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Abstract  
Despite the exponential growth in scientific textual content, research publications are still the primary 
means for disseminating vital discoveries to experts within their respective fields. These texts are 
predominantly written for human consumption resulting in two primary challenges; experts cannot 
efficiently remain well-informed to leverage the latest discoveries, and applications that rely on valuable 
insights buried in these texts cannot effectively build upon published results. As a result, scientific 
progress stalls. Automatic Text Summarization (ATS) and Information Extraction (IE) are two essential 
fields that address this problem. While the two research topics are often studied independently, this 
work proposes to look at ATS in the context of IE, specifically in relation to Scientific IE. However, 
Scientific IE faces several challenges, chiefly, the scarcity of relevant entities and insufficient training 
data. In this paper, we focus on extractive ATS, which identifies the most valuable sentences from 
textual content for the purpose of ultimately extracting scientific relations. We account for the 
associated challenges by means of an ensemble method through the integration of three weakly 
supervised learning models, one for each entity of the target relation. It is important to note that while 
the relation is well defined, we do not require previously annotated data for the entities composing the 
relation. Our central objective is to generate balanced training data, which many advanced natural 
language processing models require. We apply our idea in the domain of materials science, extracting 
the polymer-glass transition temperature relation and achieve 94.7% recall (i.e., sentences that contain 
relations annotated by humans), while reducing the text by 99.3% of the original document. 

1. Introduction 
Scientific Information Extraction (IE) has become increasingly important as the number of scientific 
publications and journals grows exponentially [1]. While traditional IE remains a vast and active field of 
research [2–4], both open source and commercial Natural Language Processing (NLP) tools1 can be 
leveraged to generate labels for machine-learned models. And while crowdsourcing semantic labeling 
systems still need control labeling quality, the assumption is that the task is attainable for laymen [5, 6]. 
Scientific IE faces its own additional challenges, including the scarcity of target entities in text, the lack 
of annotated training data, and the fact that generating quality labels from scientific text requires 
expertise, which can also be costly [7]. Since most NLP tasks rely on balanced, accurate, and carefully 
annotated gold standard labels, we propose that an often-overlooked crucial preliminary task to any 
Scientific IE tool, is the generation of these labels. We further advance that the complexity of scientific 
facts to be extracted often requires context in addition to the structured data. For these reasons, our 
work tackles Scientific Automatic Text Summarization (ATS) as a prerequisite to hybrid human-
machine Scientific IE. Indeed, while ATS is largely defined and evaluated in terms of generating 
summaries similar to those generated by humans, Scientific IE reduces the extraction of scientific facts 
to extracting entities, relations or attributes for example. Instead, we proposed that ATS is required not 

 
1 For example, NLTK, SpaCy are two Python programming libraries that include well-developed NLP tasks such as Part-
of-Speech Tagging, PERSONS, LOCATIONS etc. 
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only to reduce the sheer amount of text to be processed by ML algorithms but also to enable experts to 
review data output by these algorithms and extract additional context surrounding these facts when 
necessary. 

This idea is tested in the field of materials informatics, which is generating great interest as a paradigm 
shift within Research & Development (R&D) aimed to fundamentally accelerate the time from 
innovation to market in materials science; it proposes to automatically process large amounts of data for 
targeted design of new materials with potentially high societal impact [7–11]. The challenges faced in 
this field however are not unique to materials science. Indeed, while bioinformatics is more mature, the 
extraction of new types of entities implies appropriately generated corresponding gold standards [12–
14]. Our work aims to achieve generalizability in generating summaries towards Scientific IE by 
leveraging weak supervision and ensemble classification. We use Snorkel [15], a data programming 
software, to tentatively label sentences that contain three pieces of the target entity, here a polymer-Tg 
pair (polymer mention, glass transition or (Tg) mention and the actual temperature); we train three 
corresponding models and combine them to identify important sentences. It is important to note that 
unlike in the case of typical relations extraction work, identifying the target relations does not assume 
the preliminary identification of the entities composing the relation. We achieve 94.7% recall (i.e., 
sentences that contain relations annotated by humans), while reducing the text by 99.3% of the original 
documents. In tuning our models, we prioritize recall as our end-goal is to generate training data (we 
want to retrieve all the important facts). As anticipated, precision is low (58.9%), but we provide an 
analysis of the false positive, emphasizing the reduction in text to be processed and the useful context in 
these additionally extracted sentences (e.g., method of measurement of Tg). 

The key novelty in our approach is the reframing of Scientific ATS from a practical Scientific IE point 
of view. To the best of our knowledge, even extractive ATS which extracts exact sentences from text as 
opposed to generating equivalent sentences (abstractive ATS) does not focus on scientific information 
other than citations to score the importance of sentences. We use key components of the ultimate target 
relation to train sentence extraction models, which will ultimately be used for scientific information 
extraction. The contributions of the papers are centered around the design and evaluation of a new type 
of extractive ATS model based on combining three weekly supervised models. We demonstrate that we 
efficiently retrieve sentences of interest, reduce and balance the text to be later annotated by machines 
and/or humans. Finally, we show the importance of capturing additional sentences which contain 
context information related to the structured portion of the target relations.   

2. Related work 
There is a wealth of important information buried in textual content growing exponentially in various 
archives of scientific publications. Figure 1 shows examples of sentences containing important 
information about polymers and their glass transition temperatures that would be useful to store in a 
structure format for future material design. IE and ATS are two fields focused on extracting valuable 
information from large amounts of data as manual extraction of scientific facts is time consuming, error-
prone, costly, and ultimately impractical. This is particularly true in Scientific IE as extracting scientific 
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facts often requires domain knowledge, hence experts’ time for accurate extraction, yet a recent 
bibliometrics study reported that approximately 2.5 million new papers are published each year [1]. 
Scientific IE has typically focused on named entity recognition and relations extraction as the valuable 
information locked can be protein reactions or properties of polymers used to design a new drug or a 
new material for example. However, previous works have also shown that scientific facts can be complex 
and require context information to be fully understood (e.g., method of measurement of a particular 
material’s property) [16-18]. In this paper, we propose a novel approach to scientific text summarization 
and present it as the first step in a scientific hybrid human-computer information extraction pipeline to 
accurately extract scientific facts. 

ATS is an important NLP task that continues to gain more attention as the amount of textual content 
grows exponentially on the internet, and various archives of legal documents and scientific articles etc. 
[19]. Early works in ATS date back to the 1950s. In early work, the machine used statistical information 
derived from word frequency and distribution to compute a relative measure of significance, first for 
individual words and then for sentences; sentences scoring highest in significance were extracted and 
printed out to become the “auto-abstract.” [20]. Since then, researchers have continued to improve ATS 
methods, which are either extractive, abstractive or hybrid. Extractive methods select the most 
important sentences from a document and combine them in a summary while abstractive — more 
recent and challenging — approaches generate a summary with new sentences [21]. Despite many 
advances, automatically generating accurate, complete, and human understandable summary remains a 
formidable challenge [22]. Difficulties include identifying all the most informative segments in 
documents, summarizing multiple documents, generating content that is similar to a human-produced 
summary without redundancies etc. There are several ATS surveys, a recent comprehensive survey 
includes abstractive which are drawing more attention with advances in deep learning [19]. 

Despite these advances, scientific text summarization is often focused on identifying citations and cited 
work. Citation-based summarization identifies relevant aspects of the paper through publications which 
have cited the target paper; applying this information to ultimately score valuable sentences within the 
target paper [23, 24]. This exemplifies leveraging additional context in extractive approaches as most of 
the variations between these reside in how sentences are scored and aggregated into a summary. Other 
scoring methods of sentences include using term frequency or term frequency-inverse document 
frequency (TF-IDF), topic-words, and ontologies to identify key words and sentences for example [25]. 
Different extractive methods involve first identifying topics as alternative representations of concepts in 
the paper, before identifying important sentences (i.e., that include these topics). 

 
Figure 1:  Sentences containing valuable polymer-Tg pair relation 
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While one could make an argument for abstractive methods to summarize important concepts covered 
in scientific articles [26, 27] to generate human-readable summaries, we argue that extractive methods 
are more favorable in extracting sentences that contain important scientific facts that should not be 
altered in the summary (at least in terms of extracting facts that are ultimately to be stored in a database 
and used in applications). This is also the reason why scientific IE is an active research area, especially in 
materials science [7, 10]. Therefore, this work proposes an intermediate approach, a semi-supervised 
scientific text summarization that extracts sentences containing the targeted entity to be extracted with 
additional metadata. Since a major challenge in applying Machine Learning (ML) techniques in 
scientific ATS or IE is the availability of training data and difficulty in transferring knowledge from 
large models to new models [7], we use Snorkel, a data programming technique, which allows to 
approximately label data using Python labeling function (rather than hard-coded rules). 

Snorkel was previously used in novel approaches to identify sentences which contain our target relations 
(polymer–Tg) [28, 29]. While Snorkel customarily assumes the entities are known and learns the 
different accuracies of approximate rules that link the entities in the relations, we identified sentences 
without knowing entities a priori. Authors used three sets of labeling functions to identify parts of the 
relation and combined them to identify relevant sentences. They later improved this approach, which 
assumed the relation is contained in a single sentence and expanded to extracting blobs, to achieve 100% 
recall [29]. This Ensemble labeling method, or ELSIE-Blob, did not use a classification model to extract 
sentences. Nevertheless, while ELSIE-Blob is also concerned with extracting the components of the 
relation, the polymer and the Tg, it may still miss metadata about the relation. Other previous works 
illustrate our motivation in the need to capture additional context information, sometimes manually 
about the target entities and relations [16–18, 30, 31]. In our work, we anticipate that extraction of facts 
from relevant sentences will sometimes be automated, however, experts’ interventions may on occasion 
be necessary. Wallace et al. also pursue this goal, using a hybrid ML and crowdsourcing approach to 
identify published randomized controlled trials (RCTs) [32]. They use ML classifiers to recognize 
citations that are deemed highly unlikely to describe RCTs, deferring to crowdsourcing otherwise. In 
previous work, authors extracted the complex Flory-Huggins interaction parameter, a measure of 
miscibility between two entities using a combination of automation and crowdsourcing [17, 18]. 
Similarly, in [16], authors use a hybrid pipeline of automated and manual tasks to extract polymer-Tg 
pairs from text. These previous works, motivate this current approach of approximate multi-
classification models to identify entities along with additional related context designed for human 
consumption. 

3. Motivation 
In recent years, there has been substantial interest in how the fields of ML and NLP can assist in 
extracting materials science data from the scientific literature [7, 10]. While bioinformatics has long 
fueled advances scientific IE and text mining of biomedical publications, materials informatics, which 
applies the principles of informatics to materials science and engineering to improve the understanding, 
use, selection, development, and discovery of materials and relies on the availability of large amounts of 
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data, is an emerging field [8, 9]. Therefore, there is an increasing demand for extracting important 
materials data to feed into computational modeling tools such as CALPHAD for example [33, 34]. 

Automatic IE, which has the potential to unlock these data combines rules, statistical and ML models. 
Recent advances in Deep Learning (DL), such as the BERT language model, have revolutionized the 
field and outperformed previous models in various NLP tasks [35]. However, scientific IE faces specific 
challenges highlighted in a recent study [7], including the computer-(un)friendly format of scientific 
text, the lack of training data, the sparsity of the target information and the difficulties of applying 
models trained on general corpora to scientific text. Even leveraging other pre-trained BERT-based 
models [36,37], requires generating new training data for corresponding new target entities or relations. 
We consider our work to be a first step in scientific IE workflow, and in addressing the aforementioned 
challenges. Indeed, since in science, it is important to retrieve the exact information, extracting relevant 
sentences, that is sentences that contain the target information addresses sparsity of the data, thereby 
reducing the amount of (irrelevant) text to process from which training data is to be generated, and 
reducing the imbalance between targeted   facts and other texts. Importantly, scientific text 
summarization addresses the complexity of the data to be extracted. Data in materials science are 
particularly heterogeneous, based on the significant range in materials classes that are explored and the 
variety of materials properties that are of interest [10]. Polymers for example are of particular interest as 
they are both ubiquitous and challenging to extract due to the manner in which authors report on 
polymeric materials [38]. Polymers are large molecules composed of many repeating units that have a 
wide range of properties depending on their application. Previous work has also highlighted the 
difficulty in extracting polymer properties for example [16–18].  The Flory-Huggins (χ) parameter 
measures the interaction of compounds (polymer-polymer or polymer-solvent) and can be reported in 
text in multiple formats, including a number, different types of equations or a graph. Moreover, there 
are multiple ways to measure these properties, some well-known and some customized. Even in the case 
of a simpler property, polymer-Tg, materials scientists may need additional details like methods of 
measurement and type of polymerization (bulk or mass, method of measurement or number average 
molecular weight. Figure 2 shows two examples of context information for polymer-Tg pairs: the first 
describes a decrease in Tg during an experiment rather than reporting an actual temperature while the 
second explains how glass transitions were measured. Because of cases like this, which are not unique to 
polymer science, we propose that the ultimate solution to the crucial challenge of generating training 
data for scientific IE may be a combination of crowdsourcing and automation, that begins with 
scientific ATS. ATS reduces and balances the original amount of data, addressing the aforementioned 
scarcity challenge, and facilitates annotations by enabling the automated labeling of exact scientific facts 
with potential manual labeling of additional complex, and computer unfriendly context. 

 
Figure 2:  Examples of context information for the polymer-Tg pairs 
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4. Methodology 
The principal objective of identifying polymer sentences has been explored in prior research and 
influences the methodology used here [28, 29]. The methods implemented include using Snorkel 
systems with a distinct strategy of comparing multiple, entity-specific sets of labeling rules with the goal 
of extracting the relationship between them. We will instead use three models trained using these labels, 
one for each of the primary target entities, which include polymer names, glass transition mentions, and 
temperature mentions. Together, these entities constitute a scientific fact or relation, a polymer-Tg pair. 
In Snorkel, we use data programming and weak supervision to create training labels. This software 
system uses labeling functions, or a set of approximate programming rules to label data; then using a 
discriminative probabilistic model and limited labeled training data, it learns the relative accuracies of 
these labeling functions to label large amounts of data [15].  

In prior work, authors used an ensemble labeling method to identify sentences that contain the polymer, 
the Tg and the temperature mentions; ELSIE used three sets of Snorkel labeling functions to identify 
each of the target entities before extracting sentences using a majority labeling technique to identify 
target sentences which included all three entities [28]. To achieve 100% recall, ELSIE-Blob used a novel 
approach inspired by Depth-First-Search and Snowball sampling to extend the search for the three 
entities across multiple sentences, extracting blobs instead of sentences [29] as this information was 
indeed sometimes spread across more than a single sentence. It is important to note that neither ELSIE, 
nor ELSIE-Blob used ML models. In our new approach, we now aim to use the Snorkel discriminative 
models to identify each of the components of the target polymer-Tg pair (polymer name, temperature 
and Tg mention). We expect our approach to generate more false positives as labeling functions are 
approximate and there are three separate models trained on limited ground truth and highly imbalanced 
data. We hypothesize that leveraging an ensemble of three distinct models and the convergence of their 
labels will achieve comprehensive extractive scientific text summarization; retrieving sentences with 
distinct polymer relations and valuable supplementary context. 

4.1 Data 
The data originated from a keyword search from Macromolecules2, a journal which specializes in 
materials science, and specifically polymer research. The dataset consists of 36 scientific articles and 
10,821 total sentences which have been reviewed and labeled by materials scientists (i.e., extracted 
polymer-Tg pairs from the documents). We previously split the data into sentences and matched the 
polymer-Tg pairs to sentences within these documents [28]. The data is highly imbalanced with positive 
sentences (i.e., containing relevant information) accounting for only 48 of the 10,821 total sentences 
(0.4%). We now separate the ground truth in three different sets, one for each of the target entities. That 
is, using the original ground truth, the polymer model is trained using data in which polymer names are 
identified, the temperature and Tg models are trained on sentences that contain a temperature and/or 
glass transition mentions. Temperature and glass transition mentions are often related meaning 

 
2https://pubs.acs.org/journal/mamobx 
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sentences identified in these models will often converge. The Tg model allows for and was constructed 
to achieve higher precision with fewer false positives. The polymer model required a unique set of labels 
which involved meticulous examination to identify any sentence with a polymer name or abbreviation.  
For each model, we split the data into 80–20 splits (with 8,656 training samples and 2,165 testing 
samples). Since we then need to combine output from the three models, the overall performance was 
measured through thirty randomized trials. Note that the imbalance in the data means that there are 
often only a few positive instances in the test set and highlights the efficiency of our models. None of 
the original data was preprocessed prior to modeling. 

4.2 Snorkel 
As previously mentioned, Snorkel is a software system which allows for highly efficient and accurate 
probabilistic labeling through weak supervision without the need for extensive hand labeled training 
data [15]. This approach provided the central framework behind the modeling. The labeling functions 
allow Snorkel to create an initial set of labeled data which can then be used to model the correlations 
between those outputs. These correlations are then used to create new confidence-weighted training 
labels to reduce noise and conflicts.  

4.2.1 Text Preprocessing 
The sample of sentences were not preprocessed or transformed prior to using Snorkel's modeling system. 
However, certain preprocessors inherent to Snorkel's labeling functions were used for basic data 
cleaning where needed. The preprocessors used involve transforming all text to lowercase, removing 
numeric characters, punctuation, and verifying parentheses are used properly. 

4.2.2 Labeling Functions 
The three entities which are paramount to identifying valuable polymer relations include glass transition 
or Tg mentions, temperature mentions, and the polymer names. Labeling functions are python 
functions which iterate through the text data provided and return True, False or None (i.e., “TG”, 
“Junk” (no TG present), and “Abstain”). The main difference between “Junk” and “Abstain” is that a 
“Junk” labels is a False labels asserting that the entity is not found, while an “Abstain” allows for a 
different labeling function to label the sentence. For example, not finding an acronym does not imply 
not finding a polymer name (abstain), while not finding a number is immediately equivalent to not 
finding a temperature (junk)s. These provide the initial labels within Snorkel which are then used to 
model their correlations and accuracies to produce a final set of probabilistic training labels. The Tg 
model includes six total labeling functions which largely encompass checks for any mention of a glass 
transition temperature. This model overlaps substantially with temperature, so much so that they were 
originally combined into a single model. Eventually, they were separated as we discovered the individual 
models allowed for better recognition of key material while avoiding redundant information. The 
temperature model includes five labeling functions which consider a broad range of information related 
to each entity. The model intends to identify temperatures while filtering out any sentence which does 
not contain a number and temperature in some form. The model further considers whether a 
connection exists between the detected temperature and a glass transition or polymer mention. 
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Conversely, the primary focus of the polymer model was to identify a single entity associated with a 
polymer name or abbreviation. This model also includes a total of five labeling functions but largely 
focused on keyword searches in conjunction with pattern identification using regular expressions while 
both the Tg and temperature models focused more heavily on the latter. Polymer names are not easily 
identifiable but do, in some cases share common patterns, including the prefix “poly” and abbreviations 
also beginning with the character “P”. However, there are several instances where this is not the case. 
Unfortunately, no complete dictionary for polymer names exists and the standardized International 
Union of Pure and Applied Chemistry (IUPAC)3 naming conventions often result in lengthy and, 
hence, rarely used names.  

4.3 Word Embedding 
To classify sentences, the model needs vectorized sentences — not strings. A count vectorizer, or matrix 
of token counts, was the original word embedding method used for each model. However, the polymer 
model performed well using term frequency-inverse document frequency (TF-IDF) vectorization; The 
TF-IDF value increases proportionally to the number of times a word appears in the document and is 
offset by the number of documents in the corpus that contain the word, which helps to adjust for the 
fact that some words appear more frequently in general [39]. Vectorization and the analyzer used within 
the TF-IDF vectorizer was found to be crucial to identifying the correct entities within each model. 

4.4 Classification models 
In this section, we describe each of the models in more detail. The classification models learn the 
embeddings of relevant sentences and separate them from other sentences. After experimenting with 
multiple classifiers, we substituted the default discriminative model in Snorkel with a Support Vector 
Machine (SVM) classifier with different kernels. While differences were not always noticeable, SVMs 
generally outperformed other classifiers. SVMs are known to perform well with high-dimensional 
numeric data. Hence, we mostly varied the pre-processors, vectorizers and SVM kernels across classifiers. 

Glass Transition (Tg) Model 
The model created to identify Tg mentions consists of six labeling functions. The first identifies 
keywords related to any mention of “glass transition” temperatures and their possible variants. The 
second labeling function is a simple check to remove any sentence with the acronym “TGA” rather than 
some form of “Tg” as they are not relevant for our models. The third labeling function is more 
complicated with various checks for any glass transition mention or related temperature.  Examples 
include regular expressions identifying any instance of a “Tg” mention, as well as combinations of “Tg” 
and temperature. The function is finalized by labeling anything which remains as “JUNK”, while 
abstaining from several patterns which may be indicative of a glass transition temperature. These include 
any sentence with a “Tg”, “glass” or “transitions” keyword or any sentence which includes both a 
number and degree symbol, “Tg”, “glass”, or “poly” keyword. The preprocessors used for the first three 

 
3 IUPAC: https://iupac.org/polymer-edu/what-are-polymers/ 
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labeling functions convert each sentence to lowercase and remove all punctuation with the exclusion of 
degree signs. The fourth labeling function is an additional check for any combination of a temperature 
and variation of “Tg”, while excluding “TGA”, which is a tool for thermogravimetric analysis. This 
function is meant to ensure any sentence which does not meet these requirements is designated as 
“JUNK”. The final two functions are a continuation of this strategy to verify that no instances of glass 
transition mentions were missed and that any sentence without a relevant keyword is avoided. The three 
final functions use preprocessors to convert text to lowercase and the final labeling function removes all 
numeric characters for easier identification of significant abbreviations.  For this model, we substituted 
the default discriminative model in Snorkel with a Support Vector Machine (SVM) classifier with an 
RBF kernel after experimenting with several classifiers and kernels. 

Temperature Model 
The temperature model is used to broadly identify any sentence with a number and degree sign. 
However, there are instances of overlap with the Tg model involved to lessen the number of positive 
cases: four labeling functions are used to identify any sentence with a temperature, while including 
constraints to specifically identify glass transition temperatures. Since the Snorkel model learns from 
overlap and differences in coverage from the labeling functions, these restrictions increase the 
confidence of classifying specific types of embedding. The first identifies the most apparent indicator 
for temperature through a keyword search for a degree sign (°, °C, °F) and common temperature scales. 
Kelvin is not included here as the degree symbol is not included in the notation. However, all three of 
the most common temperature scales will be accounted for in the following functions through regular 
expressions to identify temperatures, and often their association to a Tg mention. The first of these 
identifies general variations of “Tg” along with either a degree sign and “F” or “C”, or a single “K” with 
a leading whitespace as punctuation was removed. This function further identifies “Tg” mentions with 
any numbers which are not included in abbreviations or words. Finally, any number followed by space 
and degree sign, as well as relevant temperature scales is identified as a temperature. The final two 
functions are similar and repetitive with one dedicated to checking for a numerical character mention 
within each sentence, while the other will attempt to find any indication of a temperature or degree 
symbol. A single preprocessor was used for the first three to remove any punctuation that does not 
include a degree or equal sign as these are beneficial to identifying temperature. Here, we used a TF-IDF 
vectorization and an SVM model with an RBF kernel. 

Polymer Model 
The polymer model consists of five labeling functions, largely focused on identifying significant 
keywords and abbreviations relating to polymer names. The first three functions are keyword functions 
which identify various forms of polymer names or chains of polymers. These functions use 
preprocessors to make all text lowercase and check the use of parentheses in each sentence. This ensures 
there are no mismatched parentheses, and any additional whitespace is removed. The final labeling 
functions use regular expressions to identify polymer abbreviations and names respectively with certain 
overlap. There are many instances of polymer references which do not follow any standardized form; 
however, these abbreviations often begin with “P”, whereas polymer names can begin with “poly” or 
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“poly(”. These patterns are included in the regular expressions, while tolerating a certain level of 
deviation. The polymer model utilized TF-IDF vectorization and an SVM model with a polynomial 
kernel. 

4.5 Combination of models 
 The previously described models were developed to discover three principal entities in the target 
relation, or polymer-Tg pairs in scientific text. These include glass transition or Tg mentions, 
temperatures, and polymer names or abbreviations. Various methods of combining the output 
sentences from the models were considered. Our primary objective was efficient identification of 
relevant sentences containing the most valuable contextual detail as it relates to polymer discovery 
within scientific research. It could be expected that comparing the output labels of three separate models 
would result in a comprehensive list of sentences containing all relevant information (illustrated in 
Figure 3). The Tg and temperature models were originally combined into a single model as they are 
reasonably analogous and potentially repetitive. However, we ultimately discovered that separating the 
two models allowed for more precise results and fewer extraneous sentences. The results when applying 
only two models (Tg/temperature, and polymer model) were compared to those of the three-model 
framework, one for each entity (Tg, temperature, and polymer names). We purposefully prioritized 
recall over precision as extracting essential information was our primary consideration and anticipated 
that false positives allowed for more context extraction. We reframed the IE task as a scientific text 
summarization problem, rather than one purely for concise extraction of facts. Of course, this approach 
would also increase the overall number of sentences required for human review. 

 
Figure 3:  Three Model Ensemble System 
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5. Results & Discussion 
Predictably, the model findings varied for each entity, notably between polymer names and glass 
transition or temperature references. Polymer naming conventions are variable and often challenging to 
identify reliably while simultaneously avoiding false positives. Temperature and “Tg” mentions are more 
precise and consistent resulting in fewer overall erroneous sentences. Detecting relevant sentences to 
avoid omitting crucial information while minimizing the number of false positives is vital to this effort. 
However, as previously mentioned, extracting supplementary context on or surrounding the target 
relation is often valuable when summarizing polymer research. This allows for a human to quickly 
review and determine which sentences are relevant or meaningful to the application, including context 
information about the target scientific fact. 

5.1 Classification results 
In this Section we report on each of the models individually, as well as different combinations of models 
with the final results for each in Table I and Table II. The original ground truth labels for the Tg and 
temperature models included only sentences with both a temperature and glass transition mention 
which expectedly resulted in substantially low precision. We then used labels from a prior ensemble 
method (ELSIE [25]) to evaluate the individual Tg and temperature models against more general labels 
using general Tg and temperature labeling functions as opposed to only those contained in the extracted 
relations. 

Glass Transition (Tg) Model 
The glass transition model demonstrated an average recall of 89.68% with a precision of only 74.75% 
against ELSIE Tg labels, and while some of the false positives were unnecessary, many also provided 
details later determined to be useful (See Table I and Section C). This result is consistent and marginally 
higher than previous results using rule-based methods.  Indeed, previous work has shown that a rule-
based method to identify Tg alone achieved 88% precision and 71% recall [13]. Looking for “Tg =” for 
example will allow for high precision and retrieve many directly reported Tg’s. However, it will also likely 
miss some temperatures. In the same study, the precision and recall drastically decrease when matching 
the Tg to the correct polymer name (38% precision and 31% recall) [13] illustrating the difficulty in 
correctly identifying polymer names. When considering the more constraining original ground truth 
labels (only sentences containing both Tg and temperature), our model achieved nearly 97% recall at the 
cost of lower precision (21.1%) as shown in Table II. The glass transition model aimed to identify glass 
transition temperature with an emphasis on primarily including Tg mentions regardless of temperature 
where necessary. Many false positives are a direct result of this distinction. Another reason for the low 
precision is that there may be Tg and temperature mentions not related to an extracted pair in the limited 
ground truth. Finally, the low precision can also be attributed to the variability and scarcity of glass 
transition mentions, leading to increased difficulty and fewer examples to train the model. 
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Temperature Model 
The temperature model averaged a recall of 91.09% with a notably higher precision of 97.79% (See Table 
I). The labels used to calculate these metrics differ from the Tg model as identifying a temperature 
involves a broader range of data. While the temperature model still favors glass transition temperatures 
in particular, it does tolerate more exceptions than the Tg model. These labels were obtained from prior 
research [25] as well and allowed for more precise performance evaluation. As shown in Table II, when 
considering the more restrictive original ground truth labels, this model achieves an even higher recall 
than the Tg model at 98.7%. This model however has a notably lower precision of 11.1%, which is not 
surprising due to the greater prevalence of temperature in polymer related articles. The increased 
frequency and association of temperatures with variables other than glass transition (i.e., melting point) 
contribute to the lower precision, but the high recall is optimal in this case as omitting information is 
considerably more detrimental.  

Polymer Model 
The polymer model achieved a recall of 99.43% with few polymer references missed (See Figure 3). 
However, the precision was low at 29.32% and largely suffered due to the challenge of identifying 
complex polymer names and the scarcity of entities in text, while also avoiding similar chemical elements 
or acronyms. As previously mentioned, this was the case in previous studies resulting in additional 
crowdsourcing efforts to retrieve polymer names [13]. 

 Recall Precision F1-score Test Accuracy 

Glass Transition Model 
& Margin of Error 

89.68% ± 
1.37% 

74.75%  
± 2.15% 

0.81 
± 0.01 

99.16% 
± 0.08% 

Temperature Model 
& Margin of Error 

91.09% 
± 0.85% 

97.79% 
± 0.7% 

0.94 
± 0.005 

99.43% 
± 0.04% 

Polymer Model 
& Margin of Error 

99.43% 
± 0.17% 

29.32% 
± 0.38% 

0.45 
± 0.005 

60.68% 
± 0.32% 

Table 1: Individual model results using ELSIE Tg & temperature labels (average of 30 trials) 

 Recall Precision F1-score Test Accuracy 

Glass Transition Model 
& Margin of Error 

96.89% 
± 1.71% 

21.12% 
± 1.39% 

0.34 
± 0.02 

98.06% 
± 0.1% 

Temperature Model 
& Margin of Error 

98.66% 
± 1.29% 

11.07% 
± 0.95% 

0.2 
± 0.015 

95.72% 
± 0.14% 

Table 2: Tg and temperature model results using Tg/Temp ground truth (average of 30 trials) 
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5.2 Combining models 
Once each sentence is determined to contain a reference to glass transition, temperature, or polymer 
name, the final labels for all three are compared to determine the overlap, that is, any sentence which 
contains all three entities. Theoretically, this should provide a succinct summary of the text containing 
all sentences with the pertinent information. Here, we discuss the overall results of combining the model 
output and the text summarization application of this combination. 

The following results shown in Table III and IV below are achieved through the comparison of all three 
entity models. Due to the combination of output for three models and to account for variability in 
results, we show the aggregated results of 30 trials. The sentences identified include those which were 
simultaneously predicted by the glass transition model, polymer model, and temperature in our test set, 
which resulted in 94.7% recall and 58.9% precision on average over 30 trials. This includes fewer than 
three false negatives out of 10,000 total sentences, meaning at most, only three relevant sentences from 
~33 scientific papers were missed. The number of false positives is considerably higher with an average 
of 28 total sentences of 10,000; however, many of these false positives were deemed contextually 
valuable. The total sentences returned, including true positive and false positive consist of ~68 of 10,000 
total. The summarization therefore reduces the text by 99.3%. 

 Throughout testing, we noticed the Tg and temperature models alone demonstrated a comparable 
performance to the final model association. This is not surprising as the polymer model had significantly 
lower precision. The recall when using only the temperature and Tg models was ~98% up from ~95% 
when including the polymer labels, with a slightly lower precision at ~55% down from ~59%. This 
outcome is valuable as it allows for the inclusion of crucial sentences which were previously missed 
within the initial label comparison due to the polymer model. Using the labels for Tg and temperature 
demonstrated one false negative on average out of 10,000 total sentences (or 33 published articles) with 
only 5–6 additional false positives from the prior results. Due to the potential consequences of these 
false negatives (missed information), and our priority to ensure valuable information is seldomly missed, 
these results are significant. 

 Out of 10,000 Sentences 

 Recall Precision FN FP Total 
Sentences 

% 
Reduction 

Tg & Temp Model  
& Margin of Error 

97.76% 
± 1.5% 

54.94% 
± 3.5% 

1.08 
± 0.94 

33.72 
± 3.63 

74.98 
± 7.14 

99.25% 
± 0.07% 

Tg Temp & Poly Model 
& Margin of Error 

94.71% 
± 2.1% 

58.93% 
± 3.5% 

2.46 
± 0.71 

28.02 
± 3.39 

67.90 
± 7.15 

99.32% 
± 0.07% 

Table 3: Final label results determined by relation of individual model labels (average of 30 trials). 
Two model ensemble (Tg & Temp) vs. three model ensemble (Tg, Temp, & Poly) 
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5.3 Discussion of Errors and Text Summarization 
Text summarization of research publications in specialized domains is often challenging and commonly 
involves errors which are unavoidable. However, this ultimately allows room for interpretation as the 
importance of each sentence can vary depending upon the intended use. Our primary goal within 
materials research is to summarize each article through the extraction of information related to polymers 
and their corresponding glass transition temperatures. These instances are relatively infrequent but 
immensely valuable, therefore several combinations of models and their results were explored. 

5.3.1 Error Analysis 

In this section we discuss the classification errors through the lens of text summarization. We aim to 
demonstrate that while the combination of models lack precision, this method retrieves the most 
valuable information while providing context related to the target. The false negatives include sentences 
which have been overlooked by the models and are demonstrated by the two trials in Figure 4 & 5. The 
two false negatives between these two trials represent the only sentences missed throughout the total 30 
trials. The first (in Figure 6) is largely due to the absence of a temperature or Tg mention as the sentence 
contains a polymer name and abbreviation, while the associated details are located within the sentence 
following. 

 
Figure 4:  Single trial error output (one False Negative and five False Positives) 

The false negative sentence was correctly labeled by the polymer model but without additional 
components of the relation, the final label was not achieved. The following single trial example (Figure 
7) demonstrates a similar instance where a temperature and Tg are mentioned but there is no indication 
of a polymer. The false positives within these two trials are all sentences we would consider to be valuable 
contextual information. Each contains a reference a glass transition temperature and while polymer is 
not always included, this further supports a tolerance and selectiveness of errors. The false negatives 
between these two (Figures 6 & 7)  indicate the only two missed sentences throughout the 30 total trials.  



17 
 

 
Figure 5:  Single trial error output (one False Negative and four False Positives 

Figure 6 illustrates further examples of context considered to be valuable. Note that in these false 
positives, the model presumably identified all three entities even when mistakenly labeling a chemical as 
a polymer or a standard name like “polymer” as a polymer name. We propose that these false positives 
spread out through documents contain important information as to the polymer and/or the glass 
transition of materials that experts may be scanning for in publications. The first sentence does not 
contain a precise Tg but identifies the method by which it was measured. Regarding the second instance, 
Tg’s are generally discussed in the paper pointing to the type of polymers synthesized, rather than 
mentioning an exact Tg. Once again, it also mentions the method of measurement. The third does in 
fact mention a Tg precisely, however, DSC is not a polymer acronym but stands for “differential 
scanning calorimetry” which is yet another technique used to measure polymer properties. The fourth 
and fifth instance are similar examples where Tg was included but a distinct polymer was not mentioned. 
While this qualitatively supports our hypothesis, we can present these results to experts to determine 
their relevancy (including whether the context information is valuable) and re-evaluate precision. 

 
Figure 6:  Additional valuable False Positives 
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5.3.2 Alternate Combination of Models 

Through testing various combinations of the ensemble, we discovered that the Tg and temperature 
models alone proved capable of detecting the most valuable sentences while maintaining a comparable 
precision to the original three models. While this led to additional false positives, many were often 
deemed beneficial as valuable information may not have a direct polymer reference. One instance 
concerns the first false negative case discussed previously (identified in Figure 4). This sentence remained 
undetected by the three-model ensemble due to the lack of a polymer name or reference. The potential 
benefit of excluding the polymer model to include these sentences is exemplified in the results of Table 
III and IV. However, the polymer model can still provide valuable insight when extracting context and 
removing redundant information in the final text summarization. After labeling all sentences which 
contain both a temperature and Tg mention, we found extracting the surrounding sentences (two on 
either side) and checking each for a polymer name improved the summarization and helped achieve 
100% recall. Further, if no clear polymer reference was found in the original sentence or those in close 
proximity, we determined the sentence can reasonably be removed from the final summarization 
altogether as it does not contain a polymer-Tg pair  

To illustrate this strategy, we use the Tg and temperature models as mentioned previously, and extract 
final labels from their association (where both agree). Those sentences along with the two immediately 
preceding and following each sentence are then checked for a polymer label using the polymer model. 
If any of these sentences are labeled as containing a polymer name or abbreviation, they are then added 
to the text summarization. However, if none of these sentences or the original contain a polymer 
reference, the original sentence is removed from the final data. It is important to note however, that 
these sentences could not be shuffled as in the previous trials due to the need for sentences to maintain 
their original sequence. Documenting sentence indices will be necessary in future work to reconstruct 
an ordered summary and demonstrates a realistic example of intended use in. Three examples of single 
document summarizations have been included below to further demonstrate the benefit of prioritizing 
glass transition and temperature, while subsequently using the polymer model to provide context. The 
green highlighted portion represents the sentences initially identified by the glass transition and 
temperature models which are considered gold standard (or true positives as they contain a polymer 
reference), while the blue highlighted portion denotes those sentences labeled by the Tg and temperature 
models (considered false positives as they do not contain a polymer reference). All additional 
nonhighlighted text includes adjacent sentences retroactively identified by the polymer model (as each 
contains an appropriate abbreviation, name or polymer reference).  
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Figure 7: Paper summarization (Doc ID ma061215h) 

 
Figure 8: Paper summarization (Doc ID ma061554a) 

The added detail and inclusion of referenced figures in text summarization (as seen in Figure 7 & 8) 
allows for the intended user to access details which may be crucial to their research. Theoretically, this 
information would be extracted and catalogued per document with the ability to view the originally 
identified sentences or added context dependent upon the application. The below text summarization 
(Figure 9) includes previously mentioned false negatives where the entities were split between more than 
one sentence and was consequently overlooked by the initial model ensemble. With the adjusted 
methodology, the sentence is correctly identified by the Tg and temperature model and checking the 
surrounding sentences for polymers returns additional context and our approach achieves 100% recall 
for this trial. In previous ensemble trials, the single highlighted sentence was identified but not the first 
which contains the relevant polymer name. 

 
Figure 9: Paper summarization (Doc ID ma061733s) 
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The text summarization is potentially instrumental to materials scientists through the considerable 
reduction of reading time to label or confirm automatic labeling of entities. The average article length 
from the 36 used in this research is 300 sentences, illustrating the benefit of this reduction to fewer than 
10 sentences on average, or  more than 96.67% text reduction (Figures 7, 8, & 9). The information which 
is vital to experts is readily available along with any desired context. 

5.4 Limitations  
Several limitations exist within text summarization, particularly as it relates to summarizing technical 
research publications. The benefit to Snorkel includes the ability to produce highly accurate 
probabilistic labels using efficient modeling techniques which still allow the user to develop complex 
and specific labeling functions. Leveraging weak supervision allows for the avoidance of extensive hand 
labeled training data, which can be costly and time consuming [15]. While these models are comparable 
to the quality provided by substantial hand labeled training data, the tradeoff for increased level of 
efficiency is often a greater opportunity for errors. However, this compromise is tolerable due to the 
substantially reduced cost of data and virtually 100% recall.   
 
The models additionally demonstrate lower precision with several false positives, which can often be 
attributed to the wide variance of polymer names and technical jargon. While many of these false 
positives were deemed useful and provide supplementary detail, some are considered unnecessary and 
frequently redundant (as seen in Figure 10). Examples include instances where a temperature may be 
mentioned but shares no relation to a glass transition or polymer. Various erroneous cases contain the 
word “transition”, a temperature and/or acronym which are easily mistaken for polymer references. The 
probable cause of these errors are emphasized in bold for each case in Figure 10. Each sentence will 
contain similar features to entities we aim to identify; hence, further efforts to improve precision remain 
imperative. 

 

 
Figure 10: Superfluous False Positives 
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5.5 Future Work  
In future work, we will combine our work with the results from ELSIE-Blob, we expect that overlapping 
our sentences with sentences extracted using ELSIE-Blob will reduce the false positive and only keep 
context information that is “close” to sentences and/or blobs containing facts (ELSIE-Blob also 
achieved 100% recall, with 74% precision, while reducing the text to 6%). Using both systems 
concurrently can help increase confidence in sentences containing facts and detecting sentences 
containing context. Comparable to other works, our ultimate goal remains to build a hybrid human-
machine pipeline which drastically summarizes and reduces text that subsequently must be processed 
by machines and/or humans [28, 29, 40, 41]. The context information, such as the method of 
measurement illustrated in our false positives demonstrates that some information cannot be reliably 
extracted by machine with minimal oversight. However, an expert can efficiently extract this 
information when presented with text localization and summarizing the target information. Other 
improvements may be achieved by experimenting with different vectorizers (e.g., Word2Vec or 
FastText) [42, 43], as well as different classification models and/or kernels for the SVM classifiers. While 
SVMs expectedly outperform basic models such as linear regression, we can experiment with neural 
network classifiers. We additionally plan to populate an accessible tool or database for materials 
scientists to readily summarize and identify key information in numerous polymer related publications. 
This would require exploring methods to subsequently label facts within relevant sentences (e.g., 
identifying important features/words). As demonstrated in Figures 7, 8, and 9, the potential to provide 
further surrounding context in addition to sentences originally labeled by the ensemble method may 
prove vital in certain applications. While experts may only expect the explicit polymer name and glass 
transition metrics, others could require greater detail and further references within each publication. In 
this instance, several scientific facts are automatically extracted, however, supporting contextual 
information may require manual extraction.  Finally, we envision conducting a similar study for melting 
points and various other details to retrieve a comprehensive summary of polymers and their properties. 

6. Conclusion 
In this work, we define text summarization in the context of scientific information extraction. Three 
weakly supervised models were combined to determine which sentences contain significant scientific 
facts. In this case, our focus primarily concerns polymer references, temperatures, and glass transition 
mentions. Each model is trained on a set of approximate rules describing a single entity and evaluated 
through predicting whether a sentence contains the relevant entity; finally, any sentence predicted or 
“flagged” by all three models is extracted. This weakly supervised ensemble of models was evaluated 
through comparison of the extracted sentences to sentences that contain entities previously extracted by 
humans. We achieve 94.7% recall (i.e., sentences that contain relations annotated by humans), while 
reducing the text by 99.3% of the original documents. While precision is lower (58.93%), we 
demonstrate the importance of retrieving additional context for scientific data to be subsequently 
labeled and extracted by machines and/or humans. We propose that our system is a prerequisite to 1) 
generating balanced and reduced training data for advanced NLP models, 2) distinguishing between 
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data that is to be extracted by machines and that is to be reviewed by humans for context information, 
before finally performing the extraction. We implemented a method which prioritized the results of the 
Tg and temperature models and examined nearby sentences for polymer references which may have been 
excluded originally. This procedure achieved 100% recall as properties previously missed due to 
information spanning multiple sentences were now accounted for; emphasizing the importance of 
recognizing both precise entities as well as supplementary detail. This in turn supports our hypothesis 
that polymer relations and their surrounding context (associated polymer names, temperatures, 
methods of measurement, etc.) can be identified through the intersection of individual model labels. 
Further, a single publication can be reduced to include only the most valuable sentences relating to the 
polymer entities defined in each model. We intend to further explore the generalizability of these 
methods among other polymer properties as well as broader scientific relations. 
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