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Abstract 

 

Hidden stratification represents a phenomenon in which a training dataset 

contains unlabeled (hidden) subsets of cases that may affect machine learning 

model performance. Machine learning models that ignore the hidden stratification 

phenomenon--despite promising overall performance measured as accuracy and 

sensitivity--often fail at predicting the low prevalence cases, but those cases remain 

important. In the medical domain, patients with diseases are often less common 

than healthy patients, and a misdiagnosis of a patient with a disease can have 

significant clinical impacts. Therefore, to build a robust and trustworthy CAD 

system and a reliable treatment effect prediction model, we cannot only pursue 

machine learning models with high overall accuracy, but we also need to discover 

any hidden stratification in the data and evaluate the proposing machine learning 

models with respect to both overall performance and the performance on certain 

subsets (groups) of the data, such as the ‘worst group’.  

In this study, I investigated three approaches for data stratification: a novel 

algorithmic deep learning (DL) approach that learns similarities among cases and 

two schema completion approaches that utilize domain expert knowledge. I further 

proposed an innovative way to integrate the discovered latent groups into the loss 

functions of DL models to allow for better model generalizability under the domain 

shift scenario caused by the data heterogeneity.  
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My results on lung nodule Computed Tomography (CT) images and breast 

cancer histopathology images demonstrate that learning homogeneous groups 

within heterogeneous data significantly improves the performance of the computer-

aided diagnosis (CAD) system, particularly for low-prevalence or worst-

performing cases. This study emphasizes the importance of discovering and 

learning the latent stratification within the data, as it is a critical step towards 

building ML models that are generalizable and reliable. Ultimately, this discovery 

can have a profound impact on clinical decision-making, particularly for low-

prevalence cases. 
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CHAPTER 1. Introduction 

 

Hidden data stratification is a significant obstacle to build robust and 

trustworthy machine learning models. For example, in computer-aided diagnosis 

(CAD) tasks, despite extraordinary overall model performance reported in the 

literature, the heterogeneity in the visual appearance of medical images often causes 

machine learning models fail at predicting certain cases that could have critical 

clinical impact. In the context of treatment effect prediction, patient heterogeneity 

can cause contradictory conclusions across different prediction models. Therefore, 

discovering and addressing the hidden stratification phenomenon are important 

steps towards building generalizable and reliable machine learning models.  

My dissertation work focuses on the following two research questions (RQs) 

in the context of medical diagnosis and treatment:  

RQ1: Are there any latent data representations that can capture semantically 

meaningful groups with respect to different diagnoses?  

RQ2: Is the integration of semantically meaningful groups into machine 

learning diagnostic models boosting the models’ generalization capabilities?  

Section 1.1 introduces the hidden or latent stratification concept, why hidden 

stratification causes model degradation, and briefly describe common techniques 

to discover hidden stratification. Section 1.2 presents an overview of the Group 
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Distributionally Robust Optimization (gDRO), a representative model optimization 

method aiming to mitigate the hidden stratification problem. Section 1.3 

summarizes the machine learning and medical imaging contributions of this work.  

1.1 Hidden Stratification 

 

Hidden stratification represents a phenomenon in which a training dataset 

contains unlabeled (hidden) subsets of cases that may affect machine learning 

model performance [1]. The causes of hidden stratification can be a combination of 

poor label collection process, low prevalence of a hidden data group, spurious 

correlation between an object of interest and image background, and subtle 

discriminative features across hidden subgroups [1]. Figure 1.1 shows four hidden 

stratification examples from two public available datasets [2, 3].  
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Figure 1.1 An illustration of hidden stratification. Images (A) and (B) were labeled 

as “Waterbird”: (A) Waterbird appearing against a water background (majority of 

the cases), and (B) Waterbird appearing against a land background (minority cases). 

Image (C) and (D) were labeled as “Landbird”: (C) Landbird at front of land 

background (majority of the case), and (D) Landbird at front of water background. 

Images (E) and (F) were labeled as “Malignant” lung nodules: (E) typical malignant 

nodule with ovoid shape and spiculation (majority of the cases), and (F) malignant 

nodule that looks like a typical benign nodule that has round shape and a sharp 

margin (minority of the cases). Images (G) and (H) were labeled as “Benign” lung 

nodules: (G) typical Benign nodule and (H) Benign nodule that looks like a 

malignant nodule.  

Machine learning models that ignore the hidden stratification phenomenon--

despite promising overall performance measured as accuracy and sensitivity--often 

fail at predicting the low prevalence, but those cases are still important. For 

example, for a waterbird classification task, most classification models can 

correctly classify waterbirds against water backgrounds, but these models 

frequently make mistakes on classifying waterbirds in front of land backgrounds 
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[2]. In this example, we refer to “waterbirds” and “landbirds” as superclass labels, 

and we call ‘waterbirds in front of water’, ‘waterbirds in front of land’, ‘landbirds 

in front of land’, and ‘landbirds in front of water’ as subclass labels. In most real-

world scenarios, annotators only provide coarse-grained super-class labels without 

detailed subclass labels [1, 4, 5].   

In the medical domain, patients with diseases are often less common than 

healthy patients, and a misdiagnosis of a patient with a disease can have significant 

clinical impacts [1]. Therefore, to build a robust and trustworthy computer-aided 

diagnosis system (CAD) and a reliable treatment effect prediction model, we cannot 

only pursue machine learning models with high overall accuracy, but we also need 

to discover any hidden stratification in the data and evaluate the proposing machine 

learning models with respect to both overall performance and the performance on 

certain subsets (groups) of the data, such as the ‘worst group’ performance. 

Rayner et al. [1] summarized three methods for discovering hidden 

stratification: schema completion, error auditing and algorithmic measurement. 

Schema completion requires annotators to provide a more detailed set of sub-class 

labels. For example, before schema completion, the label of the image (B) in Figure 

1.1 is "water bird", but after schema completion, the label is "water bird on land". 

Error auditing asks auditors examine consistently misclassified cases by machine 

learning models and observe potential hidden patterns in the data. For example, in 
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the context of chest X-ray image pathology detection, Rayner et al. [1] observed 

that pneumothorax cases without chest drains are prevalent among false negative 

cases. Therefore, they further labeled two sub-class labels for the pneumothorax 

superclass label: "chest drain" and "no chest drain". They observed that the 

classification performance on the "no chest drain" instances is significantly lower 

compared to other subclasses. Algorithm measurement, which is the focus in this 

study, uses unsupervised methods, such as clustering, to discover unlabeled 

subgroups in the data. Both schema completion and error auditing are time 

consuming, and the auditor’s ability to recognize unlabeled sub-class labels or 

anomalous patterns is the only factor to decide the success of hidden stratification 

discovery. On the contrary, algorithm measurement reduces human efforts and 

identifies hidden patterns and subgroups in the data from learned data 

representations.  

In this study, I propose to build a generalizable hidden stratification discovery 

framework that will be validated against two different scenarios with respect to the 

data acquisition modality: lung nodule computed tomography (CT) scans from the 

NIH/NCI Lung Image Database Consortium (LIDC) dataset [3] and breast 

histopathology images [6]. My first hypothesis (H1) is: 



18 
 

H1: Clustering-based stratification can reveal semantically meaningful latent 

groups within the data that correspond to the categorization perceived by the 

domain experts. 

1.2 Distributionally Robust Optimization (DRO) 

 

In the context of building machine learning models, the hidden stratification 

problem can be viewed as a type of domain shift or out-of-distribution (OOD) 

generalization problem in which subsets of the data distribution changed in the 

testing domain. Among all OOD generalization techniques, optimization methods 

directly guarantee the worst-case performance under distribution shift [7]. 

Distributionally Robust Optimization (DRO) is one of the optimization methods 

and its objective function has two terms: a learner and an adversary. The adversary 

maximizes the expected loss through shifting the test distribution from the training 

distribution as far as possible while the learner minimizes the adversarial expected 

loss [8]. Deviated from DRO, Sagawa et al. [2] proposed Group Distributionally 

Robust Optimization (gDRO) method that optimizes the worst group performance 

instead of the worst case performance and showed that a regularized gDRO method 

achieves better generalization results compared with DRO result. Sohoni et al. [4] 

implemented gDRO on multiple real world benchmark datasets and showed that 

gDRO can significantly reduce the model degradation caused by the hidden 

stratification. My second hypothesize (H2) is:  
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H2: Integrating stratification information into machine learning models can 

significantly improve the CAD generalization ability measured by both the overall 

and worst-group accuracy.  

1.3  Contributions 

 

My contributions are:  

• It is necessary to address the hidden stratification problem as indicated 

by the different ERM model performance across stratification groups 

in a malignancy classification task. For the LIDC dataset, a high degree 

of overlap between the clustering-based stratification results and 

malignancy likelihood stratification provided by radiologists indicate 

that my algorithmic hidden stratification discovery method results are 

aligned with domain experts’ annotations, which is in support of my 

first hypothesis.  

• The integration of the stratification groups into malignancy 

classification models, and the systematic evaluation of the model 

performance with various model inputs, deep learning architectures 

and training strategies show that, under the domain shift scenario 

caused by the disease heterogeneity, the model performance is boosted 

by 5% as measured by the worst group accuracy when compared with 
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model without subgroup learning, which is in support of my second 

hypothesis 2. 
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CHAPTER 2. Related Work 

 

This chapter reviews two main categories of approaches: disease subtype 

discovery (Section 2.1) and domain shift generalization (Section 2.2). As 

mentioned in Chapter 1, hidden stratification can be viewed as a type of domain 

shift or out-of-distribution (OOD) generalization problem in which subsets of the 

data distribution change in the testing domain. Disease subtype discovery 

techniques reveal the hidden stratification phenomena in medical data, and domain 

shift generalization methods mitigate model degradation under domain shift.     

2.1 Disease Subtype Discovery 

 

In most disease subtype discovery studies, these algorithms are based on 

clustering models or their variations with different input features or partition 

methods. The goal of disease subtype discovery is to divide patient populations into 

distinct and relatively homogeneous subgroups (subtypes) [9]. Since the type of 

data plays an important role in selecting appropriate disease discovery models, the 

following review is organized according to different data categories.    

2.1.1 Image Data 

 

Several studies have investigated the brain lesion subtype discovery based on 

magnetic resonance imaging (MRI). Wen et al. [10] first utilized a non-negative 
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matrix factorization algorithm [11] to extract multi-scale, biologically interpretable 

features and then implemented ensemble of support vector machines (SVMs) to 

create a nonlinear polytope that separates healthy and patient group. Each face of 

the polytope represents one subtype. Four subtypes of Alzheimer's disease (AD) 

were identified, and it was observed that the clinical characteristics of these 

subtypes were similar to their neuroanatomical patterns [10].  Ezzati et al. [12] first 

selected important region of interests (ROIs) utilizing principal factor analysis 

(PCA) and then conducted  latent class analysis (LCA) with ROIs as input. They 

discovered four amnestic mild cognitive impairment (aMCI) subgroups and 

characterized them in global atrophy, hippocampus, atrophy and cognitive 

performance scores. Chen et al. [13] extracted intensity, shape and texture features 

from segmented tumor regions and leveraged an autoencoder approach to reduce 

the feature dimensions and to learn the most representative features in latent space. 

They implemented Gaussian Mixture Model (GMM) clustering and found three 

brain tumor subtypes that have different tumor size, heterogeneity and elongation. 

Yang et al. [14] extracted the latent representation from a generative adversarial 

network (GAN) architecture and implemented a semi-supervised clustering 

approach to divide AD patients into two subgroups that have different cortical 

atrophies and focal atrophy patterns.  

Researchers also use MRIs for breast lesion subtype discovery. Wu et al. [15] 

extracted quantitative image features that describe tumor volume, parenchymal 
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enhancement and tumor surrounding parenchymal enhancement. They 

implemented consensus clustering, a combination of k-medoids clustering and 

bootstraps, to partition the breast MRI images into different sub-groups and 

characterized each subtype with intra-tumor heterogeneity and background 

parenchymal enhancement (BPE). Fan et al. [16] et al. extracted texture, intensity 

features and morphological features from breast tumor dynamic contrast-enhanced 

MRI data and used these features as input to a survival analysis model to divide 

patients into subgroups with different survival rates.  

2.1.2 Genome Data 

 

Schulz et al [17] used the Cancer Genome Atlas (TCGA) project dataset [18] 

to discover cancer subtypes. They calculated Shapley Additive Explanations 

(SHAP) value [19] for each instance from a super-class classification task (cancer 

vs. not cancer), and then inputted SHAP values to an agglomerative clustering 

model. In this study, they used six cancer tissue’s immune model-based subtypes 

as the ground truth and reported the adjusted mutual information between the 

subtype ground truth and discovered subtypes from clustering to measure the 

subtype recovery ability. Using the same TCGA dataset, Arslanturk et al. [20] 

addressed the data heterogeneous problem through integrating clustering results 

from qualitative data and quantitative data. For qualitative data, they implemented 

Partition Around Medoids (PAM) clustering with Jaccard Index as distance 
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measurement and for quantitative data, they performed K-means clustering with 

Euclidean distance as distance measurement. They averaged the similarity matrix 

obtained from each cluster and implemented a new clustering algorithm using the 

averaged similarity matrix. They discovered four patient subgroups with different 

survival rates and linked each subgroup with a specific gene biomarker.  

Using microRNA expression data, Vasudevan et al. [21] proposed a max-

flow/min-cut graph clustering approach to detect four glioblastoma multiforme 

(GBM)  subtypes: mesenchymal, classical, proneural, and neural, and they found 

that implementing the max-flow/min-cut graph clustering achieves better clustering 

accuracy when compared with K-means, nonnegtive matrix factorization (NMF), 

and iCluster. Utilizing a similar gene expression dataset, Anderson et al. [22] 

embedded the prior subtype knowledge in a graph structure and incorporated it to 

a deep neural network prediction loss function. They showed that utilizing prior 

subtype information can reduce the variability of breast cancer subtype predictions 

measured as an 5% increase of overlapped identified important genes across 

multiple model training. 

2.1.3 Electronic Health Record (EHR) Data 

 

This line of research uses patient electronic health record (HER) data and most 

studies extract patient representative vectors from time series models such as Long-

Short Term Memory (LSTM) and memory networks (MN). Extracted patient 
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representative vectors are then treated as input to an unsupervised learning model 

to find patient subgroups.   

Using the Parkinson Progression Marker Initiative (PPMI) study data, Zhang 

et al. [23] extracted embeddings from hidden layers of a LSTM model with 

sequential demographics, biospecimen, imaging and clinical features as input and 

then inputted embeddings to a t-Stochastic Neighbor Embedding (t-SNE) algorithm 

with a dynamic time warping (DTW) distance to find patient subtypes. They 

characterized three patient subtypes with different mean values of demographics, 

such as age, duration, and education, and with different mean values of clinical 

features such as Hoehn and Yahr Scale and MDS-Unified Parkinson's Disease 

Rating Scale (MDS-UPDRS). Similarly, to find acute kidney injury (AKI) patient 

subgroups, Xu et al. [24] extracted patient representation vectors from a memory 

networks (MN) trained on the Medical Information Mart for Intensive Care III 

(MIMIC- III) dataset and inputted the embeddings to a t-SNE algorithm. They 

identified three patient subgroups and differentiate these subgroups with age and 

clinical features such as Serum Creatinine (SCr) and Glomerular Filtration Rate 

Test (eGFR).  

Instead of extracting patient embeddings from time sequence models, Xu et al. 

[25] chose the most important clinical features from a Gradient Booting Decision 

Tree (GBDT) and inputted these important features to a hierarchical clustering 
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model. They found three depression patient subgroups that are differentiated in age, 

the frequency of comorbidities and the amount of taken medications.  

2.1.4 Subtype Discovery Evaluation Methods 

 

Typical methods for evaluating the subtype discovery aim to capture three 

important aspects: cluster (subtype) quality, subtype recovery examination, and 

cluster semantic meaning examination.  

Cluster quality measurement metrics include Silhouette Coefficient [17, 21], 

Bouldin Index [17] and the Calinski-Harabaz Index [17]. For Subtype recovery 

examination, when subtype ground-truth is available, discovered subtypes were 

compared with actual subtypes through visual inspection in the PCA space [17], t-

SNE space [23], and through quantitative metrics such as adjusted mutual 

information [17].  In situations where subtype ground-truth is not available, Wen et 

al. and Yang et al. [10, 14] conducted a study where they generated simulation data 

from healthy control samples. The purpose was to examine whether their clustering 

approach could accurately identify the appropriate number of clusters and 

corresponding simulated neuroanatomical patterns. In Wu et al. [15], researchers 

implemented a consensus clustering [26] on training and validation data separately 

and tested if discovered subgroups from training and from validation were similar 

using in-group proportion (IGP) statistic [27]. Wu et al. [15] also used discovered 

subtypes as prediction labels and built a classifier  with an accuracy of 90.6% to 
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predict subclass labels.  Cluster semantic meaning examination requires domain 

knowledge, such as comparing the survivor rate of each cluster [13, 15, 20]  or 

conduct statistical analysis for semantic meaningful features across different 

clusters [12, 15, 23-25].  

2.2 Domain Shift Generalization 

 

Traditional machine learning (ML) methods assume that training and test data 

are identically and independently distributed (i.i.d.). However, contrary to the i.i.d. 

assumption, we often see distribution shift or out-of-distribution situation in which 

the testing data distribution and the training data distribution are different. ML 

algorithms’ performance drops significantly under distribution shift, therefore, how 

to solve the out-of-distribution (OOD) problem has become a crucial research 

direction in the ML community. In this section, I will systematically discuss state-

of-the-art OOD generalization methods and applications to the medical domain.  

Similar to Shen et al. [7], I review OOD generalization literature in four 

categories: Disentangle Representation Learning that aims to learn meaningful 

latent factors from the data, Domain Generalization that aims to learn transferrable 

and robust representations to different domains, Causal and Invariant Learning, and 

Optimization Methods for OOD Generalization. Under each category, I will 

introduce basic concepts, most representative works, and applications to the 

medical domain.  
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2.2.1 Disentangled Representation Learning 

 

Let us consider an example from the medical imaging field and a task of 

detecting lung nodules in computerized tomography (CT) scans. The dataset may 

contain scans with different disease manifestations, showing different nodule 

characteristics under the same malignancy category, and acquired using various 

devices in different hospitals. In this specific task, we aim to extract a representation 

that is equivariant to the lung nodule location in a CT scan and invariant to the 

disease manifestation shift and acquisition shift. In this task, equivariance means 

the representation will change if the lung nodule location changed while invariance 

means the representation will not change when the disease manifestation and 

acquisition methods changed. In order to separate the equivariant and invariant 

variables, we need a disentangled representation learning (DRL) process that is able 

to decompose the input data into disentangled factors (also named as generating 

factors in DRL literature), where each factor corresponds to an important data 

generating factor [28]. In the lung nodule detection example, variables of interest 

are nodule shape, location, texture etc. Among these variables, nodule location is 

an equivariant variable and nodule shape and texture are invariant variables. In this 

section, we will review four different disentanglement architectures: Variational 

Autoencoders (VAEs), Generative Adversarial Networks (GANs), Normalizing 

Flows and Content-Style Disentanglement.  
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2.2.1.1 Variational Autoencoders (VAEs) 

 

One typical DRL architecture is based on Variational Autoencoders (VAEs) 

[29], which is derived from Autoencoders (AEs) neural network architecture [30]. 

AEs consists of an Encoder that transforms high-dimensional data into low-

dimensional representations and a Decoder that maps the representation from the 

bottleneck layer back to a reconstruction of the input. When compared with a 

standard AEs, VAEs have a regularized bottleneck layer, which enforces the 

distributions returned by the encoder to be close to Gaussian distribution. Higgins 

et al. [31] added an additional regularization hyperparameter β (β > 1) into the 

VAEs objective function (β-VAEs) in order to extract the most informative and 

dissimilar latent factors [32]. Increasing β value helps generate better disentangled 

representations but under the sacrifice of image reconstruction fidelity. Kim and 

Mnih [33] introduced the FactorVAE method as a means to achieve a more 

favorable balance between disentanglement and reconstruction quality in β-VAE. 

This approach encourages the representations' distribution to be factorial, thereby 

ensuring independence across dimensions.  

Aforementioned VAEs approaches all assume latent factors are independent, 

while in most scenarios, factors with semantics are causally correlated. CausalVAE 

[34] is a representative work that included a linear Structural Causal Model (SCM) 

in VAEs to transform independent latent factors into causal representations. Shen 
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et al. [35] extended the work of CausalVAE through incorporating a nonlinear SCM 

with a bidirectional generative model.  

To handle sequential data, Zhu et al. [36] proposed a sequential variational 

autoencoder model that enforces the latent variable to be disentangled into a static 

representation and a dynamic representation. In Zhu et al. [36], disentangled 

representations were used for representation swapping and video generation.  

In medical field, sequential VAEs were utilized for disease decomposition [37-

40]. Couronne et al. [37] proposed a generic deep longitudinal model to separate 

the variance caused by Alzheimer’s progression from the inter-patient variability. 

A similar application in Alzheimer’s disease characterizations is Yang et al.’s work 

[41] that they successfully disentangled latent variables into time-variant and time-

invariant components across the entire region of interest (ROI) in the brain. They 

achieved this by incorporating a disease prediction loss into the image 

reconstruction loss function.  Besides disease progression decomposition, VAEs 

have also been applied in medical image classification task. Gyawali et al. [42] 

proposed to first obtain the data embedding from a VAE model in an unsupervised 

learning manner and then follow by a self-ensembling network. Gyawali et al. [42] 

evaluated their model on a public available X-rays dataset [43] for thoracic disease 

study and showed an improved performance over other classification models. 
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2.2.1.2 Generative Adversarial Network (GANs) 

 

The second line of DRL research is based on Generative Adversarial Networks 

(GANs) that consist of a generator and a discriminator. The generator network is 

responsible for generating new samples based on a noise variable. Throughout the 

training process, the generator is trained in an adversarial manner, competing 

against a discriminator that seeks to differentiate between genuine data samples and 

samples generated by the generator [44].  

GANs learn disentangled representations through adding regularization terms, 

and InfoGAN [45] is a representative work that uses GANs for DRL. InfoGAN 

includes an additional term in the loss function aiming at maximizing the mutual 

information between the input noise variables and structured semantic features of 

the data distribution. While InfoGAN is designed for extracting interpretable and 

disentangled latent variables, Mukherjee et al. [46] demonstrated that the cluster 

structure is not retained in the InfoGAN latent space. Therefore, they trained the 

GAN with an inverse-mapping network and a clustering-specific loss. Another 

limitation of InfoGAN is it transforms a latent vector from source domain to target 

domain directly and the input latent space must follow the same training data 

probability density, causing some degrees of unavoidable entanglement. Karras et 

al. [47] devised a StyleGAN architecture that utilizes a generator to modify the 

image's style at each convolutional layer, effectively exploring an intermediate 
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space between the source domain and target domain. This adjustment is achieved 

through the manipulation of the latent code. 

In addition, StyleGAN is able to separate the fine-grained and coarse-grained 

features, a property that makes StyleGAN a good candidate for DRL [48]. Based 

on the StyleGAN architecture, Nie et al. [48] expands the study to include a semi-

supervised setting and demonstrated that utilizing merely 0.25% to 2.5% of labeled 

data is adequate for achieving notable disentanglement in high-resolution images. 

In the medical domain, GANs were mainly used to decompose an abnormal 

image into patient-specific normal scans and scans with disease regions. Tang et al. 

[49] proposed a deep disentangled generative model (DGM) that consists of three 

branches: one for synthetic normal scan generation using GAN; one for disease 

separation using an encoder-decoder structure and the last one for training 

enhancement on noisy data using a similar encoder-decoder structure. Tang et al. 

[49] trained the DGM model and evaluated the model on a NIH Clinical Center 

Chest X-ray dataset [50]. Qualitatively, Tang et al. [49] showed that normal scans 

generated by DGM are more visually “radiorealistic” and disease region residual 

maps are more meaningful and interpretable than other competing methods. 

Quantitatively, in a lung opacity detection task, they showed an average 5% 

increase of precision by using DGM when compared with results obtained from 

other state-of-art methods. Similarly, Xia et al. [51] proposed a GAN structure 
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model to disentangle the pathology information from the healthy regions on images 

from three Magnetic Resonance Imaging (MRI) datasets. In an image retrieval task, 

Kobayashi et al. [52] proposed to use decomposed healthy MRI scans, decomposed 

abnormal scans or original abnormal scans as three different query image types. For 

image classification, Ben-Cohen et al. [53] mixed the disentangled class specified 

and unspecified representation into data augmentation process and increased the 

liver lesion classification accuracy by 7.4% over the baseline models. Michela et 

al. [54] disentangled the Contrast Agent effects, which is crucial for lesion 

classification purposes from all the other image components while performing the 

breast lesion classification. 

2.2.1.3 Normalizing Flows (NFs) 

 

Despite the impressive performance in learning distributions of images, VAEs 

and GANs have two main drawbacks: 1) in VAEs and GANs, we randomly draw 

new sample from the latent space and map them to the relevant domain through a 

decoder. Nevertheless, since the distribution of the latent space does not match that 

of the training data, both VAEs and GANs cannot precisely evaluate the probability 

density of novel points; 2) the training process using VAEs and GANs can be 

challenging due to vanishing gradients, training instability, mode collapse and 

posterior collapse [55]. Mode collapse occurs when the generator, during each 

iteration, excessively optimizes for a specific discriminator, preventing the 
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discriminator from effectively escaping this trap and learning a more diverse set of 

patterns [56]. Posterior collapse occurs when the variational posterior distribution 

closely aligns with the prior for a specific subset of latent variables, causing the 

generative model to disregard the influence of these latent variables [57]. 

A normalizing flow (NF) utilizes a series of invertible and differentiable 

mappings to transform a simple probability distribution into a more complex 

distribution [55]. Esser et al. [58] added a flow-based invertible network to a 

pretrained autoencoder model to translate hidden representations onto semantic 

concepts that are comprehensible to the user. Examples of semantic concepts are 

‘digit’ and ‘color’ in MNIST dataset [59]  and ‘beardiness’ and ‘smiling’ in CelebA 

dataset [60]. Instead of training on embeddings from a pre-trained network as in 

Esser et al. [58], Sankar et al. [61] trained a flow-based generative model directly 

on a brain tumor MRI dataset and factorized the latent space into anomaly 

representations, slice location and other semantic concepts. Wang et al. [62] 

employed a normalizing-flow-based approach to conduct counterfactual inference 

on a structural causal model, enabling the harmonization of diverse medical data 

sources. Wang et al. [62] trained their model on two source Alzheimer's Disease 

Neuroimaging Initiative (ADNI) sites data, evaluated the model on two different 

target ADNI sites and showed an increased classification result with data 

harmonization. 
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2.2.1.4 Content-Style Disentanglement (CSD) 

 

VAEs, GANs and NFs decomposes an input image into a single vector of latent 

variable representation while content-style disentanglement (CSD) generates two 

vectors: a latent variable representation vector associating with the image 

appearance such as color; and a tensor latent variable vector representing the image 

content in terms of objects [63]. For example, a house is an image content, but the 

image itself can be a photorealistic style or Van Gogh style. Gatys et al. [63] firstly 

proposed to separate the domain invariant image content and domain specific style 

information during the CNN training process. Huang et al. [64] implemented the 

concept of CSD to transfer an image from a source domain to a target domain 

without seeing any examples of corresponding image pairs.  

In the medical domain, CSD was used for image to image translation [65], data 

harmonization [66], segmentation [67] and classification [68]. Li et al. [65] 

disentangled domain features into domain-shared structural features and domain-

independent appearance features. They utilized this disentanglement to synthesize 

invasive and harmful Fluorescein Fundus Angiography (FFA) images using non-

invasive Fluorescein Fundus (FF) images. Zuo et al. [66] learned a globally 

disentangled latent space that encompasses both anatomical and contrast 

information, enabling harmonization. Chartsias et al. [67] factorized 2D cardiac 

images into spatial anatomical factors and non-spatial modality factors. Spatial 
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anatomical factors maintain pixel-level correspondences with the input, such as 

factors related to myocardium, left and right ventricles locations in an MRI image, 

and can be used for multi-class segmentation. On the other hand, none-spatial 

modality factors contain modality-specific information, such as the distribution of 

intensities of the spatial regions. Chartsias et al. [67] showed that with only very 

limited number of labels, the CSD model significantly improved the segmentation 

performance when compared with other state-of-art semi-supervised segmentation 

models. To improve the interpretability of brain MRI classification, Bass et al. [68] 

disentangled class relevant features from irrelevant confounds. 

2.2.2 Domain Generalization (DG) 

 

A domain is referred as data sampled from one distribution [69]. Domain 

Generalization (DG) aims to train a model on different but related domains that will 

produce generalizable results on unseen domains [70]. For example, images 

acquired from different scanners / medical centers often have different intensity 

distribution, contrast, and noise levels [69]. In this section, I will review domain-

invariant representation learning methods, and different DG training strategies. 

Domain-invariant representation learning methods are related to DRL, but instead 

of distengling features into domain shared or domain-specific representations, 

domain-invariant representation learning aims to learn the domain invariant 

representations directly with a supervised learning manner.  
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2.2.2.1 Domain-Invariant Representation Learning 

 

Domain-invariant representation learning assumes there are representations 

that are transferrable and robust on different domains. The goal of domain-invariant 

representation learning is to train a model with minimized representation 

discrepancy between different source domains, thus, the trained model is 

generalizable to the unseen domain [70]. Similar to [7], I divide the domain-

invariant representation learning methods into domain adversarial learning, feature 

alignment and normalization, and kernel-based methods. 

Domain Adversarial Learning. Based on the basic generative adversarial 

networks (GANs) architecture, Ganin and Lempitsky [71] and Ganin et al. [72] 

included a domain-discriminator that distinguishes the source and target domains. 

During the training process, the model confuses the domain discriminator to learn 

the domain invariant representations. Li et al. [73] expanded the capabilities of 

adversarial autoencoders by utilizing the Maximum Mean Discrepancy (MMD) to 

align distributions across various domains. They further aligned the distribution 

with an arbitrary prior distribution through the application of adversarial feature 

learning. Li et al. [73] make the assumption that the conditional distribution of 

labels given image features remains unchanged across domains. However, this 

assumption may not always be valid in practical applications. To address this 

limitation, Li et al. [74] introduced a conditional invariant adversarial network 
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designed to learn domain-invariant representations by considering the joint 

distribution of image invariant representations and image labels. Domain 

adversarial learning is a commonly employed technique in image-to-image 

translation tasks. Zhu et al. [75] addressed the challenge of unpaired image-to-

image mapping by integrating two mapping functions into the GAN architecture. 

One mapping function translates a source image to the target image, while the other 

mapping function converts the transformed image back to the source domain. The 

training process is governed by the forward cycle loss and the backward cycle loss, 

ensuring consistency in both directions. Instead translating a source image directly 

into a target image, Gong et al. [76] translated a source image to a sequence of 

intermediate images between the source and target domains and proved that using 

intermediate images is better for down-stream tasks, such as segmentation and 

classification.  

In medical domain, domain adversarial learning was mainly used for 

segmentation. Li et al. [69] tackled a cross-domain medical image segmentation 

challenge by introducing a semantic discriminator. This discriminator ensures a 

comparable image-to-label mapping between the source and target domains, 

effectively addressing the problem of cross-domain medical image segmentation. 

Li et al. [69] trained and evaluated their model on three different brain MRI datasets 

and showed the highest dice score results compared with results using other cross-

domain image segmentation approaches. Chen et al. [77] applied adversarial 
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learning to enhance the image and feature alignment between two domains (MRI 

and CT) and showed an improved cardiac substructure segmentation and abdominal 

multi-organ segmentation results.  

Feature Alignment and Normalization. Feature alignment and 

normalization methods aim to learn domain invariant representations through 

aligning features across different source domains. Based on a siamese network 

architecture, Motiian et al. [78] semantically aligned samples from different 

domains, such as images from Amazon, Webcam, and DSLR in Office dataset [79], 

by minimizing the distance between same class samples while at the same time 

maximizing the distance between samples with different class labels and domains. 

Other feature alignment methods focus on minimizing the distance between feature 

distributions with different distance measurements, such as Wasserstein distance 

[80], maximum mean discrepancy distance (MMD) [81], and the second order 

correlation [82].  

In a glaucoma detection task, Zhou et al. [83] proposed a data augmentation-

based (DA) feature alignment (DAFA) method to enhance the out-of-distribution 

(OOD) generalization of a single fundus image dataset. Instead of implementing 

feature alignment between two source datasets [78], DAFA performs the feature 

alignment from a single source dataset but between two augmented views. Zhou et 

al. [83] trained the model on one private dataset, evaluated the model on images 
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from other six datasets, and showed the highest AUC (greater than 0.1 increase) 

compared with other state-of-art classification algorithms.  

Kernel-Based Methods. Kernel-based methods use specific kernel functions 

to transform the input to a high-dimensional feature space. Pan et al. [84] introduced 

the concept of Transfer Component Analysis (TCA), which aims to learn transfer 

components across domains within a reproducing kernel Hilbert space. Grubinger 

et al. [85] extended the formulation of TCA to multiple source and target domains. 

In addition to TCA, domain-invariant component analysis (DICA) [86] is another 

notable approach. DICA is a kernel-based optimization algorithm that learns an 

invariant transformation by minimizing the variance across domains while 

preserving the functional relationship between input and output variables. In the 

supervised setting, DICA relies on the inverse of a covariance operator, which can 

be computationally expensive and prone to instability in practical applications [87]. 

To overcome this limitation, Gan et al. [87] proposed a solution by incorporating a 

centered kernel alignment that incorporates attribute labeling information. They 

demonstrated that utilizing DICA with the centered kernel alignment enables the 

learning of representations that are both category-invariant and attribute-

discriminative. In the medical field, Opbroek et al. [88] explored kernel learning as 

a means to mitigate differences between training and test data. They conducted 

experiments on brain tissue, white matter lesion, and hippocampus segmentation 

tasks. 
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2.2.3 Training Strategy 

 

Some studies focus on different training strategies to achieve domain 

generalization. We will review four categories: meta learning, ensemble learning, 

unsupervised, and semi-supervised DG [7].  

2.2.3.1 Meta Learning 

Meta learning involves training a model on multiple tasks with the aim of 

enabling the model to tackle new learning tasks using only a small number of 

training samples. Finn et al. [89] introduced a model- and task-agnostic algorithm 

designed for meta-learning schemes. Li et al. [90] then implemented the model 

agnostic concept on domain generalization problem. To mimic real train-test 

domain shifts, Li et al. [90] partitioned the original source domains into meta-train 

domains and meta-test domains. This approach allowed for the simultaneous 

optimization of the loss functions for both meta-train and meta-test domains. Balaji 

et al. [91] added a regularization function to the meta learning framework and 

showed that the notion of domain generalization can be explicitly encoded in the 

regularization function. Du et al. [92] employed a meta variational information 

bottleneck (MetaVIB) to learn domain-invariant representations. The MetaVIB 

approach gradually reduces the domain gaps throughout the meta training process.  

2.2.3.2 Ensemble Learning 
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Ensemble learning incorporates models for different domains to achieve 

generalization. Mancini et al. [93] suggested utilizing multiple domain-specific 

classifiers during the training phase and estimating the probabilities of a target 

sample belonging to each source domain. Segu et al. [94] trained multiple domain-

dependent classifiers, collected independent domain’s statistics through BN layers, 

and then mapped statistics to a domain invariant feature space. 

2.2.3.3 Unsupervised and Semi-supervised Domain Generalization 

Unsupervised domain generalization (UDG) aims to learn generalizable 

representations across different domains in an unsupervised manner and thus 

reduce the dependence on labeled data [95]. Zhang et al. [95] proposed a contrastive 

learning algorithm that forces the model to ignore domain-related features based on 

the instance similarity between different domains. During the training, the 

algorithm selects instances from different domains but ignore the instances from 

similar domains. Regarding semi-supervised learning, Liao et al.   [96], presented 

an approach that combines Wasserstein generative adversarial network with 

gradient penalty (WGAN-GP) based adversarial learning and pseudo label-based 

semi-supervised learning. This method leverages both a fully labeled source 

domain dataset and a completely unlabeled source domain dataset simultaneously. 

In medical domain, Perone et al. [97] showed that by using a small amount of 

unlabeled brain MRI images from multiple domains, they can significantly increase 
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the gray matter segmentation performance. In a similar vein, Zhang et al. [98] 

introduced a semi-supervised domain generalization approach to address fundus 

image segmentation and chest X-ray diagnosis tasks. Their method involves 

utilizing one labeled source domain, provided by a medical center with ample 

expert effort, along with multiple unlabeled source domains gathered from different 

centers. 

2.2.4 Causal Learning  

 

Causal learning assumes that when other variables are altered, the conditional 

distribution of the target variable given the direct cause variable remains 

unchanged. An example of a target variable is “intensive treatment”, indicating 

whether a patient needs intensive treatment, and a direct cause of “intensive 

treatment” is the level of pre-treatment overall fitness [99]. Under the assumption 

that direct causal variables are stable across domains, if we can find the direct 

causes of the target variable, we can achieve OOD generalization. Peters et al. [100] 

leveraged this assumption and proposed Invariant Causal Prediction (ICP). Pfister 

et al. [101] relaxed the assumption in Peters et al. [100] that all environments are 

known, and proposed to detect causal relations using sequential non-stationary data. 

Heinze-Deml et al. [102] further extended the ICP into a non-linear model. The 

existence of hidden confounders violates the invariance assumption in ICP and a 

traditional strategy to deal with hidden confounders is to introduce instrument 
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variables. Considering a situation that we want to investigate the effect of acute 

myocardial infarction (AMI) treatment on mortality, the distance to the nearest 

hospital with cardiac catheterization is correlated with the mortality but does not 

have a causal relationship with it, except via AMI [103]. In this situation, the 

distance to the nearest hospital is an instrument variable and researchers have 

proposed various methods to use instrument variables, such as two stage least 

squares (2SLS) [104] and bivariate probit with correlated errors [105] etc. When 

utilizing instrumental variables, it is typically necessary for them to have no direct 

impact on the hidden confounding variable or the outcome variable. However, 

Rothenhäusler et al. [106] relaxed this requirement by introducing anchor variables, 

which can directly influence both the hidden confounding variable and the outcome 

variable. Oberst et al. [107] further relaxed the assumption in Rothenhäusler et al. 

[106] that anchor variables can be observed and proposed to use the noisy proxy of 

anchor variables. 

In medical domain, Castro et al. [108] systematically discussed the importance 

of establishing the causal relationship between images and their annotations and 

provided recommendations for medical image analysis, including establishing the 

predictive causal direction, identifying any evidence of mismatch between datasets 

and determining whether the data collection was biased etc. Amsterdam et al. [99] 

addressed the bias in treatment effect estimation arising from colliders and 

proposed a method that utilizes the similarity between the final layer of a CNN and 
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linear regression to mitigate the collider effect in a lung cancer survival prediction 

task.  

2.2.5 Optimization for OOD Generalization 

 

Optimization methods for OOD generalization focus on ensuring the worst-

case performance in the presence of distribution shifts [7]. When compared with 

disentangled representation learning and domain generalization methods, 

optimization methods are often model and data structure agnostic [7].  

2.2.5.1 Distributionally Robust Optimization (DRO) 

Similar with GAN, DRO objective function has two terms: a learner and an 

adversary. The adversary maximizes the expected loss through shifting the test 

distribution from the training distribution as far as possible but within a pre-

specified range. The learner minimizes the adversarial expected loss [8]. The key 

component of DRO studies is to choose the class of uncertainty sets for testing 

distribution under certain constraints, where  𝑓-divergence [109] and Wasserstein 

distance constraints [110] are the most commonly used ones. DRO with 𝑓  -

divergences lets the uncertainty set for test distribution be an 𝑓-divergence ball 

from a training distribution [8, 111]. Despite DRO with 𝑓  -divergences is a 

common choice in the literature [112], Hu et al. [8] revealed that DRO ends up 

optimizing the given training distribution instead of testing distribution in 
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classification tasks due to the overly flexible uncertainty set distributions and the 

losses used in classification. Compared with 𝑓-divergence, Wasserstein distance 

constrain is more flexible. One representative application of DRO with Wasserstein 

distance is Sinha et al’s work [113], they addressed the distribution shift problem 

caused by adversarial input perturbations and achieved better classification 

performance compared to empirical risk minimization (ERM). Sagawa et al. [2] 

found that applying DRO naively to neural networks without regularizations often 

fails, and proposed to impose 𝑙2 penalty [114] or early stopping to add penalty as 

model complexity increase. In addition, Sagawa et al. [2] firstly optimized the worst 

group performance (Group-DRO) instead of worst case performance. They showed 

that a regularized Group-DRO method achieves better generalization results 

compared with results using ERM and DRO. Sohoni et al. [4] combined a subclass 

discovery process with Group-DRO and demonstrated that Group-DRO boosted 

worst-case subclass accuracy by up to 22% on benchmark image classification 

datasets.  

2.2.5.2 Invariant-Based Optimization 

DRO methods directly optimize the training process to achieve the worst-case 

performance, however, in practice, datasets are frequently assembled without 

source labels available [115]. For example, when we try to collect different animal 

images online, we cannot always acquire the camera setting information, which 
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makes the domain labels unclear. Invariance-based optimization aims to identify 

invariant properties within the data and leverages multiple environments to 

discover such invariance for the purpose of OOD generalization. According to 

Arjovsky et al. [116], an environment is defined as an instance of the variable E 

that impacts the prior distribution of variables. Liu et al. [115] introduced the 

Heterogeneous Risk Minimization (HRM) framework, which facilitates the 

simultaneous learning of latent heterogeneity and invariant relationships among the 

data. Through searching features that are invariant across environments, Chang et 

al. [117] identified a subset of input features that are causally related to the 

prediction. Similarly, Koyama et al. [118] found the invariant representations 

through a Maximal Invariant Predictor (MIP). 

2.2.6 OOD Generalization Evaluation Methods 

 

According to Ye et al. [119], the test accuracy in a single environment is 

misleading in OOD situation and we need to consider test accuracy in multiple 

environments. In this review, we assess three evaluation metrics: average accuracy, 

worst-case accuracy, and the standard deviation of accuracies. Average accuracy 

measures the overall performance among different testing distributions. A 

significant disadvantage of average accuracy is it treats all testing distributions the 

same without considering the frequency it occurs. As suggested in Shen et al. [7], 

it is possible to assign weights to the accuracy based on the disparity between each 
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testing distribution and the training distribution, for example, we can assign a 

smaller weight to an accuracy generated from a testing data that has a relatively 

larger Kolmogorov-Smirnov distance to the training data. Worst-case accuracy 

measures the worst-case accuracy across all testing distributions. Worst-case 

accuracy has been widely employed in the literature on DRO and plays a critical 

role in high-stakes applications like computer-aided diagnosis and financial 

security. On the other hand, the standard deviation of accuracies quantifies the 

performance variation across different distributions. This metric serves as a 

measure of the algorithm's robustness and stability. 
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CHAPTER 3. Methodology 

 

This chapter introduces hidden stratification discovery and subgroup learning 

methodologies. Section 3.1 describes a hidden stratification discovery method 

using an algorithmic approach. The subclass labels generated in the hidden 

stratification discovery process will be used for further gDRO model training and 

for model evaluation. Section 3.2 presents different training strategies with various 

model inputs, architectures, and loss functions for malignancy classification tasks. 

Section 3.3 explains an innovative training strategy, Classifier Retraining on 

Representative Independent Splits (CRRIS), which combines ERM and gDRO 

during training. Figure 3.1 provides an overview of the experimental design in this 

study. 

 

Figure 3.1 Methodology Overview.  This study investigates clustering-based and 

schema completion hidden stratification methods and explores subgroup learning 

models with different input features.   
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3.1 Hidden Stratification Discovery 

 

 This section will only describe the algorithmic or clustering-based approach 

to hidden stratification discovery methodology. This is because schema completion 

requires domain knowledge, and the subgroup labels depend on the study dataset. 

Clustering-based method consists of deep image feature extraction (Section 3.1.1), 

feature reduction (Section 3.1.2) and clustering (Section 3.1.3) as illustrated in 

Figure 3.2.  

 

Figure 3.2 An illustration of clustering-based hidden stratification discovery.  It 

consists of deep image feature extraction, feature reduction, and clustering. 

 

3.1.1 Deep Image Feature Extraction 

 

The image feature extraction process consists of two steps: First, I trained a 

CNN classifier to classify malignancy (malignant vs. benign) using input study 

images. Second, I saved the output of the last convolutional layer as our image 

features during the malignancy prediction process. Due to the small number of 

training images, I used a ResNet CNN network [120] pre-trained on ImageNet 
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[121]. Since lower-level convolutional layers produce lower-level features such as 

lines and corners, while higher-level convolutional layers provide high-level 

features that better describe the content of an input image, we expect these deep 

image features extracted from the last convolutional layer to enable the discovery 

of latent malignant and benign subtypes. After the feature extraction process, each 

cropped nodule image is associated with a vector of 512-dimensional CNN 

features. 

3.1.2 Uniform Manifold Approximation and Projection (UMAP)  

 

Uniform Manifold Approximation and Projection (UMAP) algorithm [122] 

was used as a feature reduction technique in this study. Compared with other feature 

reduction techniques, UMAP has the advantage of preserving the cluster 

relationship of data points in the high-dimensional space. Mathematically, assume 

there are 𝑛 neighboring data points of each data point in the high-dimensional space 

(𝑛 is a hyperparameter in UMAP), given a random data point 𝑥1, we can define a 

high-dimensional similarity score (𝑆𝐻) between 𝑥1 and another random data point 

𝑥2 in the high-dimensional space as: 

𝑆𝐻(𝑥1, 𝑥2) =  𝑒
−

(𝑑𝐻(𝑥1,𝑥2)−𝑑𝐻(𝑥1,𝑥1𝑛𝑒𝑎𝑟𝑒𝑠𝑡))

𝛿  

where dH(x1,x2)  represents distance between  𝑥1  and 𝑥2  in the high 

dimensional space 

(1) 
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dH(x1,x1nearest) represents the distance between 𝑥1 and its nearest neighbor 

in the high dimensional space 

𝛿  is a hyperparameter that forces the sum of all pairwise 𝑆𝐻 equals to 

𝑙𝑜𝑔2(𝑛) 

 To make the 𝑆𝐻  symmetrical, we define a symmetric high-dimensional 

similarity score 𝑆𝐻′ between 𝑥1  and 𝑥2 as: 

𝑆𝐻(𝑥1, 𝑥2)′ =  𝑆𝐻(𝑥1, 𝑥2) +  𝑆𝐻(𝑥2, 𝑥1) −  𝑆𝐻(𝑥1, 𝑥2)  × 𝑆𝐻(𝑥2, 𝑥1) 

where SH(x2, x1) and SH(x2, x1) are calculated with Equation (1) 

(2) 

Then, UMAP algorithm calculates low-dimensional similarity scores 𝑆𝐿 

between 𝑥1and 𝑥2 utilizing a fixed, symmetrical curve derived from t-distribution:  

𝑆𝐿(𝑥1, 𝑥2) =  
1

1 + 𝛼𝑑𝐿(𝑥1,𝑥2)
2𝛽

 

 

where dL(x1,x2) is the distance between data point 𝑥1 and 𝑥2 in the low-

dimensional space 

𝛼 and 𝛽 control how tightly the low dimensional points can be packed 

together  

(3) 

UMAP dynamically changes the location of data points in the low dimensional 

space in order to reproduce the high-dimensional cluster. Given a random data point 

𝑥1, UMAP algorithm randomly picks a data point 𝑥2 from its neighboring data 

points. The chance of picking data point 𝑥2  is proportional to SH(x1, x2)′ using 

Equation (2). At the same time, UMAP algorithm randomly picks a data point 𝑥3 

that does not belong to the neighboring data points. The goal is to find the best new 
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position of 𝑥1 in the low-dimensional space that minimizes the SH(x1, x2) while 

maximizes the SH(x1, x3) . UMAP algorithm repeat this process for all data points 

in the low dimensional space. 

In this study, the input of the UMAP algorithm is the 512-dimensional CNN 

features extracted in Section 3.1.1, and the output is 2-dimensional features that 

were used as input for the clustering model. As a comparison, I also implemented 

principal component analysis (PCA) [123] as another approach for feature 

reduction. Similarly, the input of PCA is the 512-dimensional CNN features, and 

the output is 2-dimensional feature embeddings that were used as input for the 

clustering model.  

3.1.3 Gaussian Mixture Clustering  

 

Gaussian mixture model assumes all data points were collected from a mixture 

of Gaussian distributions with unknown parameters and these unknown parameters 

can be estimated with an Expectation-Maximization (EM) Algorithm. In the 

expectation phase, for each data point 𝑖, the algorithm computes its probability 𝑝𝑖𝑐 

that it is belongs to a certain cluster 𝑐: 

𝑝𝑖𝑐 =
𝜋𝑐 𝒩(𝑥𝑖; 𝜇𝑐; 𝑐𝑜𝑣𝑐)

∑ 𝜋𝑐′
 𝐶

𝑐′ 𝒩(𝑥𝑖; 𝜇𝑐′; 𝑐𝑜𝑣𝑐′)
 

𝐶 represents the total number of clusters 

(4) 
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πc represents the total number of data points in cluster 𝑐 

μc represents the mean value of data points in cluster 𝑐 

covc represents the covariance of data points in cluster 𝑐 

In the maximization phase, for each cluster 𝑐, the algorithm first calculates the 

weight 𝑚𝑐 : 

𝑚𝑐 = ∑ 𝑝𝑖𝑐

𝜋𝑐

𝑖

 

πc represents the total number of data points in cluster 𝑐 

(5) 

Then the algorithm updates the size, mean, and covariance of each cluster with: 

𝜋𝑐 =
𝑚𝑐

𝑚
 

𝑚 represents the sum of the weights across all clusters 

(6) 

𝜇𝑐 =
1

𝑚𝑐
∑ 𝑝𝑖𝑐𝑥𝑖

𝜋𝑐

𝑖

 

(7) 

𝑐𝑜𝑣𝑐 =
1

𝑚𝑐
∑ 𝑝𝑖𝑐(𝑥𝑖 − 𝜇𝑐)𝑇(𝑥𝑖 − 𝜇𝑐)

𝜋𝑐

𝑖

 

(8) 

At each step, the algorithm increases the log likelihood of the model (Equation 

9) until convergence.  

𝑙𝑜𝑔 𝑃(𝑋) = ∑ 𝑙𝑜𝑔 [𝐶
𝑖 ∑ 𝜋𝑐′

 𝐶
𝑐′ 𝒩(𝑥𝑖; 𝜇𝑐′; 𝑐𝑜𝑣𝑐′)] (9) 

Compared to other clustering algorithms such as K-means, Gaussian Mixture 

Clustering has the following advantages: First, it allows for more flexible cluster 
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shapes by modeling each cluster as a mixture of Gaussian distributions. Second, 

Gaussian Mixture Clustering captures the covariance structure between variables, 

allowing it to model complex relationships in the data. It can capture correlations 

and dependencies between different features. Third, it is robust to outliers, the 

probabilistic modeling of GMM assigns lower probabilities to outliers, reducing 

their influence on the clustering process. My initial clustering results indicate that 

I can well separate malignant and benign nodules (one pure malignant cluster and 

one pure benign cluster), therefore, to discover the hidden sub-classes of malignant 

and benign nodules, I performed Gaussian Mixture clustering on benign and 

malignant nodules separately. I chose the number of clusters with the highest 

Silhouette Coefficient [124] since a  higher Silhouette Coefficient indicates clusters 

are well apart from each other and clusters are clearly distinguished. 

Mathematically, Silhouette Coefficients (SC) is defined as: 

3.2 Subgroup Learning Models and Loss Functions 

 

This section introduces different model architectures and loss functions for 

subgroup learning. Section 3.2.1 introduces a transfer learning approach and a 

𝑆𝐶 =  
𝑏 − 𝑎

𝑚𝑎𝑥 (𝑎, 𝑏)
 

where 𝑎 represents average intra-cluster distance  

𝑏 represents average inter-cluster distance 

 

(10) 
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convolutional neural network (CNN) architecture that takes images as input. 

Section 3.2.2 and Section 3.2.3 describe two classification architecture that takes 

numerical features as input and a combination of images and numerical features as 

input respectively. Section 3.2.4 explains empirical risk minimization (ERM) loss 

function and group distributionally optimization (gDRO) function. Section 3.2.5 

provides details on the data splits and model evaluation methods. 

3.2.1 Transfer Learning and ResNet18 

 

Transfer learning method addresses the limitation of small amounts of training 

data by first pre-training a deep learning model on a publicly available large dataset, 

then fine tuning the model on our own dataset [125]. In this study, I used a pre-

trained ResNet18 convolutional neural network on ImageNet [121] for both the 

deep image feature extraction (Section 3.1.1) and for subgroup learning with 

images as model inputs. Table 3.1 shows the convolutional layer structure of 

ResNet18. The number of freezing convolutional layers, the number of fully 

connected layers, and the dimension of output layers are hyperparameters and I will 

provide more details in Chapter 5.   
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Table 3.1 Convolutional Layer Structure of ResNet18 

Layer Name # filters *(filter size)  Output size 

Convolutional 1 64*(7*7), stride 2 112*112 * 64 

Max Pooling  1*(3*3), stride 2  

Convolutional 2 and 3 64*(3*3), stride 2 56*56 *64 

Convolutional 4 and 5 128*(3*3), stride 2 28*28*128 

Convolutional 6 and 7 256*(3*3), stride 2 14*14*256 

Convolutional 8 and 9 512*(3*3), stride 2 7*7*512 

Average Pooling  1* (7*7) 1*512 
 

3.2.2 Fully Connected Network 

 

When the model input is numerical features, I used a fully connected network. 

The number of hidden layers, the number of dimensions of each layer, and the 

dimensions of the output layers are hyperparameters in this study.  

3.2.3 Composite Convolutional Neural Network (CompNet) 

 

Composite convolutional neural network (CompNet) proposed by Qiu et al. 

[126] is specially designed for combining images and numerical features, such as 

designed features and semantic features, into the neural network. Figure 3.3 

illustrates the CompNet architecture. 
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Figure 3.3 CompNet Architecture.  λ represents the number of classification classes; 

N is the total number of numerical features. (A) Learned Image feature vector with 

a dimension λ*N; (B) Weight Matrix with λ *N dimensions generated from (A); 

(C) Input numerical feature vector; (D) Dot product of weight matrix and numerical 

feature vector. 

 

Instead of simply flatting and concatenating image pixel values with other 

numerical features as input of a CNN  [127-129], CompNet learns weights of each 

numerical feature from input images and uses these weights to refine the model 

during the training. There are three important steps in CompNet: the first step is to 

set the dimension of last fully connected layer as λ *N, where λ is the number of 

classification labels and N is the number of numerical features, thus the output of 

fully connected layers is a λ*N by 1 feature vector; the second step is to resize the 

fully connected layers output to a λ by N weight matrix; the third step is to conduct 

dot product between the λ by N weight matrix and the input N * 1 numerical 
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features and the dot product result will be the input of the loss calculation process. 

In this study, I used the same dimensions of convolutional and fully connected 

layers as described in Section 3.3.1.  

3.2.4 Empirical Risk Minimization (ERM) and Group Distributionally 

Optimization (gDRO) 

 

Empirical Risk Minimization (ERM) aims to minimize the average loss of all 

samples. Given a training dataset 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)} with 𝑛 data 

points, where 𝑥𝑖 is the observation and 𝑦𝑖 is the label, a classification model 𝐹, and 

a loss function 𝑙. ERM loss is defined as: 

𝑙𝑜𝑠𝑠𝐸𝑅𝑀(𝐷) =
1

𝑛
∑ 𝑙(𝐹(𝑥𝑖), 𝑦𝑖)

𝑛

𝑖=1

 
(11) 

Instead of treating each sample equally, group Distributionally Robust 

Optimization (gDRO) divides training dataset 𝐷  into 𝐾  disjoint sub-datasets 

𝐷1, 𝐷2, … , 𝐷𝐾  , and focus on the sub-dataset that has the maximum ERM loss. 

During the training, a model with gDRO loss minimizes the loss of the worst group. 

gDRO loss is defined as: 

𝑙𝑜𝑠𝑠𝑔𝐷𝑅𝑂(𝐷) = ∑ 𝑞𝑘
(𝑡)

𝑙𝑜𝑠𝑠𝐸𝑅𝑀(𝐷𝑘)𝐾
𝑘=1  (12) 

Where qk
(t)

 represents weight for subgroup k at iteration t. 
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In this study, I trained different classification models (Figure 3.3) with both 

ERM and gDRO losses and compared their results.  

3.2.5 Data Splits and Model Evaluation Methods 

 

To obtain generalizable classification results, I randomly shuffled the training 

(80%), validation (10%) and testing data (10%) 30 times using stratification method 

based on nodule malignancy ratings. For each study dataset, I used the same 30 

training sets to build machine learning models, same 30 validation sets to tune the 

hyper parameters and same 30 testing sets to report classification results (mean 

accuracy and 95% confidence interval across 30 trials). I conducted a two-tail T-

test to compare significance between two sets of results.  

In addition to overall model accuracy, I evaluated the performance of 

classification models at each subclass level and used the accuracy of the worst-

performing subgroup as a metric to measure the model's generalization ability. The 

worst-performing subgroup is defined as the subgroup with the lowest accuracy 

across all subgroups from an ERM model. 

3.3 Classifier Retraining for Model Robustness Improvement 

 

One limitation of the base gDRO model introduced in Section 3.2.4 is it 

requires subclass labels of all the training data. Nguyen et al. [130] proposed a 

classifier retraining on independent splits (CRIS) method that only requires a 
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subset of subclass labels and achieved higher worst group accuracy by 

implementing CRIS when compared with the base gDRO model results. Section 

3.3.1 describes CRIS and Section 3.3.2. introduces classifier retraining on 

representative independent splits (CRRIS), an innovative training method derived 

from CRIS. Both CRIS and CRRIS require images as input. 

3.3.1 Classifier Retraining on Independent Splits (CRIS) 

 

Compared to traditional data split methods in Section 3.2.5, Nguyen et al. [130] 

further randomly split the training data into two subsets (“Independent Splits”), 

trained a CNN model with ERM loss on the first training subset, transferred the 

weights of the trained CNN model to another newly initiated CNN model, and 

trained fully connected layers of the new CNN model with gDRO loss on the 

second training subset (“Classifier Retraining”). The motivation behind CRIS 

training strategy is to separate the image feature extraction process and 

classification process during the training, and use a model with ERM loss to extract 

features and a model with gDRO loss for classification. Different with the base 

gDRO model that requires the subgroup labels of entire training dataset, CRIS only 

needs subclass labels of a subset of training data that is used for gDRO model 

training. Figure 3.4 illustrates CRIS method. 
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Figure 3.4 An illustration of Classifier Retraining on Independent Splits (CRIS). N 

represents the total number of epochs, M represents the total number of training 

epoch for the first CNN model with ERM loss. Both M and N are hyperparameters. 

 

3.3.2 Classifier Retraining on Representative Independent Splits (CRRIS) 

 

In this study, instead of randomly splitting the training data into two subsets as 

in Nguyen et al. [130], I innovatively split the training data into representative and 

atypical instances based on the instance representative and named this method 

Classifier Retraining on Representative Independent Splits (CRRIS). An instance is 

a representative case if the Euclidean distance between its image feature and the 

image feature of the cluster center is within the smallest 𝑝% among the Euclidean 

distances between image features of every instance within the cluster and the image 

feature of the cluster center. 𝑝 is a hyperparameter, where a higher  𝑝 implies more 

instances are representative and fewer instances are atypical instances. I used the 

same image features described in Section 3.1.1 and cluster centers generated from 
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Gaussian Mixture Clustering described in Section 3.1.3. Figure 3.5 illustrates the 

process of choosing representative and atypical instances. My hypothesis is that, 

compared to the CRIS method that trains an ERM model on one random split and 

then retrains a model with gDRO loss on another random split, training the ERM 

model on typical instances or atypical instances produces more generalizable 

features that can further improve the model's generalization ability measured as 

the worst group accuracy. 

 

 

 

Figure 3.5 An illustration of choosing representative and atypical instances.  

Triangles represent two cluster centers. Dots in darker color and shallow color 

represent representative and atypical instances respectively. Representative 

instances are determined by the Euclidean distance between image features of each 

instance within the cluster and the image features of the cluster center. 
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Figure 3.6 and Figure 3.7 illustrate two CRRIS models with different training 

orders. For the first CRRIS model (Figure 3.6), an ERM model is firstly trained on 

atypical instances and then retrain the model with gDRO loss on typical instances. 

For the second CRRIS model (Figure 3.7), the order of the atypical and typical 

instances reversed that an ERM model is firstly trained on typical instances and 

then retrain the model with gDRO loss on atypical instances. 

 

Figure 3.6 An illustration of Classifier Retraining on Representative Independent 

Splits (CRRIS) with an ERM model trained on atypical instances.  In this situation, 

we first train a CNN model with ERM loss on atypical instances and then retrain 

the same CNN model with gDRO loss on typical instances. N represents the total 

number of epochs, M represents the total number of training epoch for the first 

CNN model with ERM loss. Both M and N are hyperparameters. 
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Figure 3.7 An illustration of Classifier Retraining on Representative Independent 

Splits (CRRIS) with an ERM model trained on typical instances. In this situation, 

we first train a CNN model with ERM loss on typical instances and then retrain 

the same CNN model with gDRO loss on atypical instances. N represents the total 

number of epochs, M represents the total number of training epoch for the first 

CNN model with ERM loss. Both M and N are hyperparameters. 
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CHAPTER 4. Applications to Lung Cancer 

 

4.1 The Lung Image Database Consortium (LIDC) dataset 

 

The Lung Image Database Consortium (LIDC) dataset [3, 131] contains 2,680 

distinct nodules found in Computed Tomography (CT) scans from 1,010 patients. 

Radiologists manually identify, delineate, and semantically characterize nodules 

that are three millimeters or larger across nine semantic characteristics, which are 

calcification, internal structure, lobulation, malignancy, margin, sphericity, 

spiculation, subtlety, and radiographic texture (Table 4.1). The radiologists assign 

ordinal or nominal ratings to the nodules based on these features. 

Table 4.1 Semantic features in LIDC datasets. 

Ratings 

Features  
1 2 3 4 5 6 

 Calcification  Popcorn  Laminated  Solid  Non-central Central Absent 

Internal 

Structure 

Soft  

tissue 

Fluid Fat Air - - 

Lobulation Marked - - - - None 

Malignancy Highly 

unlikely 

Moderately  

unlikely 

Indeter

minate 

Moderately 

Suspicious 

Highly 

Suspicious 

Absent 

Margin Poorly 

defined 

-    Sharp 

Sphericity Linear - Ovoid - Round - 

Spiculation None - - - Marked - 

Subtlety Extremely 

subtle 

Moderately 

subtle 

Fairly 

Subtle 

Moderately 

Obvious 

Obvious - 

Radiographic 

Texture 

Non-solid - Part 

Solid 

- Solid - 
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In this study, I implemented the following data preprocessing steps: First, I 

cropped nodules into images of size 71 x 71, which is the size of the largest nodule 

in the dataset. The cropped images were centered on the nodule's center based on 

the radiologists' delineated nodule boundaries. Second, for each semantic 

characteristic, I took the mode of the four radiologists' ratings as the final rating. If 

a nodule did not have a mode rating, I used the average of the ratings. If the average 

rating was a decimal number, I rounded it down to the nearest integer. For example, 

if the average rating of a nodule was 3.7, I used 3 as the final rating of the nodule. 

Third, I assigned malignancy classification labels based on the mode or average 

value of malignancy ratings. Nodules with malignancy ratings of 1 (highly 

unlikely) and 2 (moderately unlikely) were labeled as 'Benign', while nodules with 

malignancy ratings of 4 (moderately suspicious) and 5 (highly suspicious) were 

labeled as 'Malignant'. Since the goal was to identify hidden sub-class labels 

(subtypes) for malignancy and benign nodules, we focused the analysis on the set 

of nodules that had a higher likelihood of being 'malignant' and 'benign' and 

removed nodules with malignancy rating 3 (indeterminate). After data 

preprocessing, we were left with 1,605 nodules, of which 699 were malignant and 

906 were benign. In addition to the semantic features listed in Table 4.1, previous 

studies have generated 64 designed features [132] that describe the intensity, 

texture, and shape of the nodules. 
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4.2 Hidden Stratification Discovery on LIDC dataset 

 

Section 4.2.1 presents the results of hidden stratification discovery using an 

algorithmic measurement approach, while sections 4.2.2 and 4.2.3 demonstrate the 

results using schema completion.  

4.2.1 Clustering-Based Hidden Stratification Discovery 

 

My results demonstrate that the use of UMAP and Gaussian Mixture 

Modeling-based clustering in the feature space, extracted via deep learning 

algorithms, enables the capture of the likelihood of malignancy in different 

groups/subtypes, as perceived by domain experts. 

Figure 4.1 (A) shows different silhouette coefficients for various numbers of 

clusters. The highest silhouette coefficients were obtained when the number of 

clusters was 2. Figure 4.1 (B) visualizes the two output clusters from the Gaussian 

Mixture Clustering model in UMAP space. We can see a clear distinction between 

malignant and benign superclass labels in UMAP space. This result indicates that 

the extracted deep image features reflect the image semantic information. 

Additionally, this result is consistent with the finding in the literature that UMAP 

has the advantage of preserving the cluster relationship of data points in the high-

dimensional space when compared with other feature reduction techniques, such as 

t-SNE and PCA [122]. 
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Figure 4.1 Clustering results on all LIDC data points.  (A) Silhouette coefficients 

with various number of clusters; (B) A visualization of two clusters in UMAP 

space. Blue dots represent benign nodules and red dots represent malignant nodules. 

Component 1 and Component 2 represent two dimensions reduced from high 

dimensional image feature space. 

 

The clustering results presented in Figure 4.2 delineate only the super-

classes. However, since the goal of this study is to discover hidden subclasses, I 

further implemented Gaussian Mixture Clustering on benign and malignant nodules 

separately. The aim was to identify any hidden sub-malignant and sub-benign 

clusters. Figure 4.2 (A) and Figure 4.2 (B) show that for both benign and malignant 

nodules, the optimal number of clusters (subgroups) is two. From Figure 4.2 (C) 

and Figure 4.2 (D), it is evident that there is a clear separation between the two 

malignant sub-clusters and the two benign sub-clusters. This result implies that 

there are at least two hidden subgroups within both the benign and malignant 
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categories. Additionally, UMAP successfully preserves the cluster relationships of 

data points in the image feature space. 

 

Figure 4.2 Clustering results on benign and malignant lung nodules individually.  

(A)  and (B) show silhouette coefficients with various number of clusters using 

malignant and benign nodules respectively; (C) and (D) are visualizations of two 

sub-clusters of malignant and benign nodules in UMAP space. Component 1 and 

Component 2 represent two dimensions reduced from high dimensional image 

feature space. 

 

Upon further analysis of the results with respect to the domain expert 

annotations, it is observed that the malignant and benign sub-clusters exhibit a high 

correlation with the malignancy ratings provided by radiologists. For instance, one 

malignant sub-cluster comprises mostly nodules with a malignancy rating of 5 
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(“highly suspicious”), while another malignant sub-cluster consists mainly of 

nodules with a malignancy rating of 4 (“moderately suspicious”). Given this 

correlation between the sub-clusters and the likelihood of malignancy as 

determined by the domain expert, each sub-cluster can be labeled using the 

frequency of the malignancy likelihood. These labels are as follows: 

"Predominantly Moderately Likely Benign" (the majority of nodules with a 

malignancy rating of 2), "Predominantly Most Likely Benign" (the majority of 

nodules with a malignancy rating of 1), "Predominantly Moderately Likely 

Malignant" (the majority of nodules with a malignancy rating of 4), and 

"Predominantly Most Likely Malignant" (the majority of nodules with a 

malignancy rating of 5). 

To obtain stable clustering labels, I repeated the clustering process (described 

in Section 3.1.3) 30 times and took the mode of clustering labels across the 30 trials 

as the final subclass labels. Table 4.2 shows the rating distribution of the generated 

benign subclasses. It can be observed that 81.33% of the nodules in the 

Predominantly Moderately Likely Benign cluster were labeled as having a 

malignancy rating of 2 (“moderately unlikely”). Table 4.3 shows the rating 

distribution of the generated malignant subclasses. It is observed that 76.57% of the 

nodules in the Predominantly Moderately Likely Malignant cluster were labeled as 

having a malignancy rating of 4 (“moderately suspicious”), while 66.52% of the 
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nodules in the Predominantly Most Likely Malignant cluster were labeled as having 

a malignancy rating of 5 (“highly suspicious”).  

Table 4.2 Lung nodule malignancy rating distributions of derived benign 

subclasses using UMAP embeddings 

 Malignancy 

Cluster Name  

Rating 2 Rating 1 Total 

Predominantly Moderately 

Likely Benign 

514 

(81.33%) 

118 

(18.67%) 

632 

(100%) 

Predominantly Most Likely 

Benign 

48 

(18.11%) 

217 

(81.89%) 

265 

(100%) 

 

Table 4.3 Lung nodule malignancy rating distributions of derived malignant 

subclasses using UMAP embeddings 

 Malignancy 

Cluster Name  

Rating 4 Rating 5 Total 

Predominantly Moderately 

Likely Malignant 

281 

(76.57%) 

86 

(23.43%) 

367 

(100%) 

Predominantly Most Likely 

Malignant 

75 

(33.48%) 

149 

(66.52%) 

224 

(100%) 

 

I repeated the same clustering process using PCA embeddings. Table 4.4 and 

Table 4.5 show the rating distribution of the generated benign subclasses and 

malignant subclasses, respectively. From Table 4.4, we can see that when using 

PCA embeddings, we cannot separate the two sub-benign clusters, as both clusters 

are labeled as ‘Predominantly Moderately Likely Benign’. Compared with the 

malignancy rating distributions obtained using UMAP (Table 4.2), we observe less 

overlap between the clustered stratification and the malignancy likelihood 

stratification (Table 4.4). This result is consistent with the finding in the literature 
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that UMAP has an advantage over PCA in preserving the cluster relationship of 

data points in high-dimensional space [122]. 

Table 4.4 Lung nodule malignancy rating distributions of derived benign 

subclasses using PCA embeddings 

 Malignancy 

Cluster Name  

Rating 2 Rating 1 Total 

Predominantly Moderately 

Likely Benign 
186 

(54.23%) 

157 

(45.77%) 

343 

 (100%) 

Predominantly Moderately 

Likely Benign 
376 

(67.87%) 

178 

(32.13%) 

554  

(100%) 

 

Table 4.5 Lung nodule malignancy rating distributions of derived malignant 

subclasses using PCA embeddings 

 Malignancy 

Cluster Name  

Rating 4 Rating 5 Total 

Predominantly Moderately 

Likely Malignant 

272 

(72.92%) 

101 

(27.08%) 

373 

(100%) 

Predominantly Most Likely 

Malignant 

84 

(38.53%) 

134 

(61.47%) 

218 

(100%) 
 

4.2.2 Spiculation-Malignancy-Based Hidden Stratification Discovery 

 

In addition to generating subclass labels using clustering results, the second 

and third stratification methods are based on the semantic features provided by 

radiologists. Previous studies have shown a high positive correlation between 

malignancy and spiculation [133, 134]. My hypothesis is that machine learning 

models with ERM loss will more accurately classify spiculated malignant nodules 

and unspiculated benign nodules, indicating a positive correlation between 

malignancy and spiculation. Conversely, machine learning models are more likely 
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to misclassify unspiculated malignant nodules and spiculated benign nodules, 

indicating a negative correlation between malignancy and spiculation. Based on 

this hypothesis, the spiculation-malignancy-based subclass labels are: Unspiculated 

Benign, Spiculated Benign, Spiculated Malignant, and Unspiculated Malignant. 

Table 4.6 presents the malignant and benign nodule counts in the LIDC dataset. 

We observe that 79.29% of unspiculated nodules are benign (with malignancy 

rating 1 or 2) and 76.94% of spiculated nodules are malignant (with malignancy 

rating 4 or 5).  

Table 4.6 Malignancy and spiculation lung nodule counts. Most benign nodules 

are unspiculated and most malignant nodules are spiculated 

Malignancy 

Spiculation 

Benign  

(1 or 2) 

Malignant  

(4 or 5) 
Total 

Unspiculated 

(1) 
781(79.29%) 204 (20.71%) 985 (100%) 

Spiculated 

(5) 
116 (23.06%) 387 (76.94%) 503 (100%) 

 

4.2.3 Malignancy-Likelihood-Based Hidden Stratification Discovery 

 

By utilizing malignancy ratings directly, we identified malignancy-likelihood-

based subclasses as follows: 'Most likely benign' (rating 1), 'moderately likely 

benign' (rating 2), 'moderately likely malignant' (rating 4), and 'most likely 

malignant' (rating 5). Table 4.7 presents the distribution of malignancy ratings, 

revealing that the majority of nodules in the LIDC dataset are classified as 

'moderately likely benign' or 'moderately likely malignant'. 
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Table 4.7 Malignancy rating distribution.Most nodules are moderately likely 

benign or malignant 

 Malignancy 

Likelihood  

Benign  

(1 or 2) 

Malignant  

(4 or 5) 

Moderately Likely 562 (62.65%) 356 (60.24%) 

Most Likely 335 (37.35%) 235 (39.76%) 

Total 897 (100%) 591(100%) 

 

4.3 Subtype Learning Results on LIDC Dataset 

 

This section presents the results of binary lung nodule malignancy 

classification (malignant vs. benign) on the testing dataset using various input 

features, loss functions, and different sets of subclass labels. Section 4.3.1 

illustrates the different input features used for the LIDC dataset, while Sections 

4.3.2 to 4.3.4 present the clustering-based, spiculation-malignancy-based, and 

malignancy-likelihood-based classification results, respectively. The subclass 

labels were used as one of the inputs to the gDRO model and were also used to 

calculate the worst group accuracy for model evaluation. 

4.3.1 Lung Nodule Malignancy Classification with Different Features and 

Loss Functions 

 

Figure 4.3 shows experiment designs of training different lung nodule 

malignancy classification models. Model input include original cropped nodule 

images, designed features, a combination of cropped images and designed features 
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or a combination of images and semantic features. When the model input is cropped 

nodule images, I utilized a pretrained ResNet CNN architecture [120] (Section 

3.2.1); when the input is designed features, I used a fully connected network 

(Section 3.2.2); and when the input is a combination of designed features and 

images, or a combination of semantic features and images, I used CompNet 

architecture [126]  (Section 3.2.3). For loss functions, I compared classification 

results using ERM that ignores the hidden stratification and gDRO that address the 

hidden stratification problem (Section 3.2.4). The hypothesis is gDRO model will 

generate higher worst group accuracy when compared with ERM model. 

 

Figure 4.3 Different model inputs, model architectures and loss functions for lung 

nodule malignancy classification. 
 

4.3.2 Classification Results with Clustering-Based Subclasses 

 

Comparison between ERM and gDRO models with different model input. 

Using clustering-based subclass labels (Section 4.2.1), Table 4.8 to Table 4.11 

present lung nodule malignancy classification results on testing data with different 
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model inputs: images (Table 4.8), designed features (Table 4.9), a combination of 

images and designed features (Table 4.10) and a combination of images and 

semantic features (Table 4.11). The worst performance group, defined as the group 

with the minimum accuracy using ERM loss, is Predominantly Moderately Likely 

Malignant. Numbers in each cell represent mean accuracy values and numbers in 

parentheses represent 95% confidence interval across 30 trials. Numbers in bold 

indicate there is a significant difference between ERM and gDRO models.  

Table 4.8 Lung nodule malignancy classification results on testing data using 

clustering-based subclasses with images as model input 

Loss Function 

Accuracy 
ERM gDRO 

Overall  0.849 (0.842, 0.856) 0.845 (0.839, 0.850) 

Predominantly Most Likely 

Benign 
0.986 (0.980, 0.991) 0.981 (0.972, 0.991) 

Predominantly Moderately 

Likely Benign 
0.836 (0.818, 0.855) 0.803 (0.785, 0.821) 

Predominantly Moderately 

Likely Malignant 
0.694 (0.664, 0.724) 0.735 (0.710, 0.761) 

Predominantly Most Likely 

Malignant 
0.980 (0.971, 0.990) 0.983 (0.975, 0.991) 
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Table 4.9 Lung nodule malignancy classification results on testing data using 

clustering-based subclasses with designed features as input 

Loss Function 

Accuracy 
ERM gDRO 

Overall 0.859 (0.852, 0.867) 0.851 (0.841, 0.861) 

Predominantly Most Likely 

Benign 
0.981 (0.968, 0.995) 0.965 (0.950, 0.980) 

Predominantly Moderately 

Likely Benign 
0.880 (0.868, 0.891) 0.827 (0.809, 0.846) 

Predominantly Moderately 

Likely Malignant 
0.661 (0.642, 0.680) 0.728 (0.709, 0.746) 

Predominantly Most Likely 

Malignant 
0.986 (0.979, 0.994) 0.989 (0.984, 0.995) 

 

Table 4.10 Lung nodule malignancy classification results on testing data using 

clustering-based subclasses with a combination of images and designed features 

as input. 

Loss Function 

Accuracy 
ERM gDRO 

Overall  0.850 (0.843, 0.857) 0.842 (0.835, 0.848) 

Predominantly Most Likely 

Benign 
0.980 (0.971, 0.989) 0.965 (0.956, 0.974) 

Predominantly Moderately 

Likely Benign 
0.839 (0.827, 0.851) 0.812 (0.798, 0.827) 

Predominantly Moderately 

Likely Malignant 
0.692 (0.667, 0.716) 0.726 (0.706, 0.745) 

Predominantly Most Likely 

Malignant 
0.989 (0.983, 0.995) 0.972 (0.962, 0.983) 
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Table 4.11 Lung nodule malignancy classification results on testing data using 

clustering-based subclasses with a combination of images and semantic features 

as input 

Loss Function 

Accuracy 
ERM gDRO 

Overall  0.872 (0.865, 0.878) 0.865 (0.857, 0.873) 

Predominantly Most Likely 

Benign 
0.994 (0.990, 0.998) 0.982 (0.973, 0.992) 

Predominantly Moderately 

Likely Benign 
0.860 (0.847, 0.872) 0.820 (0.800, 0.840) 

Predominantly Moderately 

Likely Malignant 
0.735 (0.717, 0.753) 0.784 (0.764, 0.803) 

Predominantly Most Likely 

Malignant 
0.988 (0.982, 0.995) 0.991 (0.986, 0.996) 

 

We can observe that, across all types of model inputs, implementing gDRO 

loss significantly improves the worst group overall accuracy while maintaining the 

overall accuracy at the same level. When comparing the classification results for 

different input features, we can see that the highest ERM overall accuracy (0.872), 

the highest gDRO overall accuracy (0.865), the highest ERM worst group accuracy 

(0.735), and the highest gDRO worst group accuracy (0.784) are achieved using a 

combination of images and semantic features (Table 4.11).  

Comparison between ERM, gDRO and CRIS models. Since the CRIS 

model requires images as input, CRIS classification results will only be compared 

with ERM and gDRO models with images as input. Table 4.3.2.5 and Table 4.3.2.6 

show the classification results comparison between the ERM model and the CRIS 

model, and between the gDRO model and the CRIS model, respectively. Numbers 
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in each cell represent mean accuracy values, and numbers in parentheses represent 

95% confidence intervals. Numbers in bold indicate a significant difference 

between the compared models. 

From Table 4.12, we can see that implementing CRIS significantly 

improves the worst group accuracy, Predominantly Moderately Likely Malignant, 

but with a decreased overall accuracy when compared with the ERM model. This 

result is consistent with gDRO results in the literature that most optimization 

models have the ability to increase the worst group performance but normally at the 

sacrifice of the overall accuracy. From Table 4.13, we observe that implementing 

CRIS decreased the overall accuracy and generated a similar worst group accuracy 

when compared with the gDRO model. 

Table 4.12 Lung nodule malignancy classification results comparison between 

ERM and CRIS models on testing data using clustering-based subclasses 

Loss Function 

Accuracy 
ERM CRIS 

Overall  0.849 (0.842, 0.856) 0.835 (0.829, 0.841) 

Predominantly Most Likely 

Benign 
0.986 (0.980, 0.991) 0.980 (0.973, 0.987) 

Predominantly Moderately 

Likely Benign 
0.836 (0.818, 0.855) 0.778 (0.764, 0.792) 

Predominantly Moderately 

Likely Malignant 
0.694 (0.664, 0.724) 0.740 (0.721, 0.760) 

Predominantly Most Likely 

Malignant 
0.980 (0.971, 0.990) 0.985 (0.975, 0.994) 
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Table 4.13 Lung nodule malignancy classification results comparison between 

gDRO and CRIS models on testing data using clustering-based subclasses. 

Loss Function 

Accuracy 
gDRO CRIS 

Overall  0.845 (0.839, 0.850) 0.835 (0.829, 0.841) 

Predominantly Most Likely 

Benign 
0.981 (0.972, 0.991) 0.980 (0.973, 0.987) 

Predominantly Moderately 

Likely Benign 
0.803 (0.785, 0.821) 0.778 (0.764, 0.792) 

Predominantly Moderately 

Likely Malignant 
0.735 (0.710, 0.761) 0.740 (0.721, 0.760) 

Predominantly Most Likely 

Malignant 
0.983 (0.975, 0.991) 0.985 (0.975, 0.994) 

 

Comparison between CRIS and CRRIS models. Table 4.14 and Table 

4.15 compare the classification results between CRIS and two CRRIS models. One 

CRRIS model was trained with an ERM model on typical instances and a gDRO 

model on atypical instances (Table 4.14), while the other CRRIS model was trained 

with an ERM model on atypical instances and a gDRO model on typical instances 

(Table 4.15). 

The results in Table 4.14 indicate that there is no significant difference 

between CRIS and the CRRIS model trained on typical instances in terms of overall 

accuracy and worst group accuracy. However, Table 4.15 shows that the CRRIS 

model trained on atypical instances outperforms CRIS in terms of worst group 

accuracy. 
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Table 4.14 Lung nodule malignancy classification results comparison between 

CRIS and CRRIS model with an ERM trained on typical instances on testing data 

using clustering-based subclasses. 

Loss Function 

Accuracy 
CRIS 

CRRIS (ERM trained 

on typical instances) 

Overall  0.835 (0.829, 0.841) 0.840 (0.830, 0.850) 

Predominantly Most Likely 

Benign 
0.980 (0.973, 0.987) 0.988 (0.982, 0.995) 

Predominantly Moderately 

Likely Benign 
0.778 (0.764, 0.792) 0.799 (0.783, 0.815) 

Predominantly Moderately 

Likely Malignant 
0.740 (0.721, 0.760) 0.737 (0.713, 0.760) 

Predominantly Most Likely 

Malignant 
0.985 (0.975, 0.994) 0.969 (0.954, 0.983) 

 

Table 4.15 Lung nodule malignancy classification results comparison between 

CRIS and CRRIS model with an ERM trained on atypical instances on testing 

data using clustering-based subclasses 

Loss Function 

Accuracy 
CRIS 

CRRIS (ERM trained 

on atypical instances) 

Overall  0.835 (0.829, 0.841) 0.824 (0.816, 0.832) 

Predominantly Most Likely 

Benign 
0.980 (0.973, 0.987) 0.952 (0.938, 0.965) 

Predominantly Moderately 

Likely Benign 
0.778 (0.764, 0.792) 0.753 (0.734, 0.772) 

Predominantly Moderately 

Likely Malignant 
0.740 (0.721, 0.760) 0.754 (0.729, 0.779) 

Predominantly Most Likely 

Malignant 
0.985 (0.975, 0.994) 0.993 (0.985, 1.000) 

 

Comparison between ERM, gDRO and CRRIS with ERM trained on 

atypical instances. Since classification results presented in Table 4.15 implies that 

CRRIS with ERM trained on atypical instances outperforms CRIS measured by the 

worst group accuracy, I further compared the classification results between ERM 
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and CRRIS (Table 4.16) and between gDRO with CRRIS (Table 4.17). We can 

observe that implementing CRRIS with ERM trained on atypical instances and 

gDRO trained on typical instances significantly improved the worst group accuracy 

when compared with base ERM and base gDRO model but with a tradeoff of 

overall accuracy.  

Table 4.16 Lung nodule malignancy classification results comparison between 

ERM and CRRIS model with an ERM trained on atypical instances on testing 

data using clustering-based subclasses. 

Loss Function 

Accuracy 
ERM 

CRRIS (ERM trained 

on atypical instances) 

Overall  0.849 (0.842, 0.856) 0.824 (0.816, 0.832) 

Predominantly Most Likely 

Benign 
0.986 (0.980, 0.991) 0.952 (0.938, 0.965) 

Predominantly Moderately 

Likely Benign 
0.836 (0.818, 0.855) 0.753 (0.734, 0.772) 

Predominantly Moderately 

Likely Malignant 
0.694 (0.664, 0.724) 0.754 (0.729, 0.779) 

Predominantly Most Likely 

Malignant 
0.980 (0.971, 0.990) 0.993 (0.985, 1.000) 
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Table 4.17 Lung nodule malignancy classification results comparison between 

gDRO and CRRIS model with an ERM trained on atypical instances on testing 

data using clustering-based subclasses. 

Loss Function 

Accuracy 
gDRO 

CRRIS (ERM trained 

on atypical instances) 

Overall  0.845 (0.839, 0.850) 0.824 (0.816, 0.832) 

Predominantly Most Likely 

Benign 
0.981 (0.972, 0.991) 0.952 (0.938, 0.965) 

Predominantly Moderately 

Likely Benign 
0.803 (0.785, 0.821) 0.753 (0.734, 0.772) 

Predominantly Moderately 

Likely Malignant 
0.735 (0.710, 0.761) 0.754 (0.729, 0.779) 

Predominantly Most Likely 

Malignant 
0.983 (0.975, 0.991) 0.993 (0.985, 1.000) 

 

Classification results summary using clustering-based subclass labels. 

First, we observe that implementing the gDRO loss significantly increases the worst 

group accuracy compared to the ERM model, regardless of the model input (Tables 

4.8–11). Second, CRRIS with ERM trained on atypical instances and gDRO trained 

on typical instances outperforms the ERM model (Table 4.16), the gDRO model 

(Table 4.17), and the CRIS model (Table 4.15) in terms of worst group accuracy, 

but at the cost of overall accuracy. This tradeoff is also observed in the literature. 

4.3.3 Classification Results Using Spiculation-Malignancy-Based Subclasses 

 

Comparison between ERM and gDRO models with different model input. 

Tables 4.18 to 4.21 present classification results with different model inputs 

utilizing spiculation-malignancy-based subclasses. The model inputs include 
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images (Table 4.18), designed features (Table 4.19), a combination of images and 

designed features (Table 4.20), and a combination of images and semantic features 

(Table 4.21). The numbers in each cell represent mean accuracy values, and the 

numbers in parentheses represent a 95% confidence interval. Numbers in bold 

indicate a significant difference between the compared models. The worst 

performance group, defined as the group with the minimum accuracy using ERM 

loss, is Unspiculated Malignant except for one situation when the model input is a 

combination of images and semantic features; the worst performance group is 

spiculated benign (Table 4.21). 

From Table 4.18 and 4.19, we can observe that implementing gDRO 

significantly increased the worst group accuracy compared with the ERM model. 

However, when the input is images, implementing the gDRO loss results in a 

tradeoff between the worst group accuracy and the overall accuracy (Table 4.18). 

Table 4.20 and 4.21 show that there are no significant differences between ERM 

and gDRO when the input features are a combination of images and designed 

features (Table 4.20) or a combination of images and semantic features (Table 4.21). 
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Table 4.18 Lung nodule malignancy classification comparison between ERM and 

gDRO on testing data with images as model input using spiculation-malignancy 

based subclasses 

Loss Function 

Accuracy 
ERM gDRO 

Overall Accuracy 0.850 (0.842, 0.858) 0.838 (0.829, 0.846) 

Unspiculated Benign 0.905 (0.893, 0.916) 0.862 (0.840, 0.883) 

Spiculated Benign 0.775 (0.741, 0.808) 0.700 (0.661, 0.739) 

Spiculated Malignant 0.846 (0.827, 0.866) 0.875 (0.853, 0.897) 

Unspiculated Malignant  0.701 (0.676, 0.727) 0.766 (0.740, 0.791) 

 

Table 4.19 Lung nodule malignancy classification comparison between ERM and 

gDRO on testing data with designed features as model input using spiculation-

malignancy based subclasses 

Loss Function 

Accuracy 
ERM gDRO 

Overall Accuracy 0.856 (0.848, 0.864) 0.852 (0.841, 0.863) 

Unspiculated Benign 0.923 (0.913, 0.932) 0.886 (0.866, 0.906) 

Spiculated Benign 0.815 (0.792, 0.838) 0.756 (0.720, 0.792) 

Spiculated Malignant 0.850 (0.833, 0.866) 0.879 (0.867, 0.892) 

Unspiculated Malignant  0.642 (0.616, 0.667) 0.729 (0.705, 0.753) 
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Table 4.20 Lung nodule classification comparison between ERM and gDRO on 

testing data with a combination of images and designed features as model input 

using spiculation-malignancy based subclasses 

Loss Function 

Accuracy 
ERM gDRO 

Overall Accuracy 0.850 (0.842, 0.858) 0.840 (0.823, 0.856) 

Unspiculated Benign 0.893 (0.882, 0.904) 0.877 (0.858, 0.897) 

Spiculated Benign 0.774 (0.750, 0.799) 0.745 (0.711, 0.779) 

Spiculated Malignant 0.861 (0.850, 0.872) 0.859 (0.836, 0.883) 

Unspiculated Malignant  0.713 (0.686, 0.741) 0.718 (0.696, 0.740) 

 

 

Table 4.21 Lung nodule malignancy classification comparison between ERM and 

gDRO on testing data with a combination of images and semantic features as 

model input using spiculation-malignancy based subclasses 

Loss Function 

Accuracy 
ERM gDRO 

Overall Accuracy 0.871 (0.864, 0.878) 0.877 (0.869, 0.884) 

Unspiculated Benign 0.915 (0.905, 0.924) 0.915 (0.906, 0.925) 

Spiculated Benign 0.731 (0.695, 0.767) 0.761 (0.722, 0.801) 

Spiculated Malignant 0.889 (0.878, 0.901) 0.891 (0.879, 0.904) 

Unspiculated Malignant 0.757 (0.735, 0.779) 0.772 (0.747, 0.797) 

 

Comparison between ERM, gDRO and CRIS models. Table 4.22 and Table 

4.23 show a comparison of classification results between the ERM model and the 

CRIS model, and between the gDRO model and the CRIS model, respectively. The 

numbers in each cell represent mean accuracy values, and the numbers in 
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parentheses represent the 95% confidence interval across 30 trials. Numbers in bold 

indicate a significant difference between the compared models. 

From Table 4.22, we can see that implementing CRIS significantly improves 

the worst group accuracy for Unspiculated Malignant, but with a decreased overall 

accuracy when compared with the ERM model. Table 4.23 shows that there is no 

significant difference between the gDRO and CRIS models in terms of overall 

accuracy and worst group accuracy.  

Table 4.22 Lung nodule malignancy classification results comparison between 

ERM and CRIS models on testing data using spiculation-malignancy based 

subclasses. 

Loss Function 

Accuracy 
ERM CRIS 

Overall  0.850 (0.842, 0.858) 0.834 (0.823, 0.844) 

Unspiculated Benign 0.905 (0.893, 0.916) 0.854 (0.838, 0.870) 

Spiculated Benign 0.775 (0.741, 0.808) 0.724 (0.687, 0.760) 

Spiculated Malignant 0.846 (0.827, 0.866) 0.869 (0.854, 0.884) 

Unspiculated Malignant  0.701 (0.676, 0.727) 0.759 (0.732, 0.786) 
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Table 4.23 Lung nodule malignancy classification results comparison between 

gDRO and CRIS models on testing data using spiculation-malignancy based 

subclasses. 

Loss Function 

Accuracy 
gDRO CRIS 

Overall Accuracy 0.838 (0.829, 0.846) 0.834 (0.823, 0.844) 

Unspiculated Benign 0.862 (0.840, 0.883) 0.854 (0.838, 0.870) 

Spiculated Benign 0.700 (0.661, 0.739) 0.724 (0.687, 0.760) 

Spiculated Malignant 0.875 (0.853, 0.897) 0.869 (0.854, 0.884) 

Unspiculated Malignant  0.766 (0.740, 0.791) 0.759 (0.732, 0.786) 

 

Comparison between CRIS and CRRIS models. Table 4.24 and Table 

4.25 present a classification comparison between CRIS and two CRRIS models. 

The first CRRIS model was trained with an ERM model on typical instances and a 

gDRO model on atypical instances (Table 4.24), while the second CRRIS model 

was trained with an ERM model on atypical instances and a gDRO model on typical 

instances (Table 4.25).  

In Table 4.24, CRIS achieved a higher worst group accuracy than CRRIS, 

while having a similar overall accuracy with CRRIS that was trained with ERM on 

typical instances. From Table 4.25, we can observe that CRIS outperforms CRRIS, 

measured by both the worst group accuracy and overall accuracy. These results 

suggest that CRIS performs better than CRRIS when subclasses are spiculation-

malignancy-based. 
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Table 4.24 Lung nodule malignancy classification results comparison between 

CRIS and CRRIS model with an ERM trained on typical instances on testing data 

using spiculation-malignancy-based subclasses. 

Loss Function 

Accuracy 
CRIS 

CRRIS (ERM trained 

on typical instances) 

Overall  0.834 (0.823, 0.844) 0.842 (0.834, 0.850) 

Unspiculated Benign 0.854 (0.838, 0.870) 0.898 (0.884, 0.912) 

Spiculated Benign 0.724 (0.687, 0.760) 0.780 (0.747, 0.813) 

Spiculated Malignant 0.869 (0.854, 0.884) 0.830 (0.812, 0.848) 

Unspiculated Malignant  0.759 (0.732, 0.786) 0.696 (0.667, 0.724) 

 

Table 4.25 Lung nodule malignancy classification results comparison between 

CRIS and CRRIS model with an ERM trained on typical instances on testing data 

using spiculation-malignancy-based subclasses 

Loss Function 

Accuracy 
CRIS 

CRRIS (ERM trained 

on atypical instances) 

Overall Accuracy 0.834 (0.823, 0.844) 0.824 (0.814, 0.834) 

Unspiculated Benign 0.854 (0.838, 0.870) 0.834 (0.819, 0.849) 

Spiculated Benign 0.724 (0.687, 0.760) 0.699 (0.658, 0.741) 

Spiculated Malignant 0.869 (0.854, 0.884) 0.887 (0.874, 0.900) 

Unspiculated Malignant  0.759 (0.732, 0.786) 0.748 (0.726, 0.771) 

 

Classification results summary using spiculation-malignancy-based 

subclass labels. When the model input are images or designed features, gDRO 

model outperforms ERM model measured by the worst group accuracy (Table 4.18 

and Table 4.19). When the model input are images, implementing gDRO decreases 

the overall accuracy (Table 4.18). When the model input are a combination of 
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images and designed features or a combination of images and semantic features, 

there are no significant difference between ERM and gDRO (Table 4.20 and Table 

4.21). CRIS model performs equally with gDRO model and CRIS model 

outperforms CRRIS model. Since CRIS requires less subclass labels during the 

training, CRIS model is preferred when the subclass labels are spiculation-

malignancy based.   

4.3.4 Classification Results with Malignancy-Likelihood-Based Subclasses 

 

Comparison between ERM and gDRO models with different model 

input. Table 4.26 to Table 4.29 present classification results using different model 

inputs: images (Table 4.26), designed features (Table 4.27), a combination of 

images and designed features (Table 4.28), and a combination of images and 

semantic features (Table 4.29). The numbers in each cell represent the mean 

accuracy values, and the numbers in parentheses represent the 95% confidence 

interval across 30 trials. The numbers in bold indicate a significant difference 

between ERM and gDRO. The Moderately Suspicious group, defined as the group 

with the lowest accuracy using ERM loss, showed the worst performance. When 

images (Table 4.26), designed features (Table 4.27), or a combination of images 

and semantic features (Table 4.29) were used as input features, gDRO significantly 

improved the worst group accuracy compared to ERM. However, when the input 

features were a combination of images and designed features (Table 4.28), there 
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was no significant difference in the worst group accuracy between ERM and gDRO. 

There was no significant difference in overall accuracy between ERM and gDRO 

across all model inputs.  

Table 4.26 Lung nodule malignancy classification results comparison on testing 

data between ERM and gDRO using malignancy-likelihood-based subclasses with 

images as model input 

Loss Function 

Accuracy 
ERM gDRO 

Overall  0.850 (0.843, 0.856) 0.845 (0.837, 0.853) 

Highly Unlikely 0.931 (0.918, 0.945) 0.915 (0.901, 0.928) 

Moderately Unlikely 0.861 (0.847, 0.875) 0.821 (0.800, 0.842) 

Moderately Suspicious 0.688 (0.663, 0.713) 0.745 (0.719, 0.771) 

Highly Suspicious 0.948 (0.938, 0.958) 0.952 (0.941, 0.963) 

 

Table 4.27 Classification results comparison on testing data between ERM and 

gDRO using malignancy-likelihood-based subclasses with designed features as 

model input 

Loss Function 

Accuracy 
ERM gDRO 

Overall  0.858 (0.850, 0.865) 0.854 (0.842, 0.865) 

Highly Unlikely 0.932 (0.920, 0.943) 0.916 (0.897, 0.935) 

Moderately Unlikely 0.897 (0.885, 0.909) 0.843 (0.826, 0.860) 

Moderately Suspicious 0.645 (0.628, 0.663) 0.723 (0.706, 0.740) 

Highly Suspicious 0.978 (0.971, 0.986) 0.988 (0.981, 0.994) 
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Table 4.28 Lung nodule malignancy classification results comparison on testing 

data between ERM and gDRO using malignancy-likelihood-based subclasses with 

a combination of images and designed features as model input 

Loss Function 

Accuracy 
ERM gDRO 

Overall  0.853 (0.844, 0.862) 0.848 (0.842, 0.854) 

Highly Unlikely 0.936 (0.926, 0.946) 0.930 (0.918, 0.943) 

Moderately Unlikely 0.853 (0.838, 0.867) 0.826 (0.81 1, 0.841) 

Moderately Suspicious 0.703 (0.681,0.725) 0.726 (0.708, 0.745) 

Highly Suspicious 0.963 (0.953,0.973) 0.965 (0.953, 0.976) 

 

Table 4.29 Lung nodule classification results comparison on testing data between 

ERM and gDRO using malignancy-likelihood-based subclasses with a 

combination of images and semantic features as model input 

Loss Function 

Accuracy 
ERM gDRO 

Overall  0.874 (0.867, 0.880) 0.872 (0.863, 0.881) 
Highly Unlikely 0.948 (0.938, 0.958) 0.937 (0.924, 0.950) 

Moderately Unlikely 0.864 (0.852, 0.876) 0.850 (0.832, 0.867) 

Moderately Suspicious 0.750 (0.731, 0.770) 0.777 (0.758, 0.795) 

Highly Suspicious 0.978 (0.968, 0.988) 0.976 (0.968, 0.983) 
 

Comparison between ERM, gDRO and CRIS model. Table 4.30 and 

Table 4.31 compare the classification results using malignancy-based subclasses 

between ERM and CRIS and between gDRO and CRIS, respectively. It can be 

observed that implementing CRIS significantly increased the accuracy of the worst 
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group (moderately suspicious) at the expense of the overall accuracy when 

compared to the ERM and gDRO models.  

Table 4.30 Lung nodule malignancy classification results comparison on testing 

data between ERM and CRIS model using malignancy-likelihood-based 

subclasses. 

Loss Function 

Accuracy 
ERM CRIS 

Overall  0.850 (0.843, 0.856) 0.839 (0.832, 0.846) 

Highly Unlikely 0.931 (0.918, 0.945) 0.904 (0.891, 0.917) 

Moderately Unlikely 0.861 (0.847, 0.875) 0.804 (0.786, 0.822) 

Moderately Suspicious 0.688 (0.663, 0.713) 0.752 (0.732, 0.772) 

Highly Suspicious 0.948 (0.938, 0.958) 0.959 (0.947, 0.971) 

 

Table 4.31 Classification results comparison on testing data between gDRO and 

CRIS model using malignancy-likelihood-based subclasses. 

Loss Function 

Accuracy 
gDRO CRIS 

Overall  0.845 (0.837, 0.853) 0.839 (0.832, 0.846) 

Highly Unlikely 0.915 (0.901, 0.928) 0.904 (0.891, 0.917) 

Moderately Unlikely 0.821 (0.800, 0.842) 0.804 (0.786, 0.822) 

Moderately Suspicious 0.745 (0.719, 0.771) 0.752 (0.732, 0.772) 

Highly Suspicious 0.952 (0.941, 0.963) 0.959 (0.947, 0.971) 

 

Comparison between CRIS and CRRIS models. Table 4.32 and Table 

4.33 compare the classification results between CRIS and two CRRIS models. One 

CRRIS model uses an ERM model trained on typical instances and a gDRO model 

trained on atypical instances (Table 4.32), while the other CRRIS model uses an 
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ERM model trained on atypical instances and a gDRO model trained on typical 

instances (Table 4.33). Table 4.32 shows that CRIS outperforms the CRRIS model 

with ERM trained on typical instances in terms of the worst group accuracy. Table 

4.33 indicates that while CRIS and CRRIS with ERM trained on atypical instances 

perform equally on the worst group accuracy, CRIS achieves a higher overall 

accuracy than CRRIS. 

Table 4.32 Lung nodule malignancy classification results comparison between 

CRIS and CRRIS model with an ERM trained on typical instances on testing data 

using malignancy-based subclasses. 

Loss Function 

Accuracy 
CRIS 

CRRIS (ERM trained 

on typical instances) 

Overall  0.839 (0.832, 0.846) 0.844 (0.835, 0.853) 

Highly Unlikely 0.904 (0.891, 0.917) 0.919 (0.905, 0.933) 

Moderately Unlikely 0.804 (0.786, 0.822) 0.841 (0.824, 0.858) 

Moderately Suspicious 0.752 (0.732, 0.772) 0.713 (0.689, 0.736) 

Highly Suspicious 0.959 (0.947, 0.971) 0.943 (0.931, 0.955) 
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Table 4.33 Lung nodule malignancy classification results comparison between 

CRIS and CRRIS model with an ERM trained on atypical instances on testing 

data using malignancy-based subclasses. 

Loss Function 

Accuracy 
CRIS 

CRRIS (ERM trained 

on atypical instances) 

Overall  0.839 (0.832, 0.846) 0.817 (0.808, 0.827) 

Highly Unlikely 0.904 (0.891, 0.917) 0.884 (0.866, 0.902) 

Moderately Unlikely 0.804 (0.786, 0.822) 0.748 (0.721, 0.775) 

Moderately Suspicious 0.752 (0.732, 0.772) 0.756 (0.732, 0.781) 

Highly Suspicious 0.959 (0.947, 0.971) 0.978 (0.969, 0.986) 

 

Classification results summary using malignancy-likelihood-based 

subclass labels. When the input features are images (Table 4.26) or designed 

features (Table 4.27) or a combination of images and semantic ratings (Table 4.29), 

gDRO significantly improves the worst group accuracy compared to ERM. 

However, when the input features are a combination of images and designed 

features (Table 4.28), there is no significant difference in the worst group accuracy 

between ERM and gDRO. Across all model inputs, there is no significant difference 

in the overall accuracy between ERM and gDRO. CRIS outperforms ERM and 

gDRO in terms of the worst group accuracy (Table 4.30 and Table 4.31) and 

achieves higher worst group accuracy and overall accuracy than two CRRIS models 

(Table 4.32 and Table 4.33), respectively. When subclass labels are malignancy-

likelihood-based, CRIS is the preferred model for generalization. 
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4.4 Analysis of Results 

 

In this section, I will first analyze my hidden stratification discovery and 

subgroup learning results, then, I will discuss my findings on three additional 

research questions. The first question is related to the performance of the trained 

ERM and gDRO models on nodules that have been confirmed as pathological 

(Section 4.4.2). The second question explores whether incorporating semantic 

features to select representative or atypical instances can improve the performance 

of the CRRIS model (Section 4.4.3). Lastly, the third question examines whether 

utilizing a pretrained model on a medical dataset can enhance the transfer learning 

process and lead to improved model performance (Section 4.4.4). 

4.4.1 Hidden Stratification Discovery and Subgroup Learning Results 

Analysis  

 

First, my results show that hidden stratification exists, as indicated by the 

different ERM model performances across stratification groups (e.g., see Table 

4.8). A high degree of overlap between the clustered stratification and malignancy 

likelihood stratification (Tables 4.2 and 4.3) implies that the subclasses generated 

from clustering are semantically meaningful.  

Second, incorporating gDRO loss into lung nodule malignancy classification 

models can significantly increase the worst group performance when subclass 

labels are clustering-based. When subclasses are spiculation-malignancy-based or 
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malignancy-likelihood-based, there are some exceptions when we use a 

combination of images and designed features or a combination of images and 

semantic features as model input (Tables 4.20 and 4.21). Both input features and 

stratification methods have a direct influence on classification results. 

Third, using a combination of images and semantic features as the model input 

improves the overall accuracy and the worst group accuracy compared to other 

input features (Tables 4.8 to 4.11). Additionally, when the model input is a 

combination of images and semantic features, the ERM model generates higher 

accuracies on two benign subclasses, and the gDRO model produces higher 

accuracies on two malignant subclasses (Table 4.11). 

Fourth, across all experimental designs, only when the subclasses are 

clustering-based, CRRIS with an ERM model trained on atypical instances 

achieved higher worst group accuracy with a tradeoff of overall accuracy compared 

to CRIS (Table 4.15). There is no evidence supporting the hypothesis that the 

CRRIS model can further boost the model generalization compared to the CRIS 

model. When we compare CRIS with gDRO, we can observe a significant increase 

of the worst group accuracy by implementing CRIS only when subclasses are 

malignancy-based (Table 4.31).  

4.4.2 Lung Nodule Malignancy Classification Results with Pathological-

Proven Examination Labels 
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The LIDC dataset also provides patient-level pathological-proven examination 

labels. However, since this study utilizes nodule level data, only patients with a 

single nodule were selected for analysis. A total of 34 patients met this criterion 

and their patient-level pathological-proven examination labels were used as the 

malignancy ground truth. Among these 34 nodules, 15 were excluded due to an 

indeterminate malignancy rating of 3, leaving 19 nodules for evaluating our model's 

ability to predict the pathological-proven labels. These 19 nodules were excluded 

from the training dataset and only used during the prediction phase.   

Table 4.34 displays the correlation between radiologists' assessments and 

pathological-proven examination labels. The table shows that the false positive rate 

for malignancy semantic ratings is 33.33% (2 out of 6), while the false negative rate 

is 53.85% (7 out of 13).   

Table 4.34 Relationship between pathological-proven lung nodule malignancy 

labels and semantic rating 

 Mode Rating Labels 

Pathological-proven Labels 
Benign Malignant 

Benign  4 2 

Malignant 7 6 

 

Table 4.35 illustrates the connection between pathological-proven labels and 

ERM prediction labels. After running the classification model 30 times, I obtained 

the same confusion matrix in every trial. The table indicates that the false positive 
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rate is 33.33% and the false negative rate is 38.46%. Comparing these results to 

those in Table 4.34, we can conclude that the ERM model significantly reduces the 

false negative rate from 53.85% to 38.46%, while maintaining the false positive 

rate when compared to radiologists' semantic ratings.  

Table 4.35 Relationship between pathological-proven malignancy labels and 

ERM prediction labels 

 ERM Predicted Labels 

Pathological-proven Labels 
Benign Malignant 

Benign  4 2 

Malignant 5 8 

 

Table 4.36 displays the correlation between pathological-proven labels and 

gDRO prediction labels. Similar to the previous models, I ran the classification 

model 30 times and obtained the same confusion matrix in each trial. From Table 

4.36, we can observe that the false positive rate is 33.33% and the false negative 

rate is 15.38%. Comparing these results to those in Tables 4.34 and 4.35, it is 

evident that the gDRO model provides a further reduction in the false negative rate.  

Table 4.36 Relationship between pathological-proven lung nodule malignancy 

labels and gDRO prediction labels 

 Mode Rating Labels 

Pathological-proven Labels 
Benign Malignant 

Benign  4 2 

Malignant 2 11 

 



101 
 

The results presented in Tables 4.34 to 4.36 indicate that in the LIDC dataset, 

radiologists annotated a significant number of false negative labels (Table 4.34). 

Using a CNN classifier with ERM or gDRO loss can help reduce false negative rate 

(Table 4.35 and Table 4.36). 

In terms of running the CRIS model across 30 trials and comparing the 

pathological-proven labels and prediction labels, I obtained different confusion 

matrices. Table 4.37 and Table 4.38 present the confusion matrix with the highest 

overall accuracy and the confusion matrix with the lowest overall accuracy across 

the 30 trials. In the highest overall accuracy scenario, the false positive rate and 

false negative rate are both 33.33%. However, in the lowest overall accuracy 

scenario, the false positive rate and false negative rate are 50% and 53.85%, 

respectively. 

When comparing these results to the ones obtained using human annotated 

semantic ratings (Table 4.34), it can be observed that the CRIS model does not 

necessarily decrease the false negative rate as indicated by the ERM and gDRO 

model results. In the highest overall accuracy scenario, the CRIS model decreases 

false negative rates. However, in the scenario with the lowest overall accuracy, it 

actually increases the false positive rate and maintains the false negative rate the 

same when compared with the human-annotated results. 
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Table 4.37 Relationship between pathological-proven lung nodule malignancy 

labels and CRIS prediction labels (the highest overall accuracy situation) 

 Mode Rating Labels 

Pathological-proven Labels 
Benign Malignant 

Benign  4 2 

Malignant 3 10 

 

Table 4.38 Relationship between pathological-proven lung nodule malignancy 

labels and CRIS prediction labels (the lowest overall accuracy situation) 

 Mode Rating Labels 

Pathological-proven Labels 
Benign Malignant 

Benign  3 3 

Malignant 7 6 

 

Table 4.39 and Table 4.40 present the results of lung nodule malignancy 

classification on pathologically proven lung nodules using the CRRIS model with 

an ERM model trained on atypical instances. The tables showcase the outcomes 

under the highest overall accuracy and the lowest overall accuracy scenarios across 

30 trials. A similar pattern is observed with the CRIS model, where under the 

highest overall accuracy scenario, the CRRIS model with an ERM model trained 

on atypical instances significantly reduces the false negative rate from 53.85% 

(Table 4.34) to 23.08% when compared to human annotated ratings. However, in 

the lowest overall accuracy scenario, the CRRIS model with an ERM model trained 

on atypical instances increases the false positive rate from 33.33% to 66.67% while 

maintain the false negative the same. 
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Table 4.39 Relationship between pathological-proven lung nodule malignancy 

labels and CRRIS with an ERM trained on atypical instances prediction labels 

(the highest overall accuracy situation) 

Mode Rating Labels 

Pathological-proven Labels 
Benign Malignant 

Benign  4 2 

Malignant 3 10 

 

Table 4.40 Relationship between pathological-proven lung nodule malignancy 

labels and CRRIS with an ERM trained on atypical instances prediction labels 

(the lowest overall accuracy situation) 

Mode Rating Labels 

Pathological-proven Labels 
Benign Malignant 

Benign  2 4 

Malignant 7 6 

 

Table 4.41 and Table 4.42 show the results of lung nodule malignancy 

classification on pathologically proven lung nodules using the CRRIS model with 

an ERM model trained on typical instances. Table 4.41 represents a confusion 

matrix with the highest overall accuracy while Table 4.42 represents a confusion 

matrix with the lowest overall accuracy. We can observe that under the highest 

overall accuracy scenario, the CRRIS model trained on typical instances 

significantly reduces the false negative rate from 53.85% (Table 4.34) to 15.38% 

when compared to human annotated ratings. Under the lowest overall accuracy 

scenario, the CRRIS model trained on typical instances decreases the false negative 
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rate from 53.85% to 38.46%, but increase the false positive rate from 33.33% to 

50%. 

Table 4.41 Relationship between pathological-proven lung nodule malignancy 

labels and CRRIS with an ERM trained on typical instances prediction labels (the 

highest overall accuracy situation) 

Mode Rating Labels 

Pathological-proven Labels 
Benign Malignant 

Benign  4 2 

Malignant 2 11 

 

Table 4.42 Relationship between pathological-proven lung nodule malignancy 

labels and CRRIS with an ERM trained on typical instances prediction labels (the 

lowest overall accuracy situation) 

Mode Rating Labels 

Pathological-proven Labels 
Benign Malignant 

Benign  3 3 

Malignant 5 8 

 

4.5.2 CRRIS Model using Semantic Features to Choose Representative Cases 

 

Section 3.3.2 explains how I selected representative instances based on the 

Euclidean distance between the deep image feature vector of each instance and the 

deep image feature vector of the cluster center. As the LIDC dataset provides 

semantic features, I hypothesized that using semantic features to select 

representative cases (Semantic-CRRIS) would lead to a further increase in model 

performance, as measured by both the worst group accuracy and overall accuracy. 

More specifically, I compared the Jaccard distance of semantic features of each 
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lung nodule and of the cluster center. An instance is a representative case if the 

Jaccard distance between its semantic features and the semantic features of the 

cluster center is within the smallest  𝑝 %, where  𝑝 is a hyperparameter. I chose 𝑝 

as 50 since it gave me the best performance on the validation set. For all the tables 

in this section, numbers in each cell represent mean accuracy values and numbers 

in parentheses represent 95% confidence interval. Numbers in bold represent there 

is a significant difference between compared models. 

Table 4.43 displays a comparison of lung nodule malignancy classification 

between CRIS and Semantic-CRRIS using clustering-based subclass labels. The 

results indicate that while overall accuracy remains unchanged, semantic-CRRIS 

significantly enhances the performance of the worst group.  

Table 4.43 Lung nodule malignancy classification results comparison between 

CRIS and Semantic-CRRIS model with an ERM trained on atypical instances on 

testing data using clustering-based subclasses. 

Loss Function 

Accuracy 
CRIS  

Semantic-CRRIS 

(ERM trained on 

atypical instances) 

Overall  0.835 (0.829, 0.841) 0.831 (0.822, 0.840) 

Predominantly Most Likely 

Benign 
0.980 (0.973, 0.987) 0.961 (0.947, 0.976) 

Predominantly Moderately 

Likely Benign 
0.778 (0.764, 0.792) 0.768 (0.750, 0.786) 

Predominantly Moderately 

Likely Malignant 
0.740 (0.721, 0.760) 0.764 (0.743, 0.785) 

Predominantly Most Likely 

Malignant 
0.985 (0.975, 0.994) 0.974 (0.959, 0.989) 
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Table 4.44 presents a comparison of lung nodule malignancy classification 

between CRRIS and Semantic-CRRIS. Unlike CRRIS, which selects representative 

instances using image feature Euclidean distance, Semantic-CRRIS improves the 

accuracy of both the worst and overall groups, albeit without statistical significance. 

Table 4.44 Lung nodule malignancy classification results comparison between 

CRRIS and Semantic CRRIS model with an ERM trained on atypical instances on 

testing data using clustering-based subclasses. 

Loss Function 

Accuracy 

CRRIS (ERM 

trained on atypical 

instances) 

Semantic-CRRIS 

(ERM trained on 

atypical instances) 

Overall  0.824 (0.816, 0.832) 0.831 (0.822, 0.840) 

Predominantly Most Likely 

Benign 
0.952 (0.938, 0.965) 0.961 (0.947, 0.976) 

Predominantly Moderately 

Likely Benign 
0.753 (0.734, 0.772) 0.768 (0.750, 0.786) 

Predominantly Moderately 

Likely Malignant 
0.754 (0.729, 0.779) 0.764 (0.743, 0.785) 

Predominantly Most Likely 

Malignant 
0.993 (0.985, 1.000) 0.974 (0.959, 0.989) 

 

4.5.3 Transfer Learning with a Pretrained Model on a Medical Related 

Dataset 

 

In Section 3.2.1, a transfer learning approach was introduced, utilizing a 

pretrained model on ImageNet, a large image database that does not include 

medical-related images such as CT, MRI, and X-ray. Since this study focuses on 

applications in the medical domain, an investigation was conducted to determine if 

employing a pretrained model on a medical-related database could further enhance 
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the model's performance. Mei et al.'s RadImageNet [135] dataset, comprising 1.35 

million annotated medical CT scans and MRIs from 131,872 patients, was utilized 

for this purpose. Previous research [135] has indicated that pretrained models using 

RadImageNet outperform models trained on ImageNet for medical-related 

classification tasks. Hence, an evaluation of lung nodule classification performance 

was conducted using RadImageNet, and the results were compared with those 

obtained using ImageNet. It is noteworthy that all the pretrained models on 

RadImageNet employed a ResNet50 architecture, unlike the ResNet18 architecture 

used in this study. To ensure a fair comparison, the classification was re-run using 

a pretrained ResNet50 model on ImageNet. 

Table 4.45 presents the results of lung nodule classification using ERM loss. 

It can be observed that for the LIDC dataset, there is no significant difference 

between utilizing a pretrained ResNet50 model on ImageNet and using a pretrained 

ResNet50 model on RadImageNet. The same conclusion can be drawn when 

employing the gDRO loss, as shown in Table 4.46. 
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Table 4.45 Comparison of lung nodule malignancy classification results using 

ERM loss between a pretrained ResNet50 model on ImageNet and a pretrained 

ResNet50 model on RadImageNet 

Pretrained Dataset 

Accuracy 
ImageNet  RadImageNet 

Overall  0.849 (0.842, 0.855) 0.856 (0.849, 0.863) 

Predominantly Most Likely 

Benign 
0.986 (0.979, 0.993) 0.993 (0.989, 0.997) 

Predominantly Moderately Likely 

Benign 
0.834 (0.814, 0.854) 0.850 (0.835, 0.865) 

Predominantly Moderately Likely 

Malignant 
0.695 (0.671, 0.719) 0.692 (0.669, 0.716) 

Predominantly Most Likely 

Malignant 
0.983 (0.975, 0.991) 0.982 (0.973, 0.991) 

 

Table 4.46 Comparison of lung nodule malignancy classification results using 

gDRO loss between a pretrained ResNet50 model on ImageNet and a pretrained 

ResNet50 model on RadImageNet 

Pretrained Dataset 

Accuracy 
ImageNet  RadImageNet 

Overall  0.840 (0.829, 0.850) 0.840 (0.831, 0.849) 

Predominantly Most Likely 

Benign 
0.969 (0.958, 0.981) 0.973 (0.963, 0.983) 

Predominantly Moderately Likely 

Benign 
0.784 (0.756, 0.811) 0.795 (0.775, 0.816) 

Predominantly Moderately Likely 

Malignant 
0.758 (0.735, 0.781) 0.738 (0.713, 0.762) 

Predominantly Most Likely 

Malignant 
0.985 (0.973, 0.996) 0.979 (0.971, 0.987) 

 

 

  



109 
 

CHAPTER 5. Applications to Breast Cancer 

 

5.1 Breast Cancer Histopathological Database (BreakHis) 

 

Breast Cancer Histopathological Database (BreakHis) [136] comprises 

microscopic images of breast tumor tissue obtained from 82 patients using varying 

magnification levels (40X, 100X, 200X, and 400X). In this study, I evaluated my 

methodologies on 40X images. All BreakHis images can be divided into two 

superclass categories: Benign and Malignant. Within the benign category, images 

were further labeled as one of the four subclass categories: Adenosis (A), 

Fibroadenoma (F), Tubular Adenoma (TA), and Phyllodes Tumor (PT). Within the 

malignant category, images were further labeled as either Ductal Carcinoma (DC), 

Lobular Carcinoma (LC), Mucinous Carcinoma (MC), or Papillary Carcinoma 

(PC). Table 5.1 summarizes the distribution of 40X microscopic images. I resized 

all images to 460*700 and implemented standardized normalization for each image. 
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Table 5.1 BreakHis Image malignancy subclass Distribution 

Superclass Labels Subclass Labels  Number of Images 

Benign 

Adenosis (A) 114 

Fibroadenoma (F) 253 

Tubular Adenona (TA) 109 

Phyllodes Tumor (PT) 149 

Malignant 

Ductal Carcinoma (DC) 864 

Lobular Carcinoma (LC) 156 

Mucinous Carcinoma (MC) 205 

Papillary Carcinoma (PC) 145 

 

5.2 Clustering-Based Hidden Stratification Discovery on BreakHis Dataset 

 

The BreakHis dataset lacks the semantic features present in the LIDC dataset. 

Therefore, the spiculation-malignancy-based and malignancy-likelihood-based 

subclass labels introduced in Sections 4.2.2 and 4.2.3 are not available. However, 

the BreakHis dataset does provide subgroup labels within the malignant and benign 

categories (Table 5.1). These subgroup labels can be used to evaluate clustering-

based hidden stratification discovery results. 

Figure 5.1 (A) shows different silhouette coefficients for various numbers of 

clusters. The highest silhouette coefficients were obtained when the number of 

clusters was 2. Figure 5.1 (B) visualizes the two output clusters from the Gaussian 

Mixture Clustering model in UMAP space. Similar to the clustering result on all 

data points in the LIDC dataset (Figure 4.1), we can see a clear separation between 

the malignant and benign superclass labels. 
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Figure 5.1 Clustering results for all data points in BreakHis.  (A) Silhouette 

Coefficients for various numbers of clusters; (B) Visualization of two clusters in 

UMAP Space. Blue dots represent benign microscopic images and red dots 

represent malignant microscopic images. Components 1 and 2 represent two 

dimensions reduced from high-dimensional image feature space. 
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Figure 5.2 Clustering results and UMAP visualization on benign and malignant 

histopathological images. (A) and (B) show silhouette coefficients with various 

number of clusters using malignant and benign images respectively; (C) and (D) 

are visualizations of four subgroups labels by domain experts in UMAP space. 

Component 1 and Component 2 correspond to the two dimensions in which the 

high-dimensional image features were reduced using UMAP. 

 

Figure 5.2 (A) shows that for malignant images, the optimal number of clusters 

is three and Figure 5.2 (B) indicates the optimal number of clusters is two for benign 

images. From Figure 5.2 (C) and Figure 5.2 (D), we see that there is no clear 

separation between ground truth subgroups in UMAP space. This result implies that 

the subgroups generated from the clustering-based approach (three malignant 

subgroups and two benign subgroups) cannot be perceived by domain experts. 
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Since there were no other ways to validate subgroups generated from the clustering-

based approach, I chose to use the ground truth subgroup labels provided by domain 

experts directly for subgroup learning.  

I further extracted a set of deep image features from a multi-class classification 

model trained with eight ground truth subclass labels listed in Table 5.1. Figure 5. 

3 shows that in the UMAP space, we can clearly see a separation between eight 

ground truth subgroups (with a slight overlap between MC and PC).  

 

Figure 5.3 Two dimensional UMAP visualization for BreakHis dataset.The input 

of UMAP is deep image features extracted from a multiclass classifier. Components 

1 and 2 correspond to the two dimensions in which the high-dimensional image 

features were reduced using UMAP. 
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5.3 Subtype Learning Results on BreakHis 

 

This section first reports the binary microscopic image malignancy 

classification results (malignant vs. benign) on the testing dataset using superclass 

labels. After observing that there is no significant latent stratification phenomenon 

for the superclass classification problem in the BreakHis dataset, I further 

investigated the multi-class classification results of classifiers trained with subclass 

labels listed in Table 5.1. For all the tables in this section, numbers in each cell 

represent mean accuracy values and numbers in parentheses represent 95% 

confidence interval. Numbers in bold represent there is a significant difference 

between compared models. 

Comparison between ERM and gDRO models. Table 5.2 presents the 

results of binary microscopic image classification (malignant vs. benign) on the 

testing data. Unlike what we observed for the LIDC dataset, we did not find a 

significant hidden stratification phenomenon for the BreakHis dataset. The worst 

group (Adenosis) still has a mean overall accuracy 0.893. Implementing gDRO did 

not lead to a significant improvement in model performance, as measured by both 

the overall accuracy and the worst group accuracy. 
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Table 5.2 Binary histopathological image malignancy classification results on the 

testing data 

Loss Function 

Accuracy 
ERM gDRO 

Overall  0.953 (0.945, 0.960) 0.947 (0.939, 0.955) 

 Fibroadenoma (Benign) 0.955 (0.932, 0.978) 0.979 (0.968, 0.990) 

Tubular adenoma (Benign) 0.938 (0.909, 0.967) 0.947 (0.921, 0.972) 

Adenosis (Benign) 0.893 (0.854, 0.932) 0.929 (0.908, 0.949) 

Phyllodes tumor (Benign) 0.934 (0.904, 0.963) 0.947 (0.924, 0.970) 

Ductal carcinoma 

(Malignant) 
0.996 (0.993, 0.998) 0.971 (0.960, 0.982) 

Mucinous carcinoma 

(Malignant) 
0.951 (0.926, 0.977) 0.955 (0.935, 0.974) 

Lobular carcinoma 

(Malignant) 
0.978 (0.962, 0.995) 0.964 (0.945, 0.983) 

Papillary carcinoma 

(Malignant) 
0.976 (0.961, 0.992) 0.970 (0.951, 0.989) 

 

Table 5.3 shows the multi-class microscopic image classification results, and 

the training subclass labels are listed in Table 5.1. We can observe that the Lobular 

carcinoma subgroup has a significantly worse classification accuracy when 

compared with other subgroups, indicating a hidden stratification phenomenon. 

Implementing gDRO significantly increases the accuracy of the Lobular carcinoma 

subgroup, which had the worst performance in the initial model. 
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Table 5.3 Subclass histopathological image classification results on the testing 

data 

Loss Function 

Accuracy 
ERM gDRO 

Overall  0.911 (0.905, 0.917) 0.903 (0.894, 0.911) 

 Fibroadenoma (Benign) 0.970 (0.957, 0.983) 0.948 (0.927, 0.969) 

Tubular adenoma (Benign) 0.915 (0.889, 0.941) 0.907 (0.879, 0.935) 

Adenosis (Benign) 0.928 (0.897, 0.960) 0.913 (0.874, 0.952) 

Phyllodes tumor (Benign) 0.943 (0.919, 0.968) 0.910 (0.878, 0.943) 

Ductal carcinoma 

(Malignant) 
0.942 (0.932, 0.952) 0.929 (0.917, 0.941) 

Mucinous carcinoma 

(Malignant) 
0.943 (0.919, 0.967) 0.918 (0.884, 0.952) 

Lobular carcinoma 

(Malignant) 
0.769 (0.730, 0.809) 0.849 (0.807, 0.891) 

Papillary carcinoma 

(Malignant) 
0.906 (0.876, 0.935) 0.902 (0.877, 0.926) 

 

Comparison between ERM, gDRO and CRIS models. Table 5.4 shows the 

classification comparison between the ERM and CRIS models. We can observe that 

the CRIS model significantly improves the accuracy of the worst-performing group 

(Lobular Carcinoma) while maintaining overall accuracy. 
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Table 5.4 Subclass histopathological image classification comparison between 

ERM and CRIS models on the testing dataset 

Loss Function 

Accuracy 
ERM CRIS 

Overall  0.911 (0.905, 0.917) 0.903 (0.895, 0.911) 

 Fibroadenoma (Benign) 0.970 (0.957, 0.983) 0.956 (0.941, 0.971) 

Tubular adenoma (Benign) 0.915 (0.889, 0.941) 0.895 (0.860, 0.930) 

Adenosis (Benign) 0.928 (0.897, 0.960) 0.890 (0.854, 0.926) 

Phyllodes tumor (Benign) 0.943 (0.919, 0.968) 0.906 (0.868, 0.945) 

Ductal carcinoma 

(Malignant) 
0.942 (0.932, 0.952) 0.917 (0.903, 0.931) 

Mucinous carcinoma 

(Malignant) 
0.943 (0.919, 0.967) 0.911 (0.878, 0.944) 

Lobular carcinoma 

(Malignant) 
0.769 (0.730, 0.809) 0.815 (0.766, 0.865) 

Papillary carcinoma 

(Malignant) 
0.906 (0.876, 0.935) 0.881 (0.850, 0.912) 

 

Table 5.5 presents the classification comparison between the gDRO and CRIS 

models. We can see that CRIS model significantly improves the worst group 

accuracy while maintaining overall accuracy.  
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Table 5.5 Subclass histopathological image classification comparison between 

ERM and CRIS Models on the testing dataset 

Loss Function 

Accuracy 
gDRO CRIS 

Overall  0.911 (0.905, 0.917) 0.903 (0.895, 0.911) 

 Fibroadenoma (Benign) 0.970 (0.957, 0.983) 0.956 (0.941, 0.971) 

Tubular adenoma (Benign) 0.915 (0.889, 0.941) 0.895 (0.860, 0.930) 

Adenosis (Benign) 0.928 (0.897, 0.960) 0.890 (0.854, 0.926) 

Phyllodes tumor (Benign) 0.943 (0.919, 0.968) 0.906 (0.868, 0.945) 

Ductal carcinoma 

(Malignant) 
0.942 (0.932, 0.952) 0.917 (0.903, 0.931) 

Mucinous carcinoma 

(Malignant) 
0.943 (0.919, 0.967) 0.911 (0.878, 0.944) 

Lobular carcinoma 

(Malignant) 
0.769 (0.730, 0.809) 0.815 (0.766, 0.865) 

Papillary carcinoma 

(Malignant) 
0.906 (0.876, 0.935) 0.881 (0.850, 0.912) 

 

Table 5.6 compares the classification result between CRIS model and CRRIS 

model with an ERM model trained on atypical instances. We can observe that 

although the CRRIS model significantly improves the worst group's performance, 

it decreases the overall accuracy.  
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Table 5.6 Subclass histopathological image classification comparison between 

CRIS and CRIS model with an ERM trained on atypical instances 

Loss Function 

Accuracy 
CRIS 

CRRIS (ERM 

trained on atypical 

instances) 

Overall  0.903 (0.895, 0.911) 0.886 (0.877, 0.895) 

 Fibroadenoma (Benign) 0.956 (0.941, 0.971) 0.932 (0.915, 0.949) 

Tubular adenoma (Benign) 0.895 (0.860, 0.930) 0.894 (0.863, 0.924) 

Adenosis (Benign) 0.890 (0.854, 0.926) 0.847 (0.797, 0.897) 

Phyllodes tumor (Benign) 0.906 (0.868, 0.945) 0.920 (0.896, 0.943) 

Ductal carcinoma 

(Malignant) 
0.917 (0.903, 0.931) 0.888 (0.872, 0.905) 

Mucinous carcinoma 

(Malignant) 
0.911 (0.878, 0.944) 0.854 (0.813, 0.894) 

Lobular carcinoma 

(Malignant) 
0.815 (0.766, 0.865) 0.890 (0.855, 0.926) 

Papillary carcinoma 

(Malignant) 
0.906 (0.876, 0.935) 0.891 (0.860, 0.922) 

 

5.4 Analysis of Results 

 

First, for a binary malignancy classification task, I did not observe a significant 

hidden stratification phenomenon (Table 5.2) in the BreakHis dataset as I did in the 

LIDC dataset (Table 4.8). Implementing gDRO does not significantly improve the 

worst group accuracy nor does it significantly decrease the overall accuracy. When 

comparing the binary classification results between the two datasets, we can 

conclude that a classification model with ERM loss is adequate if the worst group 

performance is comparable to the performance of other subgroups. 

Second, by utilizing deep image features extracted from a binary malignancy 

classification model, I did not achieve clustering-based subgroups that could be 
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verified by domain experts (Figure 5.2). For my future work, I plan to explore 

various image feature embeddings to enhance subgroup discovery. 

Third, for a multiclass classification task using ground truth subgroup labels 

provided by domain experts, we can observe a hidden stratification phenomenon 

(Table 5.3) and implementing gDRO algorithm significantly improves the worst 

group performance.  

Fourth, the CRIS model significantly improves the worst group performance 

compared to the base ERM and gDRO models (Tables 5.4-5). The CRRIS model 

with an ERM model trained on atypical instances can also significantly increase the 

worst group performance compared to the CRIS model (Table 5.6). 
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CHAPTER 6. Summary and Future Works 

 

In this study, I proposed a hidden stratification discovery and subgroup 

learning scheme that enhances machine learning model generalization ability. I 

applied this methodology to two applications: lung cancer malignancy 

classification and breast cancer malignancy classification. In the lung cancer 

application, clustering-based semantically meaningful subgroups were discovered 

(Table 4.2-3) while in the breast cancer application, clustering-based subgroups 

could not be identified by domain experts (Figure 5.2).  

In both applications, implementing gDRO significantly mitigated the hidden 

stratification phenomena, leading to improved worst group accuracy (Table 4.8 and 

Table 5.3). Moreover, training a model with ERM loss and gDRO loss sequentially 

further increased the worst group performance (Table 4.16, Table 4.17, and Table 

5.4-6). In the breast cancer application, we observe that a classification model with 

ERM loss is adequate if the worst group performance is comparable to the 

performance of other subgroups (Table 5.2). 

In the lung cancer application, compared to the malignancy rating distributions 

obtained using UMAP (Table 4.2), we observe less overlap between the clustered 

stratification and the malignancy likelihood stratification (Table 4.4). This result is 

consistent with findings in the literature that UMAP has an advantage over PCA in 

preserving the cluster relationships of data points in high-dimensional space [122].  
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Through evaluating the model performance on pathologically proven 

examination-labeled nodules, we found that using a CNN classifier with ERM or 

gDRO loss can help reduce the false negative rate (Table 4.35 and Table 4.36) when 

compared with human experts. 

We systematically evaluated the performance of the model under domain shift 

scenarios by considering various model inputs, deep learning architectures, and 

training strategies. We observed that when semantic features are available, utilizing 

semantic features further improves the overall accuracy and the worst-group 

accuracy (Table 4.11, Table 4.21, and Table 4.29). 

As part of the future work, the investigation of different image feature 

extraction techniques will be prioritized to enhance the elucidation of hidden 

subgroups. In the context of lung cancer application, the utilization of image 

features derived from the final convolutional layer of a binary malignancy 

classification model exhibits the potential to unveil unlabeled subgroups within the 

UMAP space. However, when applied to the breast cancer application, employing 

the same feature set does not yield clustering-based subgroups as identified by 

domain experts. To address this limitation, an exploration into disentangled 

representation learning (DRL) approaches will be conducted. These approaches 

aim to decompose the input data into disentangled factors, wherein each factor 

corresponds to a relevant variable in the data generating process. The hypothesis 
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put forth is that extracting disentangled representations from histopathological 

images can assist in identifying unlabeled semantic meaningful subgroups. 

In this study, the implementation of the gDRO algorithm primarily focuses on 

improving the worst group performance. However, it is important to consider 

scenarios where multiple subgroups exhibit similar levels of underperformance. To 

address this concern, a proposed modification involves designing an enhanced 

gDRO loss function capable of improving the performance of multiple desired 

subgroups simultaneously. By incorporating this modification, we aim to achieve a 

more comprehensive enhancement across multiple subgroups rather than solely 

focusing on the worst-performing group. 

In addition to the aforementioned objectives, the future direction of this 

research aims to expand the study's scope by addressing critical aspects such as 

enhancing fairness and reducing bias in machine learning. In this study, subgroups 

refer to different disease subtypes due to disease heterogeneity. However, 

subgroups can also encompass different ethnicities and races. This research will 

focus not only on improving the overall performance but also on the performance 

of subsets generated by different ethnicities and races. One approach to enhance the 

worst group performance is gDRO, which has shown promising results. However, 

future work will also include exploring different techniques for worst group 

optimization.  
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