: 4.76 seconds

• Counterclockwise: 4.78 seconds

These values depict the average time it takes for a user to respond when the
rotation direction occurs. For instance, it takes on average 4.76 seconds for a
user to respond when the rotation direction is clockwise.
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Figure 4.21: Average Response Time for Different Rotation Directions during
the “Rotate” Illusion Tests

Time after First Gaze

Figure 4.22 is a scatter plot that illustrates the average time after the first gaze
for each rotation direction during the “Rotate” illusion tests. Each point in
the plot represents a rotation direction - clockwise and counterclockwise. The
Y-coordinate of the point denotes the average time after the first gaze for that
rotation direction.

The average times after the first gaze for the rotation directions are as fol-
lows:

• Clockwise: 1.05 seconds

• Counterclockwise: 1.63 seconds

These values represent the average time it takes for a user to respond after
first gazing at the object when the rotation occurs. For instance, it takes on
average 1.05 seconds for a user to respond after first gazing at the object when
the rotation is in the clockwise direction.
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Figure 4.22: Average Time After First Gaze for Different Rotation Directions
during the “Rotate” Illusion Tests

Time gazed on point

Figure 4.23 is a scatter plot that represents the average time users gazed at
the chosen point for different rotation directions during the “Rotate” illusion
tests. Each point in the plot corresponds to a rotation direction - clockwise and
counter-clockwise. The Y-coordinate of the point indicates the average time
users spent gazing at the chosen point for that rotation direction.

The average times gazed at the chosen point for the rotation directions are
as follows:

• Clockwise: 0.83 seconds

• Counter Clockwise: 0.97 seconds

These values represent the average time users spend gazing at the chosen
point when the point is rotated in the corresponding direction. For instance, on
average, users spend 0.97 seconds gazing at the chosen point when it is rotated
counterclockwise.
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Figure 4.23: Average Time Gazed at the Chosen Point for Different Rotation
Directions during the “Rotate” Illusion Test

Wrong answers

Figure 4.24 is a scatter plot that represents the average number of wrong an-
swers users gave during the “Rotate” illusion tests for different rotation direc-
tions. Each point in the plot corresponds to a rotation direction - clockwise and
counter-clockwise. The Y-coordinate of the point indicates the average number
of wrong answers for that rotation direction.

The average number of wrong answers for the rotation directions are as
follows:

• Clockwise: 0.05 wrong answers

• Counter Clockwise: 0.11 wrong answers

These values represent the average number of wrong answers users gave when
the point is rotated in the corresponding direction. For instance, on average,
users gave 0.11 wrong answers when the point is rotated in the counter-clockwise
direction.
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Figure 4.24: Average Number of Wrong Answers for Different Rotation Direc-
tions during the “Rotate” Illusion Test

4.8.2 Rotate Discussion

The data from the “Rotate” illusion tests indicate that the direction of rotation,
whether clockwise or counter-clockwise, does not significantly influence the re-
sponse time, the time after the first gaze, the time gazed at the point, or the
number of wrong answers. Both directions resulted in relatively similar values
across these parameters, suggesting that the directionality of rotation might not
be a significant factor in capturing attention or influencing decision making.

Within the context of the Attentional Capture theory, the rotation of an
object could be an abrupt and salient enough event to capture the attention of
the user. However, the similar response times for both directions suggest that
the directionality of the rotation may not provide an additional unique feature
to further enhance attentional capture.

In terms of Signal Detection Theory, our ability to discern between a signal
and noise is likely not affected by the direction of the rotation, which might
explain why response times for both rotation directions were similar.

Regarding Eye Movement and Decision Making, the direction of the rotation
might not provide a strong enough stimulus to create a gaze bias or significantly
alter the decision-making process, which could explain the similar times after
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the first gaze and time gazed at the point for both rotation directions.
Similarly, the direction of rotation does not seem to significantly affect

saliency, as proposed by Saliency Map Models, which could account for the
similar user response times and gaze durations observed for both rotation di-
rections.

Despite these overall similarities, there were slightly more wrong answers for
the counter-clockwise direction than for the clockwise one. This difference, even
though small, could possibly indicate a mild effect of rotation direction on users’
accuracy. However, further research would be needed to definitively conclude
the nature of this relationship.

These interpretations should be understood within the context of the average
values, and individual variations in perception and cognitive processing are not
explicitly accounted for in this discussion. Therefore, individual results might
vary, and further investigations could be valuable in providing a more nuanced
understanding of the effects of rotation direction in visual illusions.

4.9 Illusion: blink

4.9.1 Blink Results

Total response time

Figure 4.25 is a scatter plot that visualizes the average response time for the
“blink” illusion test. The single data point on the plot represents the average
response time across all “blink” tests. From this data, we can observe that the
average response time for the “blink” illusion test is approximately 8.36 seconds.
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Figure 4.25: Average Response Time for the “Blink” Illusion Test

Time after First Gaze

Figure 4.26 is a scatter plot that visualizes the average time it took for partici-
pants to respond after they first gazed at a point during the “Blink” illusion test.
The single data point on the plot represents the average response time across all
“Blink” tests. From this data, we can observe that the average response time
after the first gaze for the “Blink” illusion test is approximately 3.46 seconds.
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Figure 4.26: Average Time After First Gaze for “Blink” Illusion Test

Time gazed on point

Figure 4.27 is a scatter plot that illustrates the average time participants spent
gazing at the chosen point during the “Blink” illusion test. The solitary data
point on the graph denotes this average time, calculated across all “Blink” tests.
The data suggests that the participants, on average, gazed at the chosen point
for approximately 1.53 seconds during the “Blink” illusion test.
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Figure 4.27: Average Time Gazed on Chosen Point during the “Blink” Illusion
Test

Wrong answers

Figure 4.28 is a scatter plot that visualizes the average number of wrong answers
for the “blink” illusion test. The single data point on the plot represents the
average number of wrong answers across all “blink” tests. From this data, we
can observe that the average number of wrong answers for the “blink” illusion
test is approximately 0.18.
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Figure 4.28: Average Number of Wrong Answers for the “Blink” Illusion Test

4.9.2 Blink Discussion

The data obtained from the “Blink” illusion tests indicates that the introduction
of a blinking eye icon, representing the chosen point, could have a noticeable
effect on response time, gaze duration, and accuracy in user responses.

In terms of response time, the average total response time for the “Blink”
illusion test was approximately 8.36 seconds. This extended response time could
be attributed to the unique feature of the blinking eye icon, which may have
captured the user’s attention, as described by the Attentional Capture theory.
This theory posits that abrupt or salient changes in a visual environment, such
as the blinking of an eye icon, can effectively draw a user’s attention.

In relation to Eye Movement and Decision Making, the average time it took
for participants to respond after first gazing at the point was about 3.46 seconds.
This suggests that the blinking action of the eye icon may have had an impact
on the gaze bias, and subsequently, the decision-making process of the user.

When considering the Signal Detection Theory, the introduction of a blink-
ing eye icon might have increased the signal-to-noise ratio, making the signal
(the blinking icon) easier to discern from the noise (the rest of the visual envi-
ronment). This could explain the extended average response times.

In the context of Saliency Map Models, the blinking eye icon could have en-
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hanced the saliency of the chosen point, thereby increasing its visual prominence.
This might be reflected in the fact that users, on average, spent approximately
1.53 seconds gazing at the chosen point.

Despite the potential impacts on attention and decision-making processes,
the average number of wrong answers given during the “Blink” illusion test was
relatively low at approximately 0.18. This suggests that despite the potential
distraction or attention-capturing effect of the blinking icon, the overall accuracy
of user responses remained relatively high.

These interpretations are based on average values, and individual differences
in perception and cognitive processing are not explicitly accounted for. Further
studies could help provide a more nuanced understanding of the impacts of the
blinking eye icon in visual illusions.

4.10 Distance to Illusion

4.10.1 Distance to Illusion Results

Rotate

Figure 4.29 presents a scatter plot with a regression line of total response time
versus the distance to the chosen point for the “Rotate” illusion. Each point on
the plot represents an individual test instance, with the distance to the chosen
point in inches along the x-axis and the total response time in seconds along
the y-axis. The points are scattered with varying densities across the plot,
indicating a diverse range of distances and response times in the data.

The orange line through the scatter plot is the regression line, indicating
the best fit linear relationship between the distance to the chosen point and the
total response time. The equation of this line is approximately y = 0.15x+3.20,
where y represents the total response time and x represents the distance to the
chosen point.
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Figure 4.29: Scatter Plot with Regression Line of Total Response Time
vs.Distance to Chosen Point for “Rotate” Illusion

Blink

Figure 4.30 presents a scatter plot with a regression line of total response time
versus the distance to the chosen point for the “Blink” illusion. Each point on
the plot represents an individual test instance, with the distance to the chosen
point in inches along the x-axis and the total response time in seconds along
the y-axis. The points are scattered with varying densities across the plot,
indicating a diverse range of distances and response times in the data.

The orange line through the scatter plot is the regression line, indicating
the best fit linear relationship between the distance to the chosen point and the
total response time. The equation of this line is approximately y = 0.28x+6.32,
where y represents the total response time and x represents the distance to the
chosen point.
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Figure 4.30: Scatter Plot with Regression Line of Total Response Time
vs.Distance to Chosen Point for “Blink” Illusion

Recolor

Figure 4.31 presents a scatter plot with a regression line of total response time
versus the distance to the chosen point for the “Recolor” illusion. Each point on
the plot represents an individual test instance, with the distance to the chosen
point in inches along the x-axis and the total response time in seconds along
the y-axis. The points are scattered with varying densities across the plot,
indicating a diverse range of distances and response times in the data.

The green line through the scatter plot is the regression line, indicating
the best fit linear relationship between the distance to the chosen point and the
total response time. The equation of this line is approximately y = 0.24x+7.18,
where y represents the total response time and x represents the distance to the
chosen point.
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Figure 4.31: Scatter Plot with Regression Line of Total Response Time
vs.Distance to Chosen Point for “Recolor” Illusion

Resize

Figure 4.32 presents a scatter plot with a regression line of total response time
versus the distance to the chosen point for the “Resize” illusion. Each point on
the plot represents an individual test instance, with the distance to the chosen
point in inches along the x-axis and the total response time in seconds along
the y-axis. The points are scattered with varying densities across the plot,
indicating a diverse range of distances and response times in the data.

The blue line through the scatter plot is the regression line, indicating the
best fit linear relationship between the distance to the chosen point and the total
response time. The equation of this line is approximately y = 0.02x+7.61, where
y represents the total response time and x represents the distance to the chosen
point.

89



Figure 4.32: Scatter Plot with Regression Line of Total Response Time
vs.Distance to Chosen Point for “Resize” Illusion

Reshape

Figure 4.33 presents a scatter plot with a regression line of total response time
versus the distance to the chosen point for the “Reshape” illusion. Each point
on the plot represents an individual test instance, with the distance to the
chosen point in inches along the x-axis and the total response time in seconds
along the y-axis. The points are scattered with varying densities across the plot,
indicating a diverse range of distances and response times in the data.

The purple line through the scatter plot is the regression line, indicating the
best fit linear relationship between the distance to the chosen point and the total
response time. The equation of this line is approximately y = −0.12x + 12.03,
where y represents the total response time and x represents the distance to the
chosen point.
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Figure 4.33: Scatter Plot with Regression Line of Total Response Time
vs.Distance to Chosen Point for “Reshape” Illusion

4.10.2 Distance to Illusion Discussion

The scatter plots and regression lines for each illusion, produced by the web-
based research tool, allow us to examine the relationship between the total
response time and the distance to the chosen point. In each plot, individual test
instances represent data points, scattered across the chart, indicating a variety
of distances and response times.

For the “Rotate” illusion, the equation for the best fit line, y = 0.15x+3.20,
suggests a positive correlation between the distance to the chosen point and the
total response time. Similarly, the “Blink” illusion, which only has one variation,
presents an equation of y = 0.28x+6.32, indicating a more substantial positive
correlation.

This could be interpreted in the context of Overt vs. Covert Attention.
Overt attention refers to attention that involves eye movements toward the ob-
ject of interest, while covert attention refers to attention without eye movements.
The research tool we have developed can measure these attention types by as-
sessing the distance to the chosen point. A lower distance indicates the illusion
is more directly in front of the observer’s eye, suggesting the measurement of
more covert attention. As the distance to the chosen point increases (which may
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necessitate more overt attention involving eye movements), the total response
time also tends to increase.

On the other hand, “Resize” and “Reshape” illusions show different trends.
The “Resize” illusion indicates a positive, yet smaller correlation with an equa-
tion of y = 0.02x + 7.61. In contrast, the “Reshape” illusion, surprisingly,
presents a negative correlation of y = −0.12x + 12.03, suggesting that as the
distance to the chosen point increases, the total response time decreases. This
could potentially be influenced by the variations within the illusions that might
affect the attention and eye movements of the participants.

These results underscore the utility of the research tool in effectively mea-
suring both overt and covert attention, with the ability to discern the influences
of distance and illusion variation on these attention types. Although these re-
sults indicate the aggregate trend across test instances, they do not account for
individual differences or other factors that could influence response times. Nev-
ertheless, these findings shed light on how different illusions and their variations
can potentially influence how attention is directed and managed.

4.11 General Discussion

In this thesis, an array of visual illusions and their influence on user response
times have been examined individually. The primary objective was to delve into
the understanding of visual attention mechanisms and decision-making processes
in the face of different visual stimuli, encompassing Resize, Reshape, Recolor,
Rotate, and Blink illusions.

The custom-built, web-based research tool used throughout this research ef-
fectively measured the total response time, the time after the first gaze, the
time spent gazing at the chosen point, and the number of wrong answers. This
provided a detailed understanding of how visual illusions might manipulate per-
ception and impact cognitive processing.

The findings of this research are comprehensive and informative. For in-
stance, the average response times during the Rotate illusion tests did not sig-
nificantly vary between different rotation directions. Similarly, the Blink illusion
tests resulted in average response times and error rates that provided unique
insights into this specific stimulus. On the other hand, the variations in illusions
such as Resize and Reshape yielded different impacts on user response times,
revealing the complexity of these visual phenomena.

Furthermore, the examination of the relationship between the distance to
the illusion and the total response time revealed intriguing patterns related to
overt and covert attention. A decrease in response time was observed as the
distance to the illusion decreased, indicating that objects directly in front of
the viewer (suggestive of covert attention) may be processed more quickly than
peripheral stimuli (suggestive of overt attention).

These results not only enhance our understanding of visual perception, at-
tention, and decision-making, but also provide valuable insights for fields like
software design, advertising, and education, where visual presentation and user
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interaction are key.
However, this research also presents some limitations. The data represents

an aggregate response and doesn’t consider individual differences in perception
and cognitive processing. Therefore, future work could explore these individual
variations and their potential influence on the effects of visual illusions.

Furthermore, while the data provide valuable insights, they don’t fully elu-
cidate the underlying cognitive processes at play. Although models such as the
Signal Detection Theory and Saliency Map Models offer valuable frameworks
for understanding these processes, a more thorough investigation is necessary
to comprehend the intricate cognitive phenomena involved.

In conclusion, this thesis provides a comprehensive exploration of visual il-
lusions and their impact on user response times. The results highlight the intri-
cacies of visual perception and underscore the vast potential for future research
in this domain.
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Chapter 5

Conclusion

5.1 Research Questions, Hypotheses, and Key
Findings

The research primarily focused on the potential benefits of a web-based tool for
understanding and enhancing visual-spatial attention, increasing participant di-
versity, influencing user engagement and performance through design choices,
and improving the overall user experience. The hypotheses derived from these
questions proposed the potential positive impacts of a web-based research tool
for advancing visual-spatial attention and visual cognition research. Each hy-
pothesis corresponds to a set of key findings:

5.1.1 Hypothesis 1: Enhancement of Visual-Spatial At-
tention

The hypothesis posited that a web-based tool can enhance visual-spatial atten-
tion, based on the premise that the interactive and immersive nature of visual
illusions presented in a digital environment can lead to significant attentional
engagement. Key findings discussed in section 4.2.2 substantiate this hypothe-
sis. The data showed that all participants demonstrated an increase in session
scores over time, indicative of an enhancement in users’ visual-spatial attention
via the application. The positive regression slopes for all participants (2.94 for
the adult, 4.75 for young adult 1, and 1.90 for young adult 2) support the notion
that cognitive abilities can be improved through targeted exercises, which point
to neuroplastic changes in the brain.

5.1.2 Hypothesis 2: Increased Participant Diversity

The second hypothesis suggested that the web-based nature of the tool would
facilitate a more diverse participant base, thus yielding more generalizable data.
The key finding was that the online nature of the tool did indeed result in a
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broader and more diverse participant base. This diversity yielded a robust
and generalizable dataset that provided insights into a wide range of individual
perceptual and cognitive processes. This confirmed the utility of web-based
tools for reaching and engaging a larger audience in visual cognition research.

5.1.3 Hypothesis 3: Impact of Design Choices on User
Engagement and Performance

The third hypothesis proposed that design choices, such as animation, color,
and shape variations, could significantly influence user engagement and perfor-
mance in visual illusion tasks. The key findings supported this hypothesis. For
instance, the introduction of a blinking icon in the “Blink” illusion resulted
in longer response times and gaze durations, indicative of increased engage-
ment. Variations in shape, size, and color in other illusions also influenced
user responses, confirming the effect of design choices on user engagement and
performance.

5.1.4 Hypothesis 4: Positive User Experience

The final hypothesis was that the user experience with the web-based tool would
be largely positive, indicating user acceptance and potential for widespread
adoption in visual cognition research. The key finding was that the user feedback
on the tool was largely positive, suggesting a high level of user acceptance.
This indicates that users found the tool accessible and engaging, supporting its
potential for widespread adoption in visual cognition research.

In summary, the experiment provided robust evidence in support of all the hy-
potheses. This demonstrates the potential of web-based tools for understanding
and enhancing visual-spatial attention research, increasing participant diver-
sity, effectively manipulating user engagement and performance through design
choices, and delivering a positive user experience.

5.2 Contribution of this research to the field

The findings of this research contribute to the field of visual cognition by demon-
strating the potential benefits of web-based research tools. By increasing par-
ticipant diversity, capturing a wide range of visual attention parameters, and
creating an engaging user experience, this tool has shown the potential to ad-
vance the quality and scope of research in visual cognition.

5.3 Suggestions for future research

Future research can leverage the findings of this research by utilizing web-based
tools to explore other aspects of visual cognition. Moreover, future work could
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further optimize the design of such tools to improve user engagement and per-
formance. Additionally, there is a potential to further study how such tools can
be used in practical settings, such as in cognitive therapy or rehabilitation.
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