
DePaul University DePaul University 

Digital Commons@DePaul Digital Commons@DePaul 

College of Computing and Digital Media 
Dissertations Jarvis College of Computing and Digital Media 

Spring 4-21-2023 

Code generation based on inference and controlled natural Code generation based on inference and controlled natural 

language input language input 

Howard R. Dittmer 
DePaul University, hdittmer@mac.com 

Follow this and additional works at: https://via.library.depaul.edu/cdm_etd 

 Part of the Programming Languages and Compilers Commons, and the Software Engineering 

Commons 

Recommended Citation Recommended Citation 
Dittmer, Howard R., "Code generation based on inference and controlled natural language input" (2023). 
College of Computing and Digital Media Dissertations. 46. 
https://via.library.depaul.edu/cdm_etd/46 

This Dissertation is brought to you for free and open access by the Jarvis College of Computing and Digital Media 
at Digital Commons@DePaul. It has been accepted for inclusion in College of Computing and Digital Media 
Dissertations by an authorized administrator of Digital Commons@DePaul. For more information, please contact 
digitalservices@depaul.edu. 











FIGURE 2.1: Tip calculators produced by CoPilot.

instructions and was organized differently. The resulting solutions can be seen in

Figure 2.2. So, while this tool has provided program solutions to these relatively

well know problems the solutions do not correspond to the specifics of the instruc-

tions provided. The result is that the programmer has little or no control over the

specifics of the resulting program.

These results indicate that GitHub Copilot and the others will likely be valuable

tools for programmers in the future[11]. However, given the questionable quality

of the code source (GitHub public repository), there will continue to be a need for

8



a close review of the results. Additionally, these are tools to aid programmers in

their development efforts, not tools for actually creating programs. As we have

seen the solutions provided may match the high-level requirements provided the

tools allow the programmer little or no control over the details of the program.

2.2 Controlled Natural Languages

A natural language programming technique has long been a goal in the program-

ming community. In 1983 Biermann, Ballard and Sigmon introduced NLC [12, 13],

a natural language notation, which was interpreted directly to an output. In 1984

Knuth proposed Literate Programming [14], which combined TEX and Pascal to pro-

duce a vocabulary that had the primary goal of documenting for humans what

the programmer desires. In 2000 Price, Rilofff, Zachary, and Harvey introduced

Natural Java [15]. Natural Java provides a notation that allows the programmer

to define a procedure in English, which is converted to Java. This tool allows the

programmer to create program structures and edit a selective part of the program

with this Natural Language interface. The core program is stored in a Java Abstract

Syntax Tree (AST).

Researchers have also considered the application of natural language techniques

for creating software artifacts such as requirements documents and source code.

There are also efforts to use natural language techniques to analyze artifacts cre-

ated in conventional programming languages. Michael Ernst suggested using these

techniques to analyze all kinds of artifacts [16]. He suggests using this approach

with “. . . error messages, variable names, procedure documentation, and user ques-

tions.” Similarly, there have been efforts to define the user interface by extract-

ing information from the natural language requirements documents [17]. This ap-

proach performs a static analysis on the multiple artifacts to find bugs and generate

9



code. Essentially this approach uses natural language tools and techniques to iden-

tify (and possibly satisfy) requirements for the program by analysis of the informa-

tion that the developer has created to date. In 2001 Overmyer, et al. demonstrated

the use of linguistics analysis to convert requirements documents to models of the

subject requirements [18]. This approach represents another step along the path to

natural language programming.

In another approach [19], Landhaeusser and Hug attempt to use full English to

derive program logic. English tends to be verbose, and a programming language

based on the entire English language results in significant content being required.

Our approach utilizes a Controlled version of English, which results in a simplified

syntax. This simplified syntax allows the program to be created with a concise

source document.

One of the biggest challenges in mimicking natural language communications

with a computer system is the things humans leave unsaid. Much of human inter-

actions are dependent upon shared experience and idioms, which allow humans to

provide incomplete information and enable the listener to fill in the rest. Without

these implied nuances, human communications would be much more verbose. The

challenge for using a controlled natural language for defining a computer program

is that we must replicate, at least in part, these techniques which humans use to

share information.

Controlled natural languages (CNL) have been applied to many fields of endeavor

both within computer science and elsewhere [20]. Many CNL implementations

seek to be general to allow their use across multiple areas of study. One well-

known CNL of this type is the Attempto Project [21]. The project describes its

language as “. . . a rich subset of standard English designed to serve as a knowledge repre-

sentation language.” This tool has been applied to a Multilingual Semantic Wiki [22],

10



a Reasoning Engine [23], and a knowledge representation language as used by the

Web Ontology Language (OWL) [24]. In these applications, Attempto has provided

consistency to the tools by involving a specific subset of English.

Exman et al. [25] offers an interesting tool to translate programming language

back into natural language. This tool is intended to allow programmers to un-

derstand a previously created program even without a working knowledge of the

programming language in question. The application of natural language and ma-

chine learning continues to grow in their application to program development [26].

Many of these tools show promise for additional development and application.

2.3 Requirements Capture

The process of requirements capture has been the subject of improvement efforts

within the software development community. These efforts have ranged from the

rigorous, structured approaches embodied in formal methods and UML to the min-

imalist approach of User Stories utilized by eXtreme Programming [27]. Requirements

capture is an area where Controlled Natural Language approaches have previously

been used [28]. For some years, the agile development community has sought to

develop better ways to capture user requirements. Test-Driven Development (TDD)

[29] was initially associated with agile development in Kent Beck’s book on eX-

treme Programming [30] and then expanded upon in his book on the subject [31].

This methodology seeks to direct the programming effort towards requirements as

embodied in a series of tests. These tests are generated by the development team

from user requirements. However, they are not in a form that most users could

recognize. More recently, parts of the agile community have embraced Behavior-

driven Development (BDD) as a starting point. Behavior-driven Development [32, 33]

seeks to describe the user’s requirements, which can be converted into tests. These

11



tests are then used as those envisioned in Test-driven Development. These require-

ments are described in a natural language form that can be translated into tests.

As such, BDD acts as a front-end for TDD. Cucumber [34, 35] and jBehave [36] are

two popular tools that allow developers to capture their requirements in an end-

user-friendly format and produce a test suite for TDD application. While these

methodologies and associated tools enable the user to describe the requirements

in a natural language format, they still require the program to first be created in a

traditional programming language.

2.4 Dynamic Programming Languages

In recent years there has been significant growth in the use of dynamic program-

ming languages for mainstream development. While Java and C with their various

derivatives continue to be widely used, Python (ranked number one in the TIOBE

index), JavaScript (and its derivative, TypeScript), PHP, Ruby, and Perl have moved

into the top twenty most popular languages in the TIOBE Index [37] and the Stack-

Overflow annual programmer survey [38]. Dynamic programming languages have

gained a following because they have helped to improve the productivity of pro-

grammers. The combination of dynamic typing and concise syntax results in fewer

lines of code being required to achieve the desired result. These advantages have

led to claims of productivity gains from 5 to 10 times [39]. With the advent of ro-

bust, dynamically typed languages, developers have begun using these tools for

applications previously thought to be the domain of traditional statically typed

languages. These languages have a syntax that is easier for a programmer to un-

derstand, even if written by someone else. In general, the syntax used by these

languages is closer to that of a natural language. They still do require confor-

mance to a strict set of rules. However, they have limited the requirements for

12



computer-driven structures like variable declarations, which add to a traditional

programming language’s verbosity. While these languages’ use does not involve

automation, they show that other cleaner, simpler syntax languages offer improved

programmer productivity opportunities.

2.5 Static Analysis

Static analysis tools come in a range of capabilities. The simplest of these tools are

commonly referred to as lint tools [40]. These tools review the program code and

identify violations of syntax rules provided for each target programming language.

Violations can include punctuation, the misspelling of reserved words, variables

that are declared but never used, and other errors that can be identified by review-

ing the source code. Static analysis is an area that has seen considerable activity. In

addition to stylistic checks, traditionally the approach of linters, these tools have

taken more ambitious approaches such as the use of bug patterns. Two of the most

popular and successful products in the area are FindBug and PMD [41]. They have

proved very useful in finding bugs in code that is already written. They help im-

prove the code quality but do not help in the creation of the code.

2.6 Integrated Development Environments

The most used tool for developers is the Integrated Development Environment

(IDE). Tools such as Visual Studio, Eclipse, NetBeans, IntelliJ, PyCharm, XCode,

and others [42, 43, 44, 45, 46, 47] provide a wide range of features to make the

developer more productive. Among these many capabilities is syntax highlighting

[48], which involves highlighting various constructs and keywords with colors and

13



formatting to identify their function and usage. These tools can aid the program-

mer by identifying errors in code when the color coding of the source code does

not match their intent. These features also include code completion [49], which au-

tomatically completes various words and constructs within the program based on

the context and previously entered code. Modern IDEs also provide for the inte-

gration of tools such as linters and other static analysis tools. While a modern IDE

is a valuable productivity enhancer, it still requires that the programmer code the

program in the target programming language’s particular syntax.

2.7 Declarative Syntax

Imperative programming [50] is the style utilized by most of the popular program-

ming languages. These languages require the programmer to describe how to con-

struct the various objects that make up a program. To build a user interface, the

program would include the tedious steps required to draw each object and then

link them to the program logic. This process results in the code being voluminous

and difficult to read. It also can obscure the nature of what the programmer is

trying to achieve. Listing 2.1 contains the Swift code involved in creating a sim-

ple button that invokes a method called processEachPayThis. This example includes

eleven lines of code. For all but the most knowledgeable, this code is hard to read

and obscures the nature of the programmer’s goal.

In 2019 Apple introduced SwiftUI [51], which utilizes a declarative syntax for

describing the program’s user interface. Declarative syntax [52] describes the re-

sults the programmer wants to achieve but not how to achieve that result. List-

ing 2.2 includes the SwiftUI code required to create the same button as captured in

Listing 2.1 but does it in seven lines of code, three of which contain only structural

14



1 let button2 = UIButton(type: .system)

2 button2.setTitle("Calculate", for:. normal)

3 button2.frame = CGRect(x:self.view.bounds.maxX * 0.0,

4 y:35 * 3,

5 width:self.view.bounds.maxX * 0.5,

6 height :30)

7 button2.titleLabel ?. textAlignment = .left

8 button2.addTarget(self ,

9 action: #selector(processEachPayThis),

10 for: .touchDown)

11 self.view.addSubview(button2)

LISTING 2.1: Swift code for Simple Button.

1 HStack {

2 Button(action: {

3 self.processEachPayThis ()

4 }) {

5 (Text("Calculate"))

6 }

7 }

LISTING 2.2: SwiftUI code for Simple Button.

symbols. This code is easier to read and to understand what the programmer is try-

ing to achieve. While this code is considerably simpler than the Swift code, it still

is rigid in its syntax and contains numerous special words/commands. It requires

the programmer to conform to a strict set of rules. As we describe CABERNET in

this paper, we will see that it can describe this same button in two lines of code

without these strict rules.

15



FIGURE 2.2: Acreage calculators produced by CoPilot.

16



Chapter 3

Vision

Natural language programming has long been an aspiration for the program de-

velopment world. Programming languages tend to be complex and idiosyncratic.

Scotty, the Chief Engineer from Star Trek, saying “Good Morning computer” to his

computer is what people envision as the future of computer interaction. Flying cars

are what we have been told the future will include. But are any of these reasonable

expectations? By the time we completely describe the function of a program in

English, we have a document much longer than your typical computer program.

At the same time, there is a significant chance that the English description will

be incomplete. Omissions in the English language description of a program are op-

portunities for errors. If an English language program description is long, complex,

and prone to errors what value does it bring? Might we have a better solution if

we limit the natural language document to describing only the result and not the

details required to get there?

3.1 Describe the result

Much of programming involves describing the process that the computer must go

through to achieve the desired goal. This approach allows the programmer broad

flexibility in what they can achieve. However, in most cases, the look and feel of the

17



program are dictated by the platform that the programmer is targeting. The types

of objects, what they look like and where they are placed on the screen are dictated

by a set of platform rules or guidelines. If we incorporate these rules into the devel-

opment tool or a set of templates used by the development tool; the programmer

can avoid having to describe them in the program.

As a result, the program need only describe the unique aspect of each object

within the program. These would include unique appearance and behavior char-

acteristics and interactions between the various objects.

3.2 Program housekeeping

In most programs, significant content is dedicated to error checking and other

housekeeping activities. These include checking for common errors, such as blank

inputs, divide by zero errors and type errors. These processes are well known,

and standard methods exist to deal with them. There is little technical challenge in

identifying where these processes are needed and how to implement these error-

checking and correction methods. Automation of this process can significantly re-

duce the size of the input program. The added benefit is increasing the readability

of the program. The error-checking and correction methods can be verbose and do

not seem to relate to the primary processes being implemented. Eliminating this

code makes for cleaner application code and code which is more directly related to

the function being implemented.

3.3 Flexible vocabulary

The challenge for people learning a programming language is the rigidity of the

terminology. Programming languages have a fixed vocabulary that a programmer

18



must learn. Once this vocabulary is learned the programmer must conform to its

rules and avoid conflicts between the vocabulary and the object names used in

their programs. On the other hand, English and other natural languages are quite

flexible in this regard. If our programming approach allows for more flexibility, it

will be easier for a developer to move between programming languages. It also

allows people with different native languages to adapt to the tool more easily.

Additionally, this flexibility allows the programmer to use terminology which is

appropriate to the domain for which the application is intended without having to

be concerned about conflicts between the domain language and the programming

language.

3.4 Goals

Our goal for CABERNET is to incorporate these three visions in our programming

tool. We seek to limit the content of the CABERNET program to only describing the

desired result, provide the required housekeeping tasks in the tool rather than in

our program source code and accommodate a flexible vocabulary for our program-

ming tool. This combination will provide a productive development environment.

Additionally, we made CABERNET adaptable to the programmer. The intent is

that the input terminology is easily adjusted and updated. While the approach has

been specifically applied to iOS programming in the prototype and examples, the

same approach can be applied to other targets.

As summarized in the introduction, we seek to determine if a controlled natural

language-based programming tool can provide a highly readable, flexible, extensi-

ble, and easy-to-learn development methodology.

19





Chapter 4

Approach

The core research question which we are addressing is, “Can a controlled natural lan-

guage based programming tool provide a highly readable, flexible, extensible, and easy to

learn development methodology?” To that end, we have developed CABERNET (Code

generAtion BasEd on contRolled Natural languagE inpuT), an approach that al-

lows a programmer to define a computer program using a Controlled Natural Lan-

guage (CNL). Figure 4.1 lists the key advantages of the CABERNET development

approach.

• Increased programmer efficiency
• Flexible and straightforward syntax
• English-like (controlled natural language)
• Address needs of all programmers
• Natural language

– More flexible
– More forgiving

• Inference fills in gaps

FIGURE 4.1: Key Characteristics of CABERNET

21



Because the application domain is of limited scope and is specific to the pro-

gram definition, we can fill in the blanks using inference and implication. This

approach provides a result similar to that experienced by typical human commu-

nication. We are not seeking to replace the developer in this process. Instead, our

work seeks to provide a tool that makes programmers more effective in their efforts

while still allowing them to control the process. As an example, we have addressed

the challenges of creating a mobile application. This domain has proved challeng-

ing for programmers for several reasons including those listed in Figure 4.2.

• Limited screen size
• Multiple possible screen proportions
• Multiple operating systems and widget preferences

FIGURE 4.2: Programming Challenges of Mobile Applications

The use of constraint-based user interface design [53] has helped address these

challenges. However, it has added complexity of its own. Constraints must com-

pletely define the size and location of features relative to each other and the under-

lying hardware. At the same time, it must avoid over-constraining the user inter-

face. If a developer is not careful, they may define a set of constraints that work for

one device configuration but fail for another. This conflict can nullify the advan-

tages that led us to constraint-based design in the first place. Current techniques

include both code-based definition and graphical-based user interface design. Both

methods have advantages and disadvantages, but neither has proven to provide an

ideal combination of power and productivity. Our approach allows for a flexible

description of the application in a natural language notation.

22



It allows for a minimal description of the user interface, yet it results in a canon-

ical model as output. Since screen size and proportions are handled through tem-

plates, the programmer is freed from dealing with those during development. Our

approach allows the programmer to define an application for this popular platform

with a simple human-friendly approach.

4.1 Basic Principles

The simplicity and directness of the approach are possible because many aspects

of the design can be inferred from the context. A programmer developing an ap-

plication for a mobile device seeks to conform to a set of user interface guidelines.

These guidelines become one of the many contextual influences on the applica-

tion design. As previously noted, one significant advantage enjoyed by humans in

their use of natural language is the shared knowledge that allows for portions of

the communications to be implied. To overcome this challenge in human-computer

communications, we have utilized three techniques.

First, we have used a broad set of defaults applied when the developer omits

the needed information from their descriptions. Second, we use inference to deter-

mine the developer’s intent from the information provided (both within the user

interface description and other artifacts that make up the program). Third, our ap-

proach allows machine learning to adjust the defaults based on developer choices

during the development process. When information is missing or the information

provided is ambiguous, we offer the developer options from which to choose a solu-

tion. Based on these choices and the default solutions that the developer accepts or

declines, we build and reinforce our recommended solutions1. The characteristics
1While the design of CABERNET and the CABERNET environment support this feature it is not

implemented in the prototype at this time. See Section 5.4.1

23


