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ABSTRACT 

 

Zinc oxide is an n-type transparent conducting oxide (TCO), which is used in solar cells and 

optoelectronics devices.  ZnO has the potential to become the future choice for a wide range 

of TCO commercial applications replacing the current, more expensive, and toxic indium-

based materials.  The isothermal grain growth of ZnO nano-powders with two different 

initial grain sizes and the effect of forming gas reduction on their electrical properties were 

studied at 900 °C.  The particle size was determined using synchrotron x-ray diffraction 

data and scanning electron micrographs.  The grain size, shape, trace impurities, and 

synthesis methods had an effect on the electrical performance of crystallites smaller than 

300 nm.  For grains larger than 300 nm, similar conductivity values were achieved 

regardless of the initial grain size and impurities. While grain growth modestly increased 

the electrical performance of ZnO, the exposure to reduction gases dramatically improved 

the conductivity by five orders of magnitude.  Synchrotron x-ray diffraction data collected 

in situ at 500 °C also showed that reducing gases enhanced the grain growth of 

nanoparticles.   
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1. Introduction 

 

1.1 Description of a transparent conducting oxide 

 

A transparent conducting oxide (TCO) is a material with high transparency in the visible 

region as well as high electrical conductivity. TCOs have been produced from a broad 

selection of materials including semiconducting oxides of zinc, tin, indium, cadmium [1] [2]. 

TCOs’ properties make them ideal materials for flat-panel displays and smart windows [3] 

[4]. High transparency and functional conductivity can be obtained in wide band-gap 

oxides (> 3 eV) [5]. 

The electrical properties of TCOs are related to the stoichiometry of the material, the 

nature and quantity of impurities, grain size, and synthesis conditions [6].  Imperfections in 

the crystal structure, some of which are caused by certain impurities, significantly affect 

the electrical behavior of semiconductors. A non-stoichiometric semiconductor has 

deficiencies that can act as electron donors or acceptors. Doping is a calculated and 

intentional addition of desirable impurities to a semiconductor. In semiconductor facilities, 

the materials are typically first purified as much as possible and then the impurities are 

introduced in a controlled manner.  When the pure semiconductor behavior is caused by its 

own inherent properties, the semiconductor is called ‘intrinsic’. For zinc oxide, the intrinsic 

defects depend on how the material was produced. After the impurities are introduced in 

the semiconductors their innate traits are altered due to the external impurities and thus 

they are called ‘extrinsic’.  
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Commercial TCO materials are n-type semiconductors; however extensive efforts have 

been devoted to find and optimize p-type materials. The p-type conductivity of some TCOs 

fades within days or weeks and is not persistent [7]. P-type semiconductors are doped with 

acceptor atoms. N-type semiconductors are doped with donor atoms; the n stands for 

negative charge carriers. High n-type conductivity is obtained due to the presence of a high 

population of electrons and/or electrons having high mobility. Equation 1.1 describes the 

electrical conductivity in a semiconductor, 

 

    
 

  
                 ‎1.1 

 

where e is the electron charge, m* is electron effective mass, σ is the electrical conductivity, 

and τ is the collision time. The electrical conductivity depends on charge density or carrier 

concentration (Ne) and mobility (μe) of relevant free carriers [4].  The mobility depends on 

τ and m*. 

 

1.2 Zinc oxide as a transparent conducting oxide 

 

Zinc oxide (ZnO) is a wide band-gap semiconductor (Eg=3.2 eV) that has been investigated 

as an electronic material since the 1930s. ZnO is an important component in light-emitting 

devices, as well as high-temperature electronics. ZnO is typically an n-type semiconductor, 

and p-type doping remains a challenge. 
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The rare mineral zincite, a natural formation of ZnO, crystallizes in the hexagonal wurtzite 

structure [3]. The unit cell of ZnO contains two molecules within a lattice with constants 

a=b =0.325 nm and c=0.52066 nm [8]. 

 

1.3 Motivation for this study 

 

TCOs are important for technology. They need to be electrically conductive and optically 

transparent in the visible region. Every day the demands for green energy increase due to 

the emission of green house gases. In order to reverse the trend of green house gas 

emissions, renewable source of energy will have to play a bigger role in the supply of the 

energy demand of the world. Solar energy is one of the most abundant sources of 

renewable energy and it is therefore important to discover improved methods for using 

and storing solar energy. ZnO has the potential to become a future choice for TCO 

commercial applications replacing the current, more expensive, and toxic indium-based 

materials. 

The attempt of this research is to better understand the relationships between grain size, 

conductivity, thermopower, and impurities in zinc oxide. Two different zinc oxide nano-

powders containing different impurities and grain sizes were used to study these 

relationships. 

Literature studies have reported the grain growth and sintering of ZnO in air at various 

temperatures [ [9], [10], [11]]. Other studies have focused on the effect of dopants and 
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reducing gases on zinc oxide materials [[1],[2],[4],[5]] and on doped indium oxide, tin 

oxide, gallium oxide, and cadmium oxide n-type thin films [12], [13], [14]]. However, no 

systematic studies have investigated directly the effect of grain growth and reducing gases 

on the conductivity of zinc oxide nano-materials.   
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2. Experimental procedure 

 

2.1 Characterization of nanopowders  

 

Several batches of ZnO nanopowders were purchased from Alfa Aesar (Ward Hill, MA). Five 

batches (labeled N5, N6, N7, N8, and N9) were chosen for preliminary studies based on 

their particle size, impurities, electrical and thermal properties. The size distribution, shape 

and homogeneity of the nanoparticles were observed using scanning electron microscopy 

(SEM).  The impurities were determined from x-ray fluorescence (XRF) measurements. 

Four-point DC probe measurements were used to measure the electrical conductivity. Two 

batches of the ZnO nanopowders, N5 and N6, were selected for further experiments based 

on their electrical properties.   

 

2.2 Sample preparation 

 

ZnO powders were ground in a mortar using a pestle. Acetone was used to homogenize the 

powder and reduce the static charge of the nanoparticles. The mass of powder used for 

each pellet was approximately 0.3 grams. The exact mass for each pellet was measured 

using a high precision scale (Mettler toledo, ab54/fact, Greifensee, Switzerland). 

Thereafter, the powder was poured into a 6-mm stainless steel die. The die set was inserted 

in a hydraulic press (Carver 4350, Wabash, IN) and pressurized to approximately 1000 psi 

for 90 seconds. This pressure value was experimentally determined to achieve uniform 
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pellets. The pellet was released from the die set and its mass was measured. Since the next 

step was to anneal the samples, it was important to record the as-pressed masses and 

compare them with the post-annealing measurements.  A total of ninety 6-mm pellets were 

prepared using this procedure. 

Another set of samples was prepared to study the defect structure of zinc oxide.  Sixteen 

pellets with 13 mm diameter were pressed for N5 and N6. They were heated for 10 hours 

at 500°C. Neutron diffraction and x-ray diffraction data were collected on these samples to 

investigate the effect of reducing atmospheres and grain size on the defect structure of ZnO.  

The analysis of these data and the defect structure results are not discussed since they are 

not the subject of this thesis. 

 

2.3 Annealing 

 

The samples were annealed using two different environments: air and reducing gas. The air 

annealing was done in a high-temperature box furnace (Lindberg/Blue M, 1500°C, 

bf51333c, Asheville, NC). The reduction anneal was performed using a tube furnace 

(Thermolyne type F79330-33-70, Dubuque, Iowa) with a temperature stability range of 

±0.5°C. 

For reproducibility purposes, four pellets of identical composition were placed in a high-

temperature alumina crucible (Coors Tek, Golden, CO). In order to decrease the 

volatilization and contamination from the crucible, the four pellets were surrounded with 

sacrificial powder with identical composition to the powder of the pellets.  The crucible 

was then covered with a tight-fitting crucible lid and loaded into a bigger crucible with a 
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sealed cover to minimize evaporation. Thereafter the samples were placed inside the box 

furnace and fired at 900°C for different lengths of time (1 minute, 30 minutes, 1 hour, 3 

hours, 8 hours, 18 hours, 24 hours, 48 hours, and 55 hours for N5; and 1 minute, 30 

minutes, 1 hour, 2 hours, 3 hours, 8 hours, 55 hours, and 68 hours for N6) using a heating 

rate of 3°C/min. Different time intervals were chosen to study the relationship between 

grain growth and the heat exposure. After the heat treatment, the pellets were immediately 

pulled from the furnace and were quenched in air to room temperature. This was achieved 

by removing the crucible from the oven and uncovering it, then pouring the material on an 

alumina rectangular tray to quickly expose the pellet to room temperature. 

For the reduction treatment two out of the four samples were placed in an alumina 

combustion boat. Again, in order to minimize contamination, sacrificial powder was used to 

surround the two pellets. The combustion boat was placed in the middle of the furnace 

tube. These pellets were exposed to forming gas (4% H2 and 96% N2), which was injected 

from one end of the tube, exhausted from the other end and vented out to a fume hood 

(Fisher scientific, Two Rivers, WI). Each set of pellets was reduced for 10 hours at 500°C. 

 The heating and cooling rates were 5°C/min under the same flowing forming gas. After 

reduction, the masses of the pellets were re-measured. The thickness and the diameter of 

each pellet were determined using a micrometer and a Vernier caliper. 
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2.4 Conductivity 

 

For every quenched pellet, the conductivity of each side was measured at room 

temperature using a four-point DC probe (Cascade c4s 44/1s 2381, Beaverton, OR). The 

four-point head consisted of osmium-tipped probes with a tip radius of 250µm/10 mil, 

spacing of 1.25 mm, and a pressure of 40-70 grams per tip. The equipment was connected 

to a constant current source (Keithley, 6220 precision current source, Cleveland, IO) and a 

digital multimeter (Keithley, 2700 multimeter/data acquisition system, Cleveland, IO). The 

four-point probe was attached to an adjustable-height stand with a granite base. The data 

were collected using LabVIEW 8.5. [15]. 

The sample was placed on a granite base, and then the 4-point probe was lowered to make 

contact with one side of the sample. Current (I) was applied to the two outer pins and the 

voltage (V) was measured across the two inner probe pins. Current was provided by 

incrementally increasing the current to the sample while the multimeter recorded the 

voltage in the LabVIEW program.  For each set, ten points were collected: five points for 

positive voltage, and five points for negative voltage. For the reduced samples, the current 

range was from -60 mA to 60 mA; the current increment was 10 mA, and the settling time 

was 20 s. For the samples before reduction the range for the current was from -0.2 mA to 

0.2 mA; and the current increment was 0.02 mA.  By using Ohm’s law, the resistance (R) of 

the sample was calculated according to Equation 2.1:  
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 

 
 ‎2.1 

 

The four-point probe is a suitable instrument for the measurement of resistivity of 

conductors and semiconductors but depending on the shape, size and the thickness of the 

sample, corrections are needed [16]. Equation 2.2 was used for calculating the conductivity 

of the pellets [17]. 

 

   
 

 
   

 

 
   

 

 
   

 

 
    ‎2.2 

 

Here   represents the conductivity,   is the resistivity,   is the current,   is the potential 

difference measured by the inner pins,   is the thickness,   is the sample diameter,   is the 

probe tip spacing (0.102 mm), and   and   are the correction factors for finite sample 

diameter and thickness [ [18], [19], [20], [21]], given by Equations 2.3 and 2.4. 

 

 
  

 

          
 

 
 
 

     
 

 
 
 

                   
 

‎2.3 

           
 

 
 

 
 
 
 

      

 

 
 

  
 

 
        

 
 

   
 

 
        

 

 

 

   
 
 
 
 

 ‎2.4 
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2.5 Thermopower 

 

Thermopower was measured to study the electron concentration of the samples and to 

determine the type of majority carriers [3].  The thermopower Q is related to m* and    as 

shown in Equation 2.5 

 

                                                    
 

  
 

  

  
                                                               2.5 

 

The effective mass of the donors (  
 ) depends on the energy and the density of states in 

the conducting band.  The   dependence of   
  is given by 

 

                                                                       
    

                                      2.6   

Therefore 

                                                        
          2.7 

 

To measure thermopower, the sample was placed between two pieces of gold foil, which 

were attached to S-type thermocouples. A soldering iron was placed on the top sheet while 

the bottom sheet was in contact with a metal block resting on a refractory brick at room 

temperature. The soldering iron was used to heat the top of the sample to create a 200°C 

temperature differential. The sample was then allowed to cool to room temperature and 

follow a decayed thermal gradient. Data corresponding to a temperature gradient range 
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around thermal equilibrium (ΔT ≤ 20) were used for calculating the thermopower, Q. The 

data were analyzed using Equation 2.8 below with a method of least squares.  

 

        
    

        ‎2.8 

 

A correction was applied to Q to remove the contribution of the platinum wires from the 

thermocouples. The negative sign of Q indicates that the samples are n-type 

semiconductors [3].  

 

2.6 X-ray fluorescence (XRF)  

 

The presence of impurities and secondary phases affect the electrical properties of 

materials. Impurities and secondary phases can change dramatically during thermal and 

gas treatments, therefore it is important to monitor these changes. X-ray fluorescence is a 

non-destructive technique used for determining and quantifying the types of impurities 

both on the surface and in the bulk of the sample. Every element has a characteristic 

electron configuration. When atoms are bombarded by x-rays, electrons get ejected from 

inner K and L shells leaving holes that will be filled back by higher shell electrons. During 

this transition the atom radiates x-ray photons with a characteristic energy related to the 

difference between the two shells. This radiation is referred to as x-ray fluorescence (XRF) 

[22]. 
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The impurities of the untreated and treated samples were measured at DePaul University’s 

Physics Department by using a handheld XRF Bruker, Tracer III-SD instrument 

(Kennewick, WA). XRF data were collected on treated and untreated powders.  The 

untreated powder was placed between two Prolene films during XRF measurements. These 

films are mostly transparent to x-rays but contain trace amounts of Ca, P, Fe, Zn, Cu, Zr, Ti, 

Al.  Therefore a background spectrum was collected with a Prolene film having no powder 

to establish the baseline of the radiations from Rh and Pt of the x-ray tube and Si from the 

detector.  The treated powders were measured in pellet form.  

The XRF instrument can be used with four filters. Each filter is optimized for the 

measurement of a certain region of electromagnetic spectrum. A yellow filter with 

composition of 0.001” Ti and 0.012 Al was used for measuring the metal elements Ti to Ag 

(K lines) and the W to Bi lines. A red filter with composition 0.001” Cu, 0.001” Ti, .012 Al 

was used for measuring higher Z elements (Hg, Pb, Br, and As). For Mg, Al, Si and P to Cu 

and any L and M lines for the elements that fall between 1.2 and 8 keV a vacuum pump (and 

no filter) was used [23]. The spectrum of each filter was obtained without any sample for 

the baseline. The sample spectrum was superimposed on its corresponding filter spectrum, 

in order to identify unique peak(s) of various elements. Finally with the help of the Artax 

software, which is an x-ray analysis program provided by Bruker[22], each spectrum was 

analyzed to identify the impurities.  
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2.7 Scanning electron microscopy (SEM) 

 

A scanning electron microscope is an instrument capable of reproducing the topography of 

the surface of samples through the use of electron beams. When electrons interact with the 

atoms of the material, information about the grain size, the shape, and the texture of the 

specimen is obtained. Samples for SEM need to be electrically conductive to obtain sharp 

images. Insulating specimens would result in blurry micrographs and may require a layer 

of conductive material. 

SEM experiments were conducted at the Electron Probe Instrumentation Center (EPIC) of 

Northwestern University using the Surface Scanning Electron Microscopy with LEO Gemini 

1525 high-resolution instrument.  Micrographs with different magnifications (100 KX, 200 

KX, and 300 KX, where KX stands for a 1,000 magnification) were recorded to investigate 

the homogeneity of the samples and the morphology of the nanoparticles.  A small amount 

of powder was placed on conductive carbon tape and then introduced inside the vacuum 

chamber of the SEM instrument.  No additional coating was deposited.  Therefore the 

sharpness of the images was closely related to the conductivity of the samples.      

                        

2.8 X-ray diffraction (XRD)  

 

In a diffraction experiment, x-rays interact with the electron cloud of atomic planes 

producing regions of constructive and destructive interference.  X-ray diffraction (XRD) is a 
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technique that gives information about phase purity, lattice parameters, structural 

arrangement of the atoms, and the grain sizes of the samples.  

After grinding treated samples, XRD data were measured at Northwestern University at the 

Jerome B. Cohen XRD facility (Evanston, IL) and at the Advanced Photon Source (APS) at 

Argonne National Laboratory (Chicago, IL).  XRD data were analyzed to check the phase 

purity of the samples using the x-ray machine Scintag XDS2000 at Northwestern. In order 

to get high-resolution and high-statistics data the samples were also measured at the APS. 

The high-resolution APS data were used to obtain the average grain size and anisotropy for 

each sample.  

 

2.8.1. Ex-situ experiments at 11-BM 

 

To obtain phase purity and grain size information from the x-ray diffraction pattern, the 

powder samples were measured at the 11-BM beamline at the APS of Argonne National 

Laboratory. This beamline takes advantage of the APS bending magnet source and offers 

high resolution of 
  

 
                                    with a range of energies 

between 12 and 35 keV              A     The flux was 5     
       

   
  at 30 keV. The 

wavelength used was 0.4 Å, and the scan time was 50 minutes. For measurements at 11-

BM, the samples were loaded into Kapton capillary tubes with inner diameter of 0.80 mm. 

Kapton is transparent to x-rays so the background signal due to the sample holder is 

negligible. The experiments at beamline11-BM were collected at two different 

temperatures:  298 K and 100 K.  At low temperatures, the thermal vibrations of the atoms 
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are reduced; therefore for some experiments this setup is preferred.  For the present study 

both sets of data gave identical grain size results.  

 

2.8.2. In-situ experiments at 1-BM:  

 

The 1-BM beamline at the APS allows the collection of x-ray diffraction data at elevated 

temperatures under various annealing conditions. The source of the 1-BM beamline is a 

bending magnet, providing a (ΔE/E) resolution of 1.5      and a flux of 9             

     The energy range of the beamline is from 8 to 22 keV. In-situ x-ray diffraction data 

were collected at 0.60685 Å on N5 and N6 samples.  For the first 10 minutes, one image 

was collected every minute, and for the rest of the experiment (up to 18 hours) one image 

was collected every two minutes. Untreated N5 and N6 powders were heated inside a high-

temperature cell that allowed the flow of gases.  The measurements were done at 500°C 

under various gas conditions (He/H2 and O2 for N6; and HeH2, O2, and H2N2 for N5). The 

capillary used for the samples was glass since Kapton is not stable at this temperature. The 

x-ray diffraction spectra were analyzed using the Matlab program [24] in order to remove 

the background spectrum due to the glass capillary and to integrate the images. Grain size 

and the phase-purity of the samples were investigated with these data.    
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2.8.3 Matlab analysis 

 

Figure 2.1 shows a typical 2D x-ray diffraction image. The black line is the shadow of 

sample mount.  

 

Figure ‎2.1 X-ray diffraction pattern, N5 in nitrogen (1BM) 

About 900 files were analyzed with Matlab macros. Each 2-D image was radially integrated 

to obtain a 1-D data set of intensity vs. diffraction angle. The spectrum of the empty 

capillary was subtracted from each XRD 2-D image. This output became the input for the 

FullProf software [25]. Figure 2.2 shows the integrated x-ray pattern of N5 in nitrogen for 1 

BM.  
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Figure ‎2.2 X-ray diffraction pattern, N5 in nitrogen (1BM) 

 

2.8.4 FullProf  

 

FullProf is an x-ray diffraction analysis program that implements the Rietveld method [26]. 

The program models the peak shapes and intensities of the diffraction pattern to provide 

accurate simulations of the structural arrangement of atoms and the microstructure of the 

sample. This is specifically helpful when the diffraction data are influenced by structural 

defects such as anti-phase domains and poor crystallization.  

 

The instrumental broadening of the x-ray diffractometer was obtained by measuring the 

diffraction pattern of the NIST LaB6 standard SRM 660a. Grain size information, including 
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anisotropy, was then extracted from the refinement of the width and shape of the 

diffraction peaks.  FullProf allows the simulation of sphere, needle, cubic, and other 

irregular shapes using spherical harmonic functions [27]. For this study, anisotropic 

broadening was refined using the Scherrer formula that considers a linear combination of 

spherical harmonics.  The size broadening is given by: 

 

                                                                        
 

    
                              2.9  

  

where  h is the size contribution to the integral breadth of reflection h, ylmp (h,  h) are the 

real spherical harmonics with normalization, almp are the refined coefficients, and the 

arguments are the polar angles of the vector h with respect to the Cartesian 

crystallographic frame. If an instrumental broadening input is given, the program 

calculates the apparent size along each reciprocal lattice vector (h k l), and a 

microstructural file (*.mic) is created, which contains grain size and strain information due 

to the sample only. 

 

This is an example of a mic file for sample N5_1 treated for 1 hour: 
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…………………………………………………………………………………………………………………………………………………….. 

 

…………………………………………………………………………………………………………………………………………………… 

 

                                                                           Grain size (Å)   Anisotropy (Å) 

Figure ‎2.3 Mic (Microstructural) file for sample N5_1 treated for 1 hour 
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All the average grain sizes and anisotropy values were extracted from the mic files with the 

help of a “c sharp” program. The code is provided in Appendix Ι. Anisotropy is the deviation 

from the average distribution of grain size along different axes. A large value for anisotropy 

corresponds to non-spherical grains and/or to a wide distribution of crystallite sizes in the 

sample volume that is measured. 

As Figure 2.3 shows the mic file provides microstructural information for each individual 

diffraction direction. For example, for this specific sample, the biggest apparent size of 252 

nm was in the (4 0 1) direction, while the smallest size was 111 nm along the (3 1 7) 

direction.  The average grain size was 163 nm and due to the wide range of sizes the 

anisotropy was 39 nm, which in this case corresponds to 24 % of the average size.   
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3. Results and discussions 

 

3.1 X-ray fluorescence (XRF) results and discussion 

 

Figure 3.1 shows the x-ray fluorescence data for the N5 and N6 samples, which were 

annealed in air at 900°C for one minute and then reduced at 500°C for 10 hours. The 

spectra were collected using the red filter, which is optimized for the detection of heavy 

elements.  A spectrum with no sample is shown in blue in Figure 3.1. The Rh and Pt lines, 

which are not labeled in the figure, come from the x-ray tube while the Si lines are due to 

the detector.  

Figure ‎3.1 Spectra for N5 (1 min, red spectrum), N6 (1 min, green), and background (blue) 

using the red filter 
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The spectrum for N6 did not contain any detectable impurities, while the spectrum for N5 

showed the presence of Zr in the sample. Similar results were obtained for the untreated 

batches indicating that this heat treatment at 900°C and the reductions at 500°C did not 

alter the elemental composition of the pellets.  Furthermore, superposition of the spectra 

for the N5 samples fired at 900°C for one minute and for 48 hours followed by reduction 

(Figure 3.2), shows that the elemental composition did not change. Zr impurities are 

observed in both spectra and their concentrations remained the same. 

 

Figure ‎3.2 Spectra for N5 (1 min, green and 48 hrs, red)  

XRF data in vacuum were also collected for these samples.  The vacuum system allowed the 

detection of lighter elements. The XRF spectra of N6 samples fired at 900°C for 1 minute 

and 68 hours and then reduced were very similar (Figure 3.3). The fluorescence lines for 

the two spectra seemed identical showing that the overall elemental composition in the N6 

samples did not change even after a 68-hour anneal at 900°C. 
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Figure ‎3.3 Superimposed XRF spectra of N6 samples prepared with various firing times at 

900°C (1 min, green and 68 hrs, magenta) and a background spectrum (red) 

Therefore, the results from XRF show that N5 had Zr impurity atoms. Since zirconium has 

two more valence electrons than zinc, this impurity could potentially act as an n-type 

dopant, increasing the conductivity of the samples compared to undoped ZnO.  

 

3.2 Scanning electron microscopy (SEM) results and discussion  

 

Figures 3.4 and 3.5 show the SEM images of the N5 and N6 powders before any treatments. 

Based on XRD information the initial grain size of untreated N5 was 24 nm  1 nm with an 

anisotropy of 3 nm. The initial grain size of the untreated N6 powder was 75 nm  1 with 

an anisotropy of 15 nm. 
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Figure ‎3.4 SEM image for sample N5 before any treatment: Magnification=100 KX 

 

 

Figure ‎3.5 SEM image for sample N6 before any treatment: magnification=100 KX 

Figures 3.6 and 3.7 show the SEM micrographs of N5 and N6 samples fired at 900°C for 1 

minute followed by the reduction treatment. Comparison of the SEM images for both N5 

and N6 samples prior to and post treatment shows that grain growth occurred during 

heating from room temperature up to 900 °C. 
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Figure ‎3.6 SEM for N5 fired at 900°C for 1 minute in air and reduced at 500°C for 10 hours: 

magnification=100.53 KX 

 

 

Figure ‎3.7 SEM for N6 fired at 900°C for 1 minute in air and reduced at 500°C for 10 hours: 

magnification =150 KX 
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Figures 3.8 and 3.9 correspond to images of N5 and N6, respectively, heated at 500°C for 10 

hours and then reduced for an additional 10 hours at this same temperature.  

 

Figure ‎3.8 SEM for N5 fired for 10 hours at 500 °C in air and then reduced:  magnification 

=100.05 KX 

 

 

Figure ‎3.9 SEM for N6 fired for 10 hours at 500 °C in air and then reduced:  magnification 

=100.18 KX 
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Figure 3.10 is a micrograph of N5 after 48 hours at 500°C in air followed by a reduction 

anneal for 10 hours at the same temperature.  

 

 

Figure ‎3.10 SEM for N5 after a 48-hour anneal in air at 500 °C and a reduction at 500°C for 10 

hours: magnification =100.18 KX 

 

Figures 3.8, 3.9 and 3.10 show that the grains of N5 and N6 did not grow substantially at 

500°C compared to those heated at 900°C first and then at 500°C under the reduction gas. 

Even in Figure 3.10 where N5 was heated for 48 hours at 500°C and then reduced, the 

grains exhibited only modest growth. Therefore, as expected, the first step of heating at 

900°C had the most dramatic effect on grain growth due to the higher temperature.  
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Figure 3.11 and Figure 3.12 show the SEM images for N5 and N6 that were fired at 900°C 

for 55 hrs in air and reduced at 500°C for 10 hours.  

 

Figure ‎3.11 SEM for N5 fired at 900°C for 55 hrs in air and reduced at 500°C for 10 hours: 

magnification =150.00 KX 

 

Figure ‎3.12 SEM for N6 fired at 900°C for 55 hrs in air and reduced at 500°C for 10 hours: 

magnification= 150.00 KX 
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A comparison of these SEM images reveals that the N5 powder exhibited a more 

pronounced grain growth compared to N6. Different grain growth kinetics can be a result 

of several parameters such as the initial grain size and shape, impurities, and the synthesis 

method by which the nanoparticles were prepared. Since these nanopowders were 

purchased, this study had no control over these parameters.   

 

3.2.1 Histograms 

 

3.2.1.1 Histogram of N5 at 48 hours  

 

Figure 3.13 and Figure 3.14 show two SEM images for the same N5 sample annealed for 48 

hours at 900 °C and then reduced. Histograms of the grain size distribution obtained from 

SEM were prepared to compare with the XRD results.  The volume of grains that x-rays 

diffract from was bigger compared to the SEM volume. Therefore, in order to have a better 

representation of the distribution of grain sizes, two SEM images of N5 with the same 

magnification were chosen.    
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Figure ‎3.13 SEM for N5 fired at 900°C for 48 hrs in air and reduced at 500°C for 10 hours: 

magnification= 200.37 KX 

 

 

Figure ‎3.14‎ SEM for N5 fired at 900°C for 48 hrs in air and reduced at 500°C for 10 hours: 

magnification= 200.37 KX 
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Figure 3.15 shows the histogram of N5 annealed for 48 hours. For the histogram, the 

shapes of the grains were assumed to be spherical. The adjustment for magnification of the 

image was taken into account when calculating the radius of the spherical grain. The 

average of the grain circumference from the histogram was 550 nm, with a standard 

deviation of 38 nm. The grain size obtained from the XRD data was 312 nm and the 

anisotropy was 67 nm. 

 

 

Figure ‎3.15 Histogram of the grain circumference of N5 after 48 hours at 900 °C 
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3.2.1.2 Histogram of N5 for 24 hours  

Figure 3.16 shows an SEM picture for N5 annealed for 24 hours at 900 °C.   

 

Figure ‎3.16 SEM for N5 fired at 900°C for 24 hrs in air and reduced at 500°C for 10 hours: 

magnification= 201.49 KX 

Figure 3.17 is the corresponding histogram for Figure 3.16. 

 

Figure ‎3.17 Histogram of the grain circumference of N5 fired at 900°C for 24 hrs in air and reduced at 

500°C for 10 hours 
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From the histogram, the average grain size for N5 after 24 hours at 900 °C was 430 nm 

with a standard deviation of 44 nm. The grain size of N5 for 24 hours from the XRD data 

was 225 nm and the anisotropy was 45 nm. Discrepancies in the XRD and SEM values could 

be due to the inhomogeneity of the samples. As the SEM images show the shape of the 

grains was not spherical, and there was a wide distribution of sizes. Furthermore, the SEM 

images sampled only a very small fraction of the grains, while the XRD data was obtained 

from a larger sample volume [28]. 

A complete set of SEM images for various treatment times of samples is provided in 

Appendix ΙΙ.  

 

3.3 The electrical conductivity results and discussion  

 

3.3.1 Conductivity before forming gas reduction 

 

The conductivity of each side of the four pellets was measured after being annealed in the 

high-temperature box furnace. As mentioned earlier, each set of the four pellets was 

annealed for different lengths of time to study the kinetics of grain growth. Electrical 

experiments were performed on quenched samples. This procedure was performed on the 

two batches of nanopowders (N5 and N6) which have different impurities and different 

initial grain sizes.  
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Tables 3.1 and 3.2 summarize the relationship between the durations of time and the 

conductivity for N5 and N6 before reduction. The conductivity of one side of a pellet 

differed from the other side by 10 % to 100 % for both batches. For the samples with BN 

(below noise) the conductivity was too low, and due to the sensitivity of the equipment, the 

measured values were below the threshold of the instrument (5.7      S/cm). As the 

results show, the conductivity values were very small and close to the noise level. 

 

Table 3. 1 Relationship between the durations of time and conductivity for N5 pellets before 
reduction treatment 

          
          N5 
 
Time  
durations 

Average of 
conductivity 
before reduction 
gas (S/cm) 

1 min (1.8±0.9)×10-6 

30 mins (8.4±4.3)×10-5 
1 hr (1.2±0.8)×10-5 
3 hrs (3.2±1.3)×10-5 
8 hrs BN 
18 hrs (3.1±0.6)×10-5 
24 hrs (5.6±1.1)×10-5 
48 hrs (9.2±3.1)×10-5 
55 hrs BN 
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Table 3. 2 Relationship between the durations of time and conductivity for N6 pellets before 
reduction treatment 

          
          N6 
 
Time  
durations 

Average of 
conductivity 
before reduction 
gas (S/cm) 

1 min (3.9±4.4)×10-5 

30 mins BN 
1 hr BN 
2 hrs BN 
3 hrs (4.1±1.0)×10-5 
8 hrs (8.5±1.6)×10-5 
18 hrs (5.3±1.9)×10-5 
24 hrs BN 
55 hrs BN 
68 hrs (2.0±1.5)×10-4 

 

For both N5 and N6, after annealing in forming gas, the conductivity improved by 4 to 5 

orders of magnitude. Figure 3.18 shows the conductivity as a function of annealing time for 

N5.  

 

                                                                   

Figure ‎3.18 Relationship between the durations of time at 900 °C and conductivity for N5 pellets after 

forming gas reduction 
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As shown in the above figure from 1 minute to 3 hours the conductivity increased gradually 

and then reached a plateau. The error bars on the conductivity graphs represent the 

standard deviation of the measurements for both sides of the two pellets that underwent 

the same treatment.  The large error bars for some samples can be attributed to 

discrepancies in the conductivity due to the roughness of the pellets’ surfaces.    

Figure 3.19 shows that the conductivity for N6 increased gradually from 1 minute to 3 

hours, and at 3 hours there was a more pronounced increase followed by a plateau. 

 

 

Figure ‎3.19 Relationship between the durations of time at 900 °C and conductivity for N6 pellets after 

forming gas reduction 

 

The conductivity as a function of time for both samples exhibited similar shapes.  In the 

long term, the conductivity values for N5 and N6 were the same within the uncertainties.  
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N5 at 1 minute was 3.5 S/cm while the conductivity of N6 at 1 minute was only 0.2 S/cm.  

N5 started to grow faster at 1 minute in comparison to the grains of N6 at 1 minute and yet 

untreated N5 had a smaller initial grain size. As a result the conductivity of N5 improved 

more than N6 once the sample reached 900 °C. 

It should be pointed out that the conductivity values for these samples are comparable to 

those of undoped indium oxide powders.  Furthermore, the values reported in this study 

have not been corrected for porosity.  The N5 pellets were 55 % dense, while the N6 

samples were 66 % dense.  If the conductivity is corrected for porosity, the values would be 

larger. 

 

3.3.2 Thermopower results and discussions 

3.3.2.1 Thermopower before reduction treatment 

 

As seen in Equation 1.1, both the electron concentration and the mobility of the carriers 

contribute to the electrical conductivity.  To determine the majority carrier type and its 

concentration, the thermopower of each pellet was measured for N5 and N6. Tables 3.3 and 

3.4 below summarize the effect of firing for different time intervals on the thermopower 

prior to reduction. 

The negative sign of the thermopower measurements indicated that the samples were n-

type. The magnitude of the thermopower is inversely related to the electron carrier 

concentration, therefore the results show that the number of carriers increased with grain 

size.  
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Table 3. 3 Relationship between annealing time and thermopower for N5 prior to reduction 

          
          N5 
 
Time  
durations 

Thermopower 
before treatment 

(V/K) 

1 min -795  
30 mins -548 
1 hr -633 
3 hrs -668 
8 hrs -652 
18 hrs -533 
24 hrs -340 
48 hrs -330 

 

 

Table 3. 4 Relationship between annealing time and thermopower for N6 prior to reduction 

          
          N6 
 
Time  
durations 

Thermopower 
before treatment 

(V/K) 

1 min -697 
30 mins BN 
1 hr BN 
3 hrs BN 
8 hrs -517 
18 hrs -553 
24 hrs -548 
48 hrs -655 
86 hrs -529 

 

Typical uncertainties due to the instrumental setup are on the order of 10 % for 

thermopower. The data showed that before reduction carrier concentration was very low 

for both N5 and N6.  For N5 the number of carriers consistently increased with annealing 

time since the magnitude of Q decreased.  
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3.3.2.2 Thermopower results and discussion after reduction gas treatment 

 

Figure 3.20 shows the effect on the thermopower of N5 and N6 after firing at 500 °C for 10 

hours under reduction gas. As seen in this graph the concentration of carriers increased 

after exposure to reduction gas for both samples. However, the carrier concentration in N6 

was higher than in N5 (the thermopower difference was on the order of 50V/K). 

 

 
Figure ‎3.20 Thermopower for reduced N5 and N6 vs. annealing time at 900 °C 

 

Figure 3.21 shows both the conductivity and thermopower of N5 as a function of grain size. 
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Figure ‎3.21 N5 conductivity and thermopower vs. grain size 

 

Figure 3.22 shows the conductivity, grain size, and thermopower of N6.  

 

 

Figure ‎3.22 N6 conductivity and thermopower vs. grain size 
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The above figures show that N6 and N5 had a similar mechanism for the enhancement of 

conductivity and carrier concentration as a function of grain size.  

 

3.4 X-ray diffraction results and discussion 

3.4.1 Ex-situ diffraction results and discussion of 11-BM data 

 

The untreated N5 batch was not phase pure. The amount of hydrozincite Zn5(CO3)2(OH)6 

secondary phase was small compared to the primary ZnO, as shown in Figures 3.23 and 

3.24. The secondary phase transformed to ZnO during heating prior to reaching 500°C as 

seen in Figures 3.25 and 3.26.  

 

Figure ‎3.23 Rietveld refinement for untreated N5 
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In these Rietveld figures, the vertical lines of the first row mark the positions of the Bragg 

peaks for ZnO, while the second row corresponds to the secondary phase. The blue line 

shows the difference between the observed and calculated intensities.  

 

Figure 3.24 focuses on the region where the strongest reflections from the secondary phase 

were found.  

 

Figure ‎3.24 Rietveld refinement showing the strongest reflections of the secondary phase in the 

untreated N5 nanopowder 

 

Figure 3.25 shows the full pattern of x-ray diffraction for the N5 sample that was annealed 

at 900°C for 1 minute and then reduced for 10 hours at 500°C.  
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Figure ‎3.25 Rietveld refinement for N5 after 1 min at 900 oC 

 

Figure 3.26 presents the XRD pattern for N5 after 1 minute at 900 °C in the low-angle 

region where the secondary phase was detected prior to heating.  The reflection peaks 

below 7.5o disappeared and only the ZnO wurtzite peaks were present.  This confirms that 

the secondary phase transformed to ZnO prior to reaching 900 °C.  

Phase purity for every sample was studied using Rietveld analysis with the FullProf 

program.  The complete Rietveld fit for the N6 sample annealed for 1 hour at 900 oC and 

then reduced for 10 hours at 500 oC is found in Figure 3.27. 
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Figure ‎3.26 Low-angle region of the XRD pattern for N5 after 1 min at 900 oC 

 

 

Figure ‎3.27 Rietveld refinement for N6 after 1 hour anneal at 900 oC followed by reduction 
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Tables 3.5 and 3.6 list the refined grain size and anisotropy results for the N5 and N6 

samples, respectively.  Both sets of data show that the grains grew as the firing time 

increased.  The Rietveld refinement uncertainties reported on the second column are due 

to fits of the peak widths and shapes based on the experimental data collection parameters. 

The uncertainties given by the Rietveld refinement were very small (most were less than 1 

%) due to both the high statistics of the data and the instrumental resolution.  The error 

bars shown in the figures represent the grain anisotropy, which depended on the 

deviations from spherical shapes.  
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Table 3.5 Rietveld results for grain size and anisotropy of N5 samples fired in air at 900°C  

followed by reduction 

Annealing time at 900°C 

(hours) 

Grain 

size(nm) 

Uncertainties given by the Rietveld 

refinement (nm) 

Anisotropy 

(nm) 

0  (untreated) 24 1.3 3 

1/60 123 0.7 24 

1/2  138 0.9 28 

1 163 1.1 39 

3 175 1.2 39 

8 251 2.4 58 

18 211 1.5 48 

24 225 1.6 45 

48 312 3.5 67 

55 794 15.3 143 
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Table 3. 6 Rietveld results for grain size and anisotropy of N6 samples fired in air at 900°C 

followed by reduction 

 

Annealing time at 900°C 

(hours) 

Grain 

size(nm) 

Uncertainties given by the Rietveld 

refinement (nm) 

Anisotropy 

(nm) 

0  (untreated) 75 1.2 15 

1/60 91 0.1 9 

1/2  99 0.1 9 

1 102 0.1 9 

2 115 0.1 8 

3 147 0.1 8 

8 126 0.1 8 

55 292 0.3 19 

68 264 0.2 17 
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Figures 3.28 and 3.29 summarize the grain size as a function of annealing time for N5 and 

N6.  

                     

 

Figure ‎3.28 Average grain size of N5 powder vs. annealing time in air at 900°C 

 

 

Figure ‎3.29 Average grain size of N6 powder vs. annealing time in air at 900 oC 
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Figure 3.30 compares the grain size between N5 and N6.  The crystallites of N5 grew faster 

and larger than N6 even though the initial size of N5 was smaller than N6, as confirmed by 

the SEM pictures. Also the anisotropy in the sample increased when the grains grew at this 

temperature. 

 

 

Figure ‎3.30 Average grain sizes of N5 and N6 powders vs. annealing time 

 

The kinetics of grain growth were analyzed using Equation 3.1.  

  
    

                                3.1 
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the process of grain growth, T is the temperature, and R is the gas constant[ [29], [9], [10], 

[11]]. The values of n for N5 and N6 were obtained from the slope of ln-ln plots as shown in 

Figures 3.31 and 3.32. 

 

 

Figure ‎3.31 Grain growth kinetics model (Equation 3.1) for N5 at 900 oC 

 

The grain growth kinetic exponents are typically used to determine the dominant type of 

mechanism for grain growth and coarsening in ceramics and metals.  For example, for ideal 

grain growth n =2, while for a diffusion-controlled mechanism n = 3.  Literature reports in 

similar temperature ranges but with initial grains in the 0.1 m to 0.25 m range have 

obtained n =3 and attributed the grain growth mechanism to the lattice diffusion of zinc 
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atoms [9].  However, Qin et al. [11] obtained n = 4 to 6 for growth at 700 °C to 900 °C and 

attributed the large grain growth kinetic exponents to a more complex mechanism for the 

sintering of ZnO nano-materials.   

 

 

Figure ‎3.32 Grain growth kinetics model (Equation 3.1) for N6 at 900 oC 

 

From the linear fits of the data, the grain growth kinetic exponents were n = 6.7±1.3 for N5 

and n = 4.5±0.6 for N6 suggesting that complex mechanisms governed the grain growth of 

the ZnO nanopowders at this temperature.  Mayo [34] found that the presence of porosity 

in oxide samples resulted in exponents higher than n = 4.  Pores limited the grain growth, 
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and for some samples values of n up to 16 were obtained. As mentioned earlier, the density 

of the N5 pellets was 55 % while the density of the N6 pellets was approximately 66 %.  

Porosity was therefore 45 % and 34 %, respectively.  The larger n value for N5 is consistent 

with a higher degree of porosity.  Furthermore, the increased anisotropy in the N5 powder 

could have also contributed to the slow growth kinetics. Values for the activation energy 

for grain growth were not calculated in the present study since only one temperature was 

studied in air leaving both Q and k0 convoluted in the y-intercept. 

 

3.4.2 In-situ diffraction results and discussions of 1-BM data 

 

High-resolution XRD data were collected in-situ from room temperature up to 500oC using 

a 2-D MAR detector. The annealing treatment was performed under O2, forming gas, and 

He/H2 gases. The purpose of these experiments was to study in-situ, isothermally at 500oC, 

the kinetics of grain growth under different gases: He/H2, and O2 for N6; and He/H2, O2 

He/H2, and H2/N2 for N5.  

As seen in Figure 3.33 the annealing environments affected the rate of grain growth. In 

oxygen, the grains grew slower than in reducing atmospheres. Helium/hydrogen had the 

largest growth-enhancing effect. These results agree with the theoretical work of Erhart 

and Albe [30] who calculated that the most mobile defects in ZnO were zinc interstitials 

followed by oxygen interstitials, zinc vacancies, and oxygen vacancies. In a reducing 

environment the amount of zinc interstitials must be enhanced while the oxygen species 

are suppressed, and since zinc are the most mobile species, the grains grew faster. 
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Figure ‎3.33 In-situ grain growth of N5 under different annealing gases at 500 oC 

 

The kinetics of grain growth were also analyzed using Equation 3.1. After plotting the data, 

it became apparent that there were two distinct regions with different slopes: one for the 

initial region where the grains grew faster, and a second region for later times when the 

grains grew at a slower rate.  Figures 3.34 and 3.35 show the results for N5 in HeH2 gas.   

The initial region covered up to t = 63872 seconds.  The second region included from t = 

63872 seconds up to t = 143077 seconds.   
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Figure ‎3.34 Grain growth kinetics model fitted for N5 under H2He in the initial region 

 

 

Figure ‎3.35 Grain growth kinetics model fitted for N5 under H2He in the later region 
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As for the ex-situ experiments the uncertainties given by the Rietveld refinement were very 

small (most were less than 1 %) because of the high statistics and instrumental resolution.  

The large error bars shown in the figures are due to grain anisotropy, which depended on 

the intrinsic shapes of the crystallites and their deviations from spherical grains as well as 

the wide range of size distributions. At this temperature and under the hydrogen/helium 

atmosphere, the anisotropy of the N5 sample increased with annealing time from 20 % up 

to 60 %.    This enhancement of anisotropy was less dramatic for the sample annealed in 

forming gas and became even smaller for the oxidized sample.  

Under hydrogen/helium, initially n=4.55±0.02 and then decreased to n=3.1±0.1. As 

mentioned before n =3 means that the grain growth was limited by diffusion [31] [32].  The 

higher exponent for the early stages of growth is consistent with other literature reports 

where more complex mechanisms dominate at smaller particle sizes [11] but diffusion 

overtakes for coarse grains.  For the oxidized sample the exponent was n = 14.3±0.8 for the 

first region and n=11.1±0.2 for the second region. 

 The n values at 500°C were bigger compared those at 900°C.  These results can also be 

attributed to the role of pores in grain growth.  The in-situ samples were not pressed 

pellets.  The powders were loaded into the glass capillaries and packed manually before 

inserting them in the high-temperature cell.  It is expected that their density was much 

lower compared to the pressed pellets resulting in more sluggish kinetics due to a higher 

degree of porosity.  

As mentioned before, the initial grain size for N6 at 500 °C was 74 nm and the anisotropy 

was 15 nm. Figure 3.36 shows that the N6 grains did not exhibit significant growth at this 
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temperature. A similar behavior was observed for both oxygen and hydrogen/helium 

environments.  Probably, this temperature did not provide enough kinetic energy for the 

growth of these nano-grains. In-situ experiments at higher temperature would be helpful in 

providing more insight on the effect of gases and temperature on grain growth for bigger 

particles also [33]. 

 

 

Figure ‎3.36 In-situ grain growth of N6 under different annealing gases at 500 oC 

  

0 

20 

40 

60 

80 

100 

0 10000 20000 30000 40000 50000 60000 70000 80000 

G
ra

in
 S

iz
e

 (
n

m
) 

Annealing Time at 500 oC (s) 

HeH2 

O2 



57 
 

4. Conclusions and future experiments 

 

The purpose of this study was to investigate the effect of grain growth and impurities on 

the electrical properties of ZnO semiconductors. Two batches of ZnO nanoparticles were 

chosen based on their structural, microstructural, and electrical characteristics. X-ray 

diffraction, x-ray florescence, scanning electron microscopy, four-point DC probe, and 

thermopower measurements were performed on these two nanopowders in order to study 

the kinetics of grain growth and their effect on conductivity.    

N5 and N6 nanopowder batches were annealed for different durations of time at two 

temperatures:  900°C and 500°C.  It was observed that the higher temperature promoted 

grain growth for both batches, whereas the lower temperature did not provide enough 

energy for significant grain growth of N6 (initial size was 74 nm). The study of reduction 

treatments on the samples indicated that the electrical conductivity of materials improved 

significantly after annealing them in forming gas. The mechanism responsible for this 

enhancement of reducing gases is a matter of debate among several theoretical models, but 

experimental studies are currently undergoing to provide experimental validation to the 

theoretical predictions [3].   

The electrical conductivity increased as the grains grew.  This can be attributed to both the 

decrease in scattering from grain boundaries, and the increase in electron concentration.  

The decrease in grain boundary scattering for larger grains results in a higher mobility.  For 

both batches, the magnitude of the thermopower, which is an indication of the carrier 

concentration, decreased suggesting that the number of carriers increased. The 

conductivity for large grains was similar for both N5 and N6 (around 4 S/cm).  A smaller 
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magnitude of the thermopower for N6 corresponds to a slightly higher carrier 

concentration.   

X-ray fluorescence and x-ray diffraction results showed that the N6 nanopowder had no 

impurity elements and was phase pure.  However N5 nanopowders had a small amount of 

Zr impurity atoms and also the untreated powder had a small amount of hydrozyncite 

secondary phase. It should be noted that the amount of Zr was very small and could not be 

detected as a secondary phase in the XRD patterns neither untreated nor after treatment.  

Furthermore, the hydrozyncite phase transformed into ZnO during heating and was absent 

at both 500 oC and 900 oC.  

For the in-situ study, grains of N5 (untreated powder 27 nm) exhibited grain growth at 500 

oC. The gas environment affected the growth rate.  In oxygen the grains grew slower than in 

reducing atmospheres.  Helium-hydrogen had the largest growth-enhancing effect.  These 

results agree with the theoretical calculations of Erhart and Albe, who predicted that the 

most mobile defects in ZnO are zinc interstitials followed by oxygen interstitials, zinc 

vacancies, and oxygen vacancies.  In a reducing environment the amount of zinc 

interstitials must be enhanced while the oxygen species are suppressed, and since zinc are 

the most mobile species, the grains should grow faster, as was experimentally confirmed by 

the present study. 

The grain growth kinetics for N5 at 500 °C can be well described by the Arrhenius-type 

model.  The grain growth exponents for N5 were large for O2 conditions where smaller 

grains were present.  The exponents decreased with reducing conditions and the presence 

of bigger grains.  The larger n values have been attributed in the literature to porosity and 

to complex mechanisms that are currently not well understood.  The present study found 
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that in more porous samples higher exponents were indeed obtained.  For He/H2, n =3 

suggest that the growth in later stages was limited by diffusion in agreement with 

literature reports.   

Grains of N6 (untreated powder 78 nm) did not exhibit growth at 500oC under oxygen or 

helium-hydrogen gas.  This temperature did not seem to provide enough energy for the 

growth of these bigger grains.  The shape of the grains might have also had an effect. 

Similar data were also collected for N3 under the same gas exposures as N5.  Untreated N3 

and N5 have comparable initial grain sizes.  The data need to be analyzed, but the results 

can provide more insight on the grain growth kinetics under different gases.  

 

In the future, it would be interesting to study in-situ the conductivity in the same 

temperature range and conditions to correlate the electrical and microstructural results.  

Another study could focus on the effect on grain growth and gas anneals on the optical 

properties and transparency of ZnO. Also more investigations on the effect of impurities 

and dopants (such as Al) on grain growth could be useful.   

 

The highest value of the conductivity in ZnO obtained in this study is comparable to that of 

undoped indium oxide.  A few parameters, such as the annealing time and temperature and 

the type of reducing gas still need to be optimized to maximize the conductivity of undoped 

ZnO.  These results would be valuable to understand the mechanisms responsible for the 

improvement of the electrical behavior of ZnO and other TCOs. 
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5. Appendixes   

 

5.1 Appendix I Data parsing code  

 

Program that parses data from APS files.  

using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.Linq; 

using System.Text; 

using System.Windows.Forms; 

 

// user-added namespace(s) 

using System.IO; 

using System.Reflection; 

using System.Text.RegularExpressions; 

 

namespace ReadData 

{ 

    public partial class frmReadData : Form 

    { 

        public frmReadData() 

        { 

            InitializeComponent(); 

        } 
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        private void btnInputDirectory_Click(object sender, EventArgs e) 

        { 

            // launch window for navigating to directory with data 

            FolderBrowserDialog dlgInputDirectory = new FolderBrowserDialog(); 

            if (dlgInputDirectory.ShowDialog() == DialogResult.OK) 

            { 

                txtInputDirectory.Text = dlgInputDirectory.SelectedPath; 

            } 

        } 

 

        private void btnOutputDirectory_Click(object sender, EventArgs e) 

        { 

            // launch window for navigating to directory for storing results 

            FolderBrowserDialog dlgOutputDirectory = new FolderBrowserDialog(); 

            if (dlgOutputDirectory.ShowDialog() == DialogResult.OK) 

            { 

                txtOutputDirectory.Text = dlgOutputDirectory.SelectedPath; 

            } 

        } 

 

        private void btnReadData_Click(object sender, EventArgs e) 

        { 

            btnReadData.Enabled = false; 

 

            string[] listOfFiles = FullPathsOfAllFiles(txtInputDirectory.Text); 

            string listOfFileNames = txtOutputDirectory.Text + "\\" + "listOfFileNames.txt"; //diagnostics 

            System.IO.File.WriteAllLines(listOfFileNames, listOfFiles); 
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            int colonIndex = 0; int braIndex = 0; string str1, str2, str3, str4; 

            string fileNameNoExtension = ""; 

            List<string> lstStrings = new List<string>(); 

 

            // read each file 

            int fileIndex = 0; 

            List<string[]> summary = new List<string[]>(); 

 

            foreach (string s in listOfFiles) 

            { 

                lstStrings = FileToListOfStrings(listOfFiles[fileIndex]); 

                fileIndex++; 

 

                fileNameNoExtension = Path.GetFileNameWithoutExtension(s); 

 

                // extract values from line 62 

                colonIndex = lstStrings[62].LastIndexOf(':'); 

                string line62 = RemoveWhitespace(lstStrings[62].Substring(colonIndex + 1)); 

                line62 = line62.TrimEnd(')'); // remove closing paranthesis 

                braIndex = line62.LastIndexOf('('); 

                str1 = line62.Substring(0, braIndex); // get first number 

                str2 = line62.Substring(braIndex + 1); // get second number 

 

                // extract values from line 63 

                colonIndex = lstStrings[63].LastIndexOf(':'); 

                string line63 = RemoveWhitespace(lstStrings[63].Substring(colonIndex + 1)); 

                line63 = line63.TrimEnd(')'); // remove closing paranthesis 
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                braIndex = line63.LastIndexOf('('); 

                str3 = line63.Substring(0, braIndex); // get first number 

                str4 = line63.Substring(braIndex + 1); // get second number 

 

                string[] fileSummaryArray = { s, str1, str2, str3, str4 }; 

                summary.Add(fileSummaryArray); 

            } 

 

            DataTable dtSummary = new DataTable(); 

            dtSummary = WholeListToDataTable(summary); 

            dtSummary.Columns[0].ColumnName = "File Name"; 

            dtSummary.Columns[1].ColumnName = "Grain Size"; 

            dtSummary.Columns[2].ColumnName = "Grain Anisotropy"; 

            dtSummary.Columns[3].ColumnName = "Maximum Strain"; 

            dtSummary.Columns[4].ColumnName = "Strain Anisotropy"; 

 

            string sepChar = ","; // for convenience, use .csv extension 

 

            string pathToFile = listOfFiles[0]; 

            string folderName = new FileInfo(pathToFile).Directory.Name; 

            string fileName = String.Format("DataSummary_" + folderName + 
"_{0:yyyyMMdd_HHmmss}.csv", DateTime.Now); 

            string summaryFileFullPath = txtOutputDirectory.Text + "\\" + fileName; 

 

            DataTableToTextFile(dtSummary, summaryFileFullPath, sepChar); 

            MessageBox.Show("Data summary successfully created"); 

            btnReadData.Enabled = true; 

        } 
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        // method FullPathsOfAllFiles that generates list of all event data results 

        private string[] FullPathsOfAllFiles(string inputDirectory) 

        { 

            string[] filePaths = Directory.GetFiles(inputDirectory, "*_1.mic"); 

            filePaths = SortUsingMyAlgorithm(filePaths); 

            return filePaths; 

        } // end method FullPathsOfAllFiles 

 

        private string[] SortUsingMyAlgorithm(string[] a) 

        { 

            string[] n = new string[a.Length]; 

 

            Dictionary<int, string> dctFiles = new Dictionary<int, string>(); 

            string filename, partOfFilename, strFilenameIndex; 

            int i = 0; int j = 0; int filenameIndex = 0; 

            while (i != a.Length) 

            { 

                filename = Path.GetFileNameWithoutExtension(a[i]); 

                partOfFilename = filename.Substring(0, filename.LastIndexOf('_')); 

                j = partOfFilename.LastIndexOf('_'); 

                strFilenameIndex = partOfFilename.Substring(j + 1); 

                filenameIndex = Int32.Parse(strFilenameIndex); 

                dctFiles.Add(filenameIndex, a[i]); 

                i++; 

            } 

 

            var list = dctFiles.Keys.ToList(); 

            list.Sort(); 
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            Dictionary<int, string> dctSortedFiles = new Dictionary<int, string>(); 

            int k = 0; 

            foreach (var key in list) 

            { 

                dctSortedFiles.Add(key, dctFiles[key]); 

                n[k] = dctSortedFiles[key]; 

                k++; 

            } 

 

            return n; 

 

        } 

 

        // alternative method for sorting string array 

        private string[] SortUsingLinq(string[] a) 

        { 

            var res = from item in a 

                      orderby item ascending 

                      select item; 

            return res.ToArray(); 

        } 

 

        private List<string> FileToListOfStrings(string fullPathOfInputFile) 

        { 

            List<string> fileContentsAsAList = new List<string>(); 

            StreamReader aReader = new StreamReader(fullPathOfInputFile); 

            string aLine = ""; 
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            while ((aLine = aReader.ReadLine()) != null) 

            { 

                fileContentsAsAList.Add(aLine); 

            } 

            aReader.Close(); 

            return fileContentsAsAList; 

        } 

 

        private DataTable WholeListToDataTable(List<string[]> stringList) 

        { 

            // initialize table 

            DataTable dt = new DataTable(); 

 

            // find largest array 

            int rowSize = 0; // size of largest array 

            foreach (string[] strArray in stringList) 

                if (rowSize < strArray.Length) 

                    rowSize = strArray.Length; // final value is length of longest string array 

 

            // add as many columns as the length of longest string array 

            for (int columnIndex = 0; columnIndex < rowSize; columnIndex++) 

                dt.Columns.Add(); 

 

            // load string arrays to DataTable one row at a time 

            int rowIndex = 0; // row counter 

            foreach (string[] strArray in stringList) 

            { 

                int columnIndex = 0; // column counter 
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                dt.Rows.Add(); 

                foreach (string strValue in strArray) 

                { 

                    dt.Rows[rowIndex][columnIndex] = strValue; 

                    columnIndex++; 

                } 

                rowIndex++; 

            } 

 

            return dt; 

 

        } // end method WholeListToDataTable 

 

        // method DataTableToTextFile 

        private void DataTableToTextFile(DataTable table, string filename, string seperateChar) 

        { 

            StreamWriter sr = null; 

            try 

            { 

                sr = new StreamWriter(filename); 

                string seperator = ""; 

                StringBuilder builder = new StringBuilder(); 

                foreach (DataColumn col in table.Columns) 

                { 

                    builder.Append(seperator).Append(col.ColumnName); 

                    seperator = seperateChar; 

                } 

                sr.WriteLine(builder.ToString()); 
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                foreach (DataRow row in table.Rows) 

                { 

                    seperator = ""; 

                    builder = new StringBuilder(); 

                    foreach (DataColumn col in table.Columns) 

                    { 

                        builder.Append(seperator).Append(row[col.ColumnName]); 

                        seperator = seperateChar; 

                    } 

                    sr.WriteLine(builder.ToString()); 

                } 

            } 

            finally 

            { 

                if (sr != null) 

                { 

                    sr.Close(); 

                } 

            } 

        } // end method DataTableToTextFile 

 

        private string RemoveWhitespace(string s) 

        { 

            try 

            { return new Regex(@"\s*").Replace(s, string.Empty); } 

            catch (Exception) 

            { return s; } 

        } 
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        private string CreateHtmlFriendlyString(string s) 

        { 

            s = RemoveWhitespace(s); 

            s = s.TrimEnd(':'); 

            s = s.TrimStart('-'); 

            s = s.Replace('(', 'X'); 

            s = s.Replace(')', 'X'); 

            return s; 

        } 

    } 

} 

 

 

 

 

 

 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Windows.Forms; 

 

namespace ReadData 

{ 

    static class Program 

    { 

        /// <summary> 
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        /// The main entry point for the application. 

        /// </summary> 

        [STAThread] 

        static void Main() 

        { 

            Application.EnableVisualStyles(); 

            Application.SetCompatibleTextRenderingDefault(false); 

            Application.Run(new frmReadData()); 

        } 

    } 

} 
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5.2 Appendix ΙΙ SEM 

 

Before treatment: 
 

 N5  

                    

 N5-1                           N5-2                   N5-3     N5-4 

 

N6  

           

    N6-1                                        N6-2   N6-3   N6-4 

 

 N7  

           

 N7-1                                           N7-2                N7-3      N7-4 
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N8  

                

N8-1                N8-2   N8-3   N8-4   

 

N9  

         

 N9-1                   N9-2   N9-3   N9-4 

 

After treatment in air and in reducing gas:  
 

N5 

 

8 Hours:  

             

 N5 R-8HR-1  N5 R-8HR-2       N5 R-8HR-3     
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55 Hours: 

        

 N5 R-55HR-1  N5 R-55HR-2  N5 R-55HR-3  N5 R-55HR-4 

 

N6 

 

1 Minuet:  

     

          N6 R-1min-                         N6 R-1min-2                N6 R-1min-3       N6 R-1min-4                        

       

  30 Minuets:  

   

           N6 R-30min-1                 N6 R-30min-2                   N6 R-30min-3                   N6 R-30min-4                                     

                                                                                                                                                                                                            

1 Hour:  
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 N6 R-1HR-1                       N6 R-1HR-2                           N6 R-1HR-3 

 

 2 Hours: 

              

 N6 R-2HR-1       N6 R-2HR-2       N6 R-2HR-3 

 

 3 Hours: 

       

            N6 R-3HR-1            N6 R-3HR-2     N6 R-3HR-3   

 

8 Hours: 

              

 N6 R-8HR-1    N6 R-8HR-2             N6 R-8HR-3   
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      18 Hours: 

                                                                                                               

 N6 R-18HR-1             N6 R-18HR-2     N6 R-18HR-3 

    

55 Hours: 

         

   N6 R-55hrs-1                     N6 R-55hrs-2                           N6 R-55hrs-3 

 

  86 Hours: 

         

         N6 R-86hrs-1    N6 R-86hrs-2     N6 R-86hrs-3      

N7 

8 Hours: 

                

          N7 R-8hrs-1                           N7 R-8hrs-2       N7 R-8hrs-3 



76 
 

 55 Hours:  

       

           N7 R-55hrs-1   N7 R-55hrs-2  N7 R-55hrs-3 

 

N8 

 

8 Hours: 

       

        N8 R-8hrs-1       N8 R-8hrs-2     N8 R-8hrs-3         N8 R-8hrs-4                                                                                            

 

 55 Hours: 

 

            N8 R-55hrs-1              N8 R-55hrs-2                  N8 R-55hrs-3                     N8 R-55hrs-4                                                                                            
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5.3 Appendix III, Electrical and thermal properties for N9, N8, N7, N6, N5 

 

Real conductivity is based on 100% density.  

Summary of the conductivity of N9, N8, N7, N6, N5 before and after reduction gas: 

Unit of Conductivity:      

name  Conductivity side one "R" 
S  
 
 
 S  

Conductivity side two "R"  

N5_1  (8 hrs) 3.23 2.13 

 Real conductivity  10.46 6.90 

N5_2  (8 hrs) 1.56 1.63 

 Real conductivity  5.21 5.43 

N5_3 (55 hrs) 0.19 0.13 

 Real conductivity  0.48 0.33 
N5_4 (55 hrs) 0.20 0.10 

 Real conductivity  0.58 0.29 

N6_1  (8 hrs) 3.72 3.74 

 Real conductivity  7.28 7.32 

N6_2  (8 hrs) 4.61 4.24 

 Real conductivity  9.47 8.72 

N6_3 (55 hrs) 8.08 8.25 

 Real conductivity  16.28 16.63 

N6_4 (55 hrs) 3.06 8.22 

 Real conductivity  5.92 15.91 

N7_1 (8 hrs) 1.98 1.68 

 Real conductivity  4.33 3.67 
N7_2 (8 hrs) 2.03 2.01 

 Real conductivity  4.51 4.46 

N7_3 (55 hrs) 1.95 2.46 

 Real conductivity  4.27 5.40 

N7_4 (55 hrs) 2.38 2.00 

 Real conductivity  5.33 4.48 

N8_1 (8 hrs) 0.049 ###  

 Real conductivity  0.049 ###  

N8_2 (8 hrs) 0.024 0.049 

 Real conductivity  0.025 0.050 

N8_1 (55 hrs) 0.036 0.064 

 Real conductivity  0.039 0.070 
N8_2 (55 hrs) 0.034 0.047 

 Real conductivity  0.037 0.052 

N8_3 (55 hrs) 0.030 0.026 

 Real conductivity  0.033 0.028 

N8_4 (55 hrs) 0.035 0.039 

 Real conductivity  0.037 0.041 
N9_1 (8 hrs) 0.018 0.022 
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  Real conductivity 0.020 0.024 

N9_2 (8 hrs) 0.017 0.015 

 Real conductivity 0.020 0.018 

N9_3 (55 hrs) 0.016 0.018 

 Real conductivity 0.017 0.019 

N9_4 (55 hrs) 0.017 0.027 
 Real conductivity 0.018 0.029 
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5.4 Appendix IV Thermopower of N9, N8, N7, N6, N5 before and after 
reduction gas  

 

name thermopower (µV/K) 
thermopower "R" 

(µV/K) 

N9_1 -604 -350 

N9_2 -908 -409 

N9_3 -892 -392 

N9_4 -854 -392 

   N8_1 -686 -470 

N8_2 -680 -413 

N8_1 -792 -402 

N8_2 -850 -421 

N8_3 -990 -432 

N8_4 -873 -453 

   N7_1 -679 -136 

N7_2 -705 -121 

N7_3 -744 -114 

N7_4 -718 -116 

   N6_1 -517 -121 

N6_2 -547 -114 

N6_3 -658 -125 

N6_4 -654 -126 

   N5_1 -658 -172 

N5_2 -666 -189 

N5_3 -999 -449 

N5_4 -938 -411 
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5.5 Appendix V pcr file sample 

 

Pcr-file for N5, 1 hour, after treatment, using spherical harmonic option, Hexagonal  

                                                                                                                                   
The size-model 19 was chosen 
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