
DePaul University DePaul University 

Digital Commons@DePaul Digital Commons@DePaul 

College of Computing and Digital Media 
Dissertations Jarvis College of Computing and Digital Media 

Winter 11-15-2019 

Information extraction from primary care visits to support patient-Information extraction from primary care visits to support patient-

provider interactions provider interactions 

Daniel Baruch Gutstein 
DePaul University, dgustei@depaul.edu 

Follow this and additional works at: https://via.library.depaul.edu/cdm_etd 

 Part of the Biomedical Engineering and Bioengineering Commons, and the Data Science Commons 

Recommended Citation Recommended Citation 
Gutstein, Daniel Baruch, "Information extraction from primary care visits to support patient-provider 
interactions" (2019). College of Computing and Digital Media Dissertations. 26. 
https://via.library.depaul.edu/cdm_etd/26 

This Thesis is brought to you for free and open access by the Jarvis College of Computing and Digital Media at 
Digital Commons@DePaul. It has been accepted for inclusion in College of Computing and Digital Media 
Dissertations by an authorized administrator of Digital Commons@DePaul. For more information, please contact 
digitalservices@depaul.edu. 

https://via.library.depaul.edu/
https://via.library.depaul.edu/cdm_etd
https://via.library.depaul.edu/cdm_etd
https://via.library.depaul.edu/cdm
https://via.library.depaul.edu/cdm_etd?utm_source=via.library.depaul.edu%2Fcdm_etd%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/229?utm_source=via.library.depaul.edu%2Fcdm_etd%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=via.library.depaul.edu%2Fcdm_etd%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://via.library.depaul.edu/cdm_etd/26?utm_source=via.library.depaul.edu%2Fcdm_etd%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalservices@depaul.edu


Information Extraction from Primary 
Care Visits to Support Patient-Provider 

Interactions 

 

Daniel Gutstein 

Master in Data Science Program 

DePaul University 

 

November 15, 2019 

 

 

 



Information Extraction from Primary Care Visits to Support Patient-Provider interactions 

 

Master Thesis, College of Computing and Digital Media, DePaul University   2 

 

 

DePaul University 

College of Computing and Digital Media 

  

MS Thesis Verification 
 

This thesis has been read and approved by the thesis committee below according to the 

requirements of the School of Computing graduate program and DePaul University. 

Name: Daniel Gutstein  

Title of dissertation:  

INFORMATION EXTRACTION FROM PRIMARY CARE VISITS TO SUPPORT PATIENT-PROVIDER 

INTERACTIONS 

Date of Dissertation Defense:  November 15, 2019 

 

Advisor*  

Dr. Daniela Raicu  

1st Reader 

Dr. Daniela Raicu  

2nd Reader 

Dr. Jacob Furst  

3rd Reader 

Dr. Enid Montague  

* A copy of this form has been signed, but may only be viewed after submission and approval of 

FERPA request letter. 



Information Extraction from Primary Care Visits to Support Patient-Provider interactions 

 

Master Thesis, College of Computing and Digital Media, DePaul University   3 

 

 

Contents 

Abstract........................................................................................................................... 5 

Chapter 1: Introduction .................................................................................................. 7 

Chapter 2: Data ............................................................................................................. 12 

2.1. Video Data ........................................................................................................ 12 

2.2. Manual Annotations of Human Behavior: Gaze ................................................ 14 

2.3. Manual Annotations of Human Behavior: Speaking ......................................... 19 

Chapter 3: Phase I. Interaction Classification using Thresholding Approaches 

for Feature Extraction ............................................................................................... 25 

3.1. Phase I. Physician Hands Thresholding-based Segmentation ......................... 25 

3.2. Phase I. Physician Torso Thresholding-based Segmentation .......................... 26 

3.3. Phase I Extracted Features .............................................................................. 26 

3.4. Phase I. Segmentation Validation..................................................................... 28 

3.5. Phase I. Classification of Physician Gaze ........................................................ 30 

3.6. Phase I Stage I. Decision Tree and AdaBoost Classification of 

Accurately Segmented Frames .................................................................................. 30 

3.7. Phase I Stage II. Markov Chains on Inaccurately Segmented Frames to 

fill in Missing Values ................................................................................................... 31 

3.8. Phase I. Results and Analysis .......................................................................... 33 

3.9. Phase I. Conclusions ........................................................................................ 36 

Chapter 4: Phase II. Interaction Classification using Body Positioning and 

Optical Flow Approaches for Feature Extraction ..................................................... 37 

4.1. Phase II. Optical Flow ....................................................................................... 37 



Information Extraction from Primary Care Visits to Support Patient-Provider interactions 

 

Master Thesis, College of Computing and Digital Media, DePaul University   4 

 

 

4.2. Phase II. YOLO: Human Boundary Boxes ........................................................ 39 

4.3. Phase II. YOLO/Optical Flow based Classification ........................................... 42 

4.4. Phase II. Results and Analysis ......................................................................... 44 

4.5. Phase II. Conclusions ....................................................................................... 45 

Chapter 5: Phase III. Interaction Classification using Improved Audio Features 

and Improved Phase II Processes ............................................................................. 47 

5.1.. Phase III. Annotation and Data Gathering ........................................................ 47 

5.2.. Phase III. Feature Extraction ............................................................................ 49 

5.3.. Phase III. Validation Data ................................................................................. 51 

5.4.. Phase III. Classification .................................................................................... 52 

5.5.. Phase III Results and Analysis ......................................................................... 54 

Chapter 6: Discussion ................................................................................................... 57 

Chapter 7: Conclusions and Future Work .................................................................... 60 

Acknowledgement ........................................................................................................ 62 

References .................................................................................................................... 63 

 

  



Information Extraction from Primary Care Visits to Support Patient-Provider interactions 

 

Master Thesis, College of Computing and Digital Media, DePaul University   5 

 

 

Abstract 

Electronic health record systems usage in clinical settings has affected the dynamic between 

clinicians and patients, notably physician morale and the quality of care patients receive. Recent 

research correlates physician burnout and negative physician attitudes with use of electronic health 

record systems. Understanding the relationship between electronic health record usage, physician 

burnout, and patient care first requires the analysis of patient-provider interactions within the 

context of verbal features such as turn-taking and nonverbal features such as eye contact. While 

previous works have sought to annotate nonverbal and verbal features via manual coding 

techniques and then analyze their impacts, we seek to automate the process of annotation to create 

a faster, more robust analytical system. This research focuses upon physician gaze and speaking 

annotations because nonverbal and verbal components of the interaction can be connected to eye 

contact and turn-taking – key features that have been linked in certain research to patient outcomes. 

Previously published work from within this project has demonstrated the viability of extracting 

image features in the form of YOLO-based person positioning coordinates and optical flow summary 

statistics to inform the learning of physician gaze for two physicians and six patients with over 80% 

minimum accuracy. This thesis expands upon the previous findings by increasing the number of 

patients and physicians in the analysis, diversifying the classifiers to be more robust to new data, 

and incorporating automatically extracted audio information in the form of mel frequency cepstral 

coefficients and its derivatives in addition to bounding box coordinates and optical flow summary 

statistics so as to enable predictions regarding physician gaze and speaking annotations on a frame 
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by frame basis. We thus illustrate a process of developing and implementing an automated system 

for multiple video labeling of physician-patient interactions. This enables us to demonstrate that a 

combination of audio and visual features can inform the predictions of physician gaze and speaking 

annotations in both testing and sequential validation data. While our approach focuses upon 

learning physician gaze and speaking annotations, the methodologies introduced can be extended 

to capture other aspects of the interaction as well as connect these interactions to patient ratings of 

clinical interactions, physician use of electronic health record systems, and measures of physician 

burnout. Ultimately, the approaches presented in this paper can aid the creation of an interactive 

system providing instantaneous feedback to providers during clinician visits with the intention of 

improving clinical care and patient outcomes while simultaneously reducing instances of physician 

burnout. 
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Chapter 1: Introduction 

The proliferation of electronic health record (EHR) systems in clinical settings has affected 

the dynamic between clinicians and patients [1] and has been linked to both physician morale [2] 

and the quality of care patients receive [1]. Research findings have shown that EHR usage can 

facilitate the flow of accessible and accurate information to patients and physicians, improve 

decision-making and medication management, and lead to overall improvements in health-care 

quality [1]. However, the presence of the EHR in the room can also influence cognitive functioning 

[3] and alter the ability of the physician and patient to communicate on an emotional level [1]. The 

finding by Melnick et al. [2] correlating physician dissatisfaction with EHR use and physician 

burnout also highlights further problems indirectly caused by unsatisfactory EHR use, such as 

suboptimal patient care practices as well as increased instances of medical error and malpractice 

[4]. Increased instances of physician burnout, in conjunction with the technological upending of the 

clinical interaction represented by the extent of EHR use, has consequently accentuated the need 

for a robust understanding of patient-provider interactions and how such interactions can be 

related to EHR use, physician burnout, and provider care.  

A significant body of research analyzing physician behavior has relied upon a manually 

intensive process in which human coders have rated and/or annotated live interactions, video 

recordings, and audio clips of interactions according to prescribed methodologies [5]. Researchers 

have also used simulated sessions to evaluate physician engagement [6]. The focus of our research 

in this thesis includes physician-patient interactions which can be categorized as containing verbal 
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and nonverbal elements [5, 7]. According to the Roter Interaction Analysis System [8] – a medical 

dialogue coding methodology – verbal characteristics include socioemotional exchange, turn-

taking, task-focused exchange, tone, and affect. Nonverbal characteristics include eye contact, 

posture, body language, social touch, and facial emotional expression.  

1.1. Verbal Interactions 

Beck et al. [5] reviewed 14 verbal interaction studies and found negative patient outcomes – 

including poorer long-term health, nonadherence, and dissatisfaction – to be correlated with a 

number of physician verbal behaviors: one-way information flow, antagonistic behavior, 

nervousness, irritation, extensive feedback in the final phase of a visit, directedness, anxiety, 

expression of opinions during physical examination, dominance, and interruptions. Eide et al. [9] 

found that informal talk during the history taking phase (rapport development/data gathering) of 

the interaction was associated with higher patient satisfaction ratings. The authors also identified a 

trend of patient dissatisfaction when physicians communicated in a psychosocial manner (e.g. 

providing reassurance of general progress) during the physical examination.  

Voice characteristics (pitch, loudness, tempo, and modulation) have been explored in several 

studies. Little and White [10] considered 275 videotaped consultations from 25 general practice 

physicians. The results of their regression indicated that among other characteristics, tone of 

speech, physical contact, and gestures (such as head movement) have statistically significant 

impacts upon patient ratings of satisfaction. Ishikawa et al. [11] found that the physician’s ability to 

match the verbal speed and volume of simulated patients was correlated with patient evaluation 
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scores. Haskard et al. [12] applied a content filtering procedure to recordings of the physician in 

interaction. The filtering procedure removed high and low frequencies so that words were not 

understandable but retained elements of vocal tone, including tempo, rhythm, volume, and voice 

quality. Coders applied ratings of vocal tone on a 1–9 scale. When the researchers applied principal 

component analysis with varimax rotation to the independent variables in the analysis, they found 

a correlation between vocal tone and patient satisfaction, health status, and adherence to treatment.  

1.2. Nonverbal Interactions 

According to Mast & Cousin [7], nonverbal exchanges contain three components: facial 

expression (e.g. eyebrow raising, gazing, and smiling), body posture (e.g. positioning of arms and 

legs), and hand gesturing (e.g. scratching, thumbs up, hand clenching). Beck et al. [5] observed that 

positive patient outcomes are associated with less mutual gaze, physician arm symmetry, body 

orientation, and uncrossed legs and arms. Bensing et al. [13] established that general practitioners 

with higher levels of patient-directed gaze proved to be more adept at identifying signs of patient 

emotional distress. Gorawara-Bhat et al. [14] focused upon elderly patients in a study comparing 

clinical exchanges with high levels versus low levels of eye-contact and clinical exchanges. Their 

research found minimal changes in patient understanding and adherence between divergent eye-

contact scenarios. Ishikawa et al. [11] analyzed 89 video recordings of physician-simulated 

interactions by post-clerkship medical students to assess the connection between specific physician 

non-verbal behaviors such as eye contact, head movement, and body lean with patient evaluations 

of interactions. Their findings showed correlations between positive patient ratings and clinicians 
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facing the patient directly, limiting unnecessary movements, nodding when listening, gazing at the 

patient equally when speaking and listening, matching the verbal speed and volume of the patient, 

and modulating vocal tone and intonation.  

1.3. Automatic Labeling: Verbal and Nonverbal Interactions 

The practice of relying upon manual rating systems to analyze clinical interactions is time-

consuming, labor intensive, context dependent, and highly subjective to the biases of raters [6, 7, 

15]. Conflicting findings and the lack of consensus regarding what to measure also make it difficult 

to quantify and generalize the relationships between physician behaviors and patient outcomes 

such as satisfaction, understanding, and adherence [5]. An effective automated system that can 

quickly ascertain interaction features and contextual factors may provide more consistent and 

instructive measures of physician performance.  

Recent advances in human activity recognition indicate that it is possible to recognize human 

interaction behavior via automated processes [16, 17]. Hart et al. [6] used staged medical 

interactions to analyze simulated clinical interactions (i.e. the actor portraying the medical 

practitioner would alternate between playing the part of an engaged physician and of a 

disconnected physician) and measured the kinetic energy outputted across two regions of interest 

(provider and patient) in the image data. The results showed that an increased level of motion 

synchrony and energy followership between the ‘practitioner’ and ‘patient’ correspond to the 

physician’s staged active engagement with the patient.  



Information Extraction from Primary Care Visits to Support Patient-Provider interactions 

 

Master Thesis, College of Computing and Digital Media, DePaul University   11 

 

 

Hart’s work provides the impetus for our research hypothesis, namely that automatically 

extracted visual and audio cues from medical data – such as torso positioning, pixel velocity 

measurement,  and audio pitch descriptors – can be used to predict the level of interaction between 

physician and patient, specifically annotations regarding physician gaze and speaking. We propose 

to automatically extract audio and visual features in the context of naturalistic, non-simulated 

interactions, with the goal of objectively and efficiently labeling video data with verbal and 

nonverbal annotations (characteristics) of patient-physician interactions. While in this work we 

focus on the verbal characteristics of speech recognition and the nonverbal characteristics of 

physician gaze, the presented methodologies can be extended to capture other interaction 

parameters, such as turn-taking and eye-contact, which certain research has shown to impact 

patient perceptions of physician performance. The accurate extraction of these parameters can 

facilitate a better understanding of the performance influence of EHR usage and its subsequent 

impact upon physician burnout and patient care. Our work also represents the first step toward the 

creation of an automated system that employs computer vision and machine learning algorithms to 

provide interactive feedback systems for primary care physicians. The end goal of this interactive 

feedback system will be to improve the efficacy of patient-provider clinical interactions within the 

context of EHR usage to reduce physician burnout and improve patient care. 
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Chapter 2: Data 

There were 10 primary care physicians and 101 patients participating in the study, which 

was conducted through the University of Wisconsin-Madison at five primary care clinics in 2011 

[18]. Every patient filled out a consent form authorizing participation in the study and videotaping 

of his or her live physician visit. Also, all patients completed questionnaires pertaining to health, 

demographics, and their attitudes toward physicians and hospitals. Physicians in the study 

provided basic information pertaining to their experiences with technology [19]. For example, 

physicians were asked whether the usage of computers interferes with relationships with patients. 

There was no set length for the videotaped interactions, which covered a gamut of health issues and 

were annotated by encoders after the interaction. The videos themselves and the annotations made 

by manual coders were the inputs for our analysis.  

2.1. Video Data 

The 101 clinical interactions were highly inter-dynamic, meaning that settings from one 

interaction to another – in the form of factors such as lighting, camera placement, and number of 

people – fluctuated. For each clinical interaction, three video cameras – one lens centered upon the 

patient’s chair (encoded as Patient-Centered), one wide-view lens (encoded as Wide-frame), and 

one lens focused upon the physician’s face (encoded as Physician-Centered) – temporally captured 

the visual components of each interaction at a frame rate of 29.97 frames per second. The videos 

were saved as MOD files. Figure 1 depicts a scene from a single interaction. The Multi-Channel frame 
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is a collection of the Patient-Centered, Wide-frame, and Physician-Centered frames capturing a 

given moment in time. 

 

Figure 1. Interaction Video data: Examples of Patient-Centered, Doctor-Centered, Wide-Frame, and Multi-Channel 
Videos 

In order to work with the highest resolution videos, simplify the analysis, and focus upon 

those videos which recorded the most frames with facial and body movement, the work in this 

thesis is focused upon extracting data using sequential frames from the raw versions of the Patient-

Centered and Physician-Centered videos. However, because the raw versions of the Patient-

Centered and Physician-Centered videos were not perfectly aligned with one another, we used Avid 

Media Composer [20] to align the videos and output frames in a designated sequence of interest for 
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each video. The process of aligning the Patient-Centered and Physician-Centered videos for analysis 

involved:  

• Converting the mod video files into mp4 video files 

• Loading the mp4 video files into Avid Media Composer 

• Using corresponding motion and/or speech in Patient-Centered and Physician-Centered 

frames to perform alignment 

• Outputting aligned sequences as a sequence of jpeg files. 

The typical clinical environment included chairs, a computer, and a desk. The sequence of 

chosen frames consisted of a single physician and a single patient, with the physician assumed to be 

situated to the left of the patient in the scene space of the Patient-Centered videos. We focused our 

analysis on the consecutive frames during each interaction in which the patient was present in the 

Patient-Centered videos and the physician was present in the Physician-Centered videos. We 

required that the physician be present near his or her desk throughout the chosen sequence to be 

able to relate the analysis to the human-technology interactions.  

2.2. Manual Annotations of Human Behavior: Gaze 

Manual annotations encoding physician and patient gaze were obtained using the Noldus 

Observer XT software [21]. For the entire duration of the 101 interactions, manual annotators 

provided information regarding the start and stop times for the objects of physician gaze and 

patient gaze. The annotators also recorded whether the physician was communicating, typing, 
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and/or writing. Figure 2 depicts a screenshot of annotations from an interaction. Figure 3 presents 

a visual display summarizing annotations from the same interaction.  

 

Figure 2. Annotations 

 

Figure 3. Annotation Visualization 

The annotations for gaze provided by annotators contained start and stop times based upon 

the minutes and seconds of the chosen interactions. However, the computer vision and machine 
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learning algorithms were intended to predict the object of physician gaze on a consecutive frame-

to-frame basis. Therefore, the discrete formulations of start and stop times for physician gaze 

needed to be transformed into continuous representations of the labels. This transformation was 

performed according to the following process, which is depicted in Figure 4:  

▪ Exported Observer XT file into Excel file 

▪ For each recorded start time of physician gaze, transformed the time encoding from 

seconds into frames by multiplying the seconds by 29.97 (equivalent to frame rate).  

This new number was then rounded to the nearest whole number, which represents a 

frame in an interaction. 

▪ The discrete space between two start times, A and B, was filled with the physician gaze 

label from start time A. 
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Figure 4. Flowchart for Converting Original Physician Gaze (P.G) Time Annotations into Frame # Annotations  

Because the original seconds based annotations were aligned with the Multi-Channel video 

and not with the raw videos which formed the video data in this analysis, the annotations and videos 

needed to be manually aligned by comparing annotations with the actual behavior of the physician 

in the interaction. For the desired sequence of interest in each interaction, an additional human 

annotator confirmed the frame labels for physician gaze after annotations were mapped to frames. 

If the physician was deemed to be looking at the patient in a frame, that frame was given the label 

Patient. If the physician was deemed to not be looking at the patient in a frame, that frame was 

provided the label Other. Physician gaze annotations were used as class labels for Phases I, II, and 
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III of the analysis. Information regarding the distribution of annotations per interaction is listed in 

Tables 1–4. 

Table 1. Phase I and Phase II: Manual Labels for Physician Gaze 

 Physician 1 Physician 2 

Label Interaction 1 
(D1_P1) 

Interaction 2 
(D1_P2) 

Interaction  
59 (D1_P3) 

Interaction 
65 (D2_P4) 

Interaction 
68 (D2_P5) 

Interaction 
71 (D2_P6) 

Patient 4,473 (42%) 4,759 (44%) 4,405 (41%) 2,488 (23%) 6,416 (60%) 2,509 (23%) 

Other 6,272 (58%) 5,986 (56%) 6,340 (59%) 8,257 (77%) 4,329 (40%) 8,236 (77%) 

Total 10,745 10,745 10,745 10,745 10,745 10,745 

 

Table 2. Phase III: Physician 1 (6 Interactions) Manual Labels for Physician Gaze 

 Physician 1 (6 Interactions) 

Label Interaction 
1 

Interaction 
2 

Interaction 
59 

Interaction 
66 

Interaction 
67 

Interaction 
90 

Total 

Patient 4,473 4,788 4,424 6,834 6,911 5,087 32,517 

Other  6,297 5,982 6,346 3,936 3,859 5,683 32,103 

Total 10,770 10,770 10,770 10,770 10,770 10,770 64,620 

 

Table 3. Phase III: Physician 2 (6 Interactions) Manual Labels for Physician Gaze 

Label Interaction 
60 

Interaction 
63 

Interaction 
64 

Interaction 
65 

Interaction 
68 

Interaction 
75 

Total 

Patient 4,291 7,546 5,574 2,488 6,453 3,449 29,801 

Other 6,479 3,224 5,196 8,282 4,317 7,321 34,819 

Total 10,770 10,770 10,770 10,770 10,770 10,770 64,620 
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Table 4. Phase III: Physician 3 (5 Interactions) Manual Labels for Physician Gaze 

Label Interaction 
77 

Interaction 
78 

Interaction 
84 

Interaction 
98 

Interaction 
101 

Total 

Patient 5,811 8,045 4,864 5,886 6,461 31,067 

Other 4,959 2,725 5,906 4,884 4,309 22,783 

Total 10,770 10,770 10,770 10,770 10,770 53,850 

 

2.3. Manual Annotations of Human Behavior: Speaking 

Manual annotations encoding speech were obtained using the BORIS [22] software. The 

BORIS files were converted into files compatible with Noldus Observer XT software [21]. Manual 

annotators provided information regarding start and stop times for speakers. A visualization 

summarizing speaking annotations from a specified time period for a single interaction is shown in 

Figure 5. A screenshot of annotations from the same interaction is shown in Figure 6.  

 

Figure 5. Visualization of Speaking Annotations 
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Figure 6. Speaking Annotations 

The annotations for speaking provided by annotators contained start and stop times based 

upon the minutes and seconds of the interaction. Discrete formulations of start and stop times were 

transformed into continuous representations of these labels. This transformation was performed 

according to the following process: 

• Exported Observer XT file into Excel file 

• For each recorded start time and stop time of speaking annotation, transformed the time 

encoding from seconds into frames by multiplying the seconds encoding by 29.97 

(equivalent to frame rate). This new number was rounded to the nearest whole number, 

which is representative of a frame in an interaction. 
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• The discrete space between two start times, A and B, was filled with the speaking label 

from start time A.  

• Four possible values for each frame 

o Only Patient speaking, labeled Patient 

o Only Physician speaking, labeled Physician 

o Both Patient and Physician speaking, labeled Both 

o Neither Patient nor Physician speaking, labeled Silence 

The original manual annotations were performed by capitalizing upon only the annotators’ 

hearing and intuition. However, using Avid Media Composer [20], the exchange between the patient 

and physician could be further dissected by analyzing the audio wavelengths to determine starts 

and stops in speech. A visualization of audio wavelengths can be seen in Figure 7. The portion of the 

wavelength with minimal amplitude is indicative of lower audio levels recorded by the microphones 

and implies silence, whereas the wavelength with greater amplitude is indicative of higher audio 

levels recorded by the microphones and implies speech. Thus, a sudden transfer from a high 

amplitude portion of the signal to a low amplitude signal can often be considered a stoppage in 

speech if the low amplitude signal persists, whereas a sudden transfer from a long period of a low 

amplitude portion of the signal can be often be considered an initiation of speech.  
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Figure 7. Interaction 2 Audio Wavelengths  

Speaking annotations were used as class labels for Phase III of the analysis. Information regarding 

the distribution of the annotations per interaction is listed in Tables 5–7. 

Table 5. Phase III: Physician 1 (6 Interactions) Manual Labels for Speaking Annotations 

Label Int 1 Int 2 Int 59 Int 66 Int 67 Int 90 Total 

Both 162 107 226 522 369 271 1,386 

Physician 1,551 2,136 5,879 5,710 4,432 4,633 19,708 

Patient 6,686 6,654 4,069 3,901 3,747 4,790 25,057 

Silence 2,371 1,873 596 637 2,222 1,076 7,699 

Total 10,770 10,770 10,770 10,770 10,770 10,770 64,620 
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Table 6. Phase III: Physician 2 (6 Interactions) Manual Labels for Speaking Annotations 

Label Int 60 Int 63 Int 64 Int 65 Int 68 Int 75 Total 

Both 331 87 779 627 681 713 2,505 

Physician 5,014 3,916 3,477 6,257 7,702 6,826 26,366 

Patient 4,664 4,374 4,798 2,403 1,793 2,016 18,032 

Silence 761 2,393 1,716 1,483 594 1,215 6,947 

Total 10,770 10,770 10,770 10,770 10,770 10,770 64,620 

 

Table 7. Phase III: Physician 3 (5 Interactions) Manual Labels for Speaking Annotations 

Label Int 77 Int 78 Int 84 Int 98 Int 101 Total 

Both 177 88 261 357 214 1,097 

Physician 3,519 1,962 4,711 2,075 855 13,122 

Patient 4,012 7,154 2,720 7,376 8,397 29,659 

Silence 3,062 1,566 3,078 962 1,304 9,972 

Total 10,770 10,770 10,770 10,770 10,770 53,850 

 

 The relationship between physician gaze annotations and speaking annotations for each 

physician (Six interactions for Physician 1, Six interactions for Physician 2, Five interactions for 

Physician 3) is summarized in Tables 8–10.  

Table 8. Physician 1 Gaze and Speaking Annotations Across Corresponding Patient Interactions  

 Physician Gaze  
Speaking Patient Other Total 

Both 582 1,075 1,657 

Doctor 13,053 11,288 24,341 

Patient 12,882 16,965 29,847 

Silence 5,586 3,189 8,775 

Total 32,103 32,517 64,620 
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Table 9. Physician 2 Gaze and Speaking Annotations Across Corresponding Patient Interactions  

 Physician Gaze 
Speaking Patient Other Total 

Both 1,946 1,272 3,218 

Doctor 20,955 12,237 33,192 

Patient 7,067 12,981 20,048 

Silence 4,851 3,311 8,162 

Total 34,819 29,801 64,620 

 

Table 10. Physician 3 Gaze and Speaking Annotations Across Corresponding Patient Interactions  

 Physician Gaze  
Speaking Patient Other Total 

Both 544 553 1,097 

Doctor 6,731 6,391 13,122 

Patient 9,485 20,174 29,659 

Silence 6,023 3,949 9,972 

Total 22,783 31,067 53,850 
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Chapter 3: Phase I. Interaction Classification using Thresholding 

Approaches for Feature Extraction 

In Phase I of our project analysis, which was published at the 2019 IEEE Bioinformatics and 

Bioengineering Conference [23], we extracted physician-related features from Patient-Centered 

videos by using thresholding-based segmentation approaches in the Hue, Saturation, Intensity (HIS) 

and Red, Green, Blue (RGB) [24] spaces within search spaces. The efficacy of segmentation was 

validated with a manual labeling process. Features related to physician hands and physician torso 

from frames deemed to have experienced accurate segmentation of physician hands were used to 

classify the object of physician gaze from those same frames. Markov Chains were then employed 

using the combined sequential test and validation predictions of physician gaze in order to fill in 

predictions on those frames that were poorly segmented, and which were thus not originally subject 

to classification. 

3.1. Phase I. Physician Hands Thresholding-based Segmentation 

For the segmentation of physician hands, we used domain knowledge regarding physician 

and patient positioning in our clinical setting (physician sits at the computer on the left side of the 

frame and patient sits on the right side of the frame in the vicinity of the desk) to focus on sub-

regions of the frames and differentiate between the hands of the physician and patient. The 

parameters for HSI/RGB thresholding and sub-region search-spacing were then adjusted for each 

patient to account for positioning and lighting changes. Furthermore, we assumed that the 
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physician’s hands were the two largest connected components of the segmented image. As a post-

processing step for segmenting physician hands, we applied a Gaussian filter to smooth the edges 

of the regions [24].  

3.2. Phase I. Physician Torso Thresholding-based Segmentation 

The methodology for segmenting physician torso was conceptually akin to the segmentation 

of physician hands, although the entire image search space was used and a separate combination of 

HSI and RGB channels were employed for the purpose of thresholding. The largest connected 

component (smoothed and augmented using a Gaussian filter) was classified as physician torso 

[25]. The candidate physician hands were confirmed as hands if the segmented hand was connected 

to the connected component representing the smoothed and augmented physician torso. For each 

interaction, unique hyper-parameters were used for the search space and HSI and RGB channels in 

order to account for changes in lighting, pixel intensities, and camera positioning between 

interactions. 

3.3. Phase I Extracted Features 

The high-level and low-level features extracted for accurately segmented frames are listed 

in Table 11. 
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Table 11. Thresholding Features Extracted. Two of three low-level features in blue (Number of Hands Present not 

listed). Thirteen high-level features in red. 

Video Patient-Centered 

Body Part Left Hand Right Hand Torso 

Hand ✔ ✔  

X Mean ✔ ✔ ✔ 

Y Mean ✔ ✔ ✔ 

Min (X)   ✔ 

Min (Y)   ✔ 

Max (X)   ✔ 

Max (Y)   ✔ 

Area ✔ ✔ ✔ 

The three high-level features were used to build what we defined as Count-Based Features 

(CBF) models. These three high-level features were also included with the remaining 13 low-level 

hand and torso features to build what we named All Features (AllF) models. The process for 

extracting features in Phase I is described in Figure 8.  
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Figure 8. Phase I Flowchart of Feature Extraction for Hands and Torso 
 

3.4. Phase I. Segmentation Validation 

Before including the features from the segmentations of physician hands and torso described 

into a classification scheme, we needed to validate the efficacy of each segmentation. To do this, we 

manually labeled each frame in the six interactions of interest to determine how many physician 

hands were present in the frame. For a given frame, if the number of physician hands detected by 

the segmentation scheme matched the actual number of hands detected by the human labeling 

process, the extracted features pertaining to physician hands and torso were used by the Phase I 

Stage I classifier to make a prediction for physician gaze regarding that “accurately segmented 

frame.” However, for a given frame, if the number of physician hands detected by the segmentation 

scheme did not match the actual number of hands detected by the human labeling process, the 
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entire frame was considered a missing value. The Phase I Stage I classifier ignored the extracted 

features and did not attempt to make a prediction for physician gaze regarding that frame with the 

“inaccurately segmented frame.”  

The process of validating the accuracy of the segmentation process for each frame is depicted 

in Figures 9 and 10.  

 

 

Figure 9. Phase I Interaction D1_P2 Segmentation Validation Process: Accurate Segmentation 

In Figure 9, the human labeler labeled there to be one physician hand. Similarly, the 

automated segmentation system detected one hand. Therefore, all the desired features for the 

segmented torso and segmented hand for the input frame were included in the Phase I Stage I 

classification scheme. 

Figure 10. Phase I Interaction D2_P4 Segmentation Validation Process: Inaccurate Segmentation 

D1_P2 Input Frame: Human 
Labeler = One Physician Hand 

D1_P2 Segmented Torso D1_P2 Segmented Hand: One 
Hand Detected 

D2_P4 Segmented Torso D1_P2 Input Frame: Human 
Labeler = One Physician Hand 

D1_P2 Segmented Hand: Two 
Hands Detected 
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In Figure 10, the human labeler labeled there to be one physician hand. Conversely, the 

automated segmentation system detected two hands. Therefore, the frame was not included in the 

Phase I Stage I classification scheme. 

3.5. Phase I. Classification of Physician Gaze 

 To map image features automatically extracted using computer vision techniques to 

annotations capturing physician behavior, we divided the classification process into two stages. 

Phase I Stage I was intended to make predictions for physician gaze on frames with accurate 

segmentations. The methodology described in Phase I Stage II was used to fill in missing values in 

the data by making predictions on those frames with poor segmentation of the original frames. 

3.6. Phase I Stage I. Decision Tree and AdaBoost Classification of Accurately Segmented 

Frames 

For accurately segmented frames, we individually fitted and validated a simple classifier – 

decision trees (DT) [26] – and a more advanced classifier – AdaBoost (AB) [27] – for each patient-

physician interaction. From a set of 10,745 frames in each interaction, those frames in each 

interaction for which the number of hands identified by the feature extraction system did not match 

the number of hands encoded by the human annotator were not classified in Phase I. To achieve 

class balance, each interaction’s model was fitted with an equal number of ‘Other’ labeled frames 

and ‘Patient’ labeled frames. For every interaction, the validation data consisted of a random subset 

of 20% of the frames from the balanced data together with those frames which were originally 
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removed from the model fitting process for the purpose of achieving class balance. The remaining 

80% of the data consisted of training and test data. The algorithms were run 40 times upon the 

training, test, and validation data, with the training and test data being split randomly for each 

iteration according to a 66%:34% ratio. 

3.7. Phase I Stage II. Markov Chains on Inaccurately Segmented Frames to fill in Missing 

Values 

In Phase I Stage II, for the optimal classifier, we performed predictions of physician gaze on 

a frame-by-frame basis based upon the mode of the predicted labels for each frame in the testing 

and validation sets. Probabilities for each prediction were derived from the homogeneity rates of 

the predicted labels (e.g. four frame predictions of physician gazing at chart and one prediction of 

physician gazing at patient resulted in a final frame prediction of chart with 80% probability). The 

temporal automated labels and probabilities were then augmented using localized first order 

Markov Chains [28] to predict physician gaze labels for frames in each interaction which did not 

experience the accurate segmentation of hands in the computer vision feature extraction phase. For 

any label in the dataset, if the probability of the label failed to meet a 70% probability threshold, 

physician gaze either remained unlabeled or was changed to unlabeled for the frame. The Markov 

Chains transition matrix was derived from a maximum of the previous 50 frames, and the maximum 

number of consecutive filled in values was set to 51. The process of filling in missing values with 

Markov Chains is shown in Figure 11. 
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Figure 11. Phase I Stage II: Markov Chain Flow Chart 
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3.8. Phase I. Results and Analysis 

Table 12 presents mean training accuracy (40 iterations) for the classification of physician 

gaze on each training set. Tables 13–15 present mean accuracy, sensitivity, and precision (40 

iterations) for the classification of physician gaze on the test and validation (Val) sets within the 

interaction that each classification algorithm was trained upon. The results are compared across 

the CBF Models and the AllF Models.  

Table 12. Phase I Stage I Mean Training Accuracy: Physician Gaze Classifiers 

 Interaction 
Classifier D1_P1 D1_P2 D1_P3 D2_P4 D2_P5 D2_P6 

CBF DT 71% 64% 59% 60% 66% 51% 

AllF DT 89% 89% 88% 79% 84% 80% 

CBF AB 72% 64% 59% 60% 66% 51% 

AllF AB 100% 100% 100% 100% 95% 90% 

Table 13. Phase I Stage I Mean Test and Validation (Val) Accuracy: Physician Gaze Classifiers 

 Interaction 
 D1_P1 D1_P2 D1_P3 D2_P4 D2_P5 D2_P6 

Classifier Test Val Test Val Test Val Test Val Test Val Test Val 

CBF DT 71% 90% 64% 53% 58% 65% 60% 85% 66% 73% 50% 41% 

AllF DT 86% 90% 88% 89% 86% 86% 75% 71% 83% 81% 79% 75% 

CBF AB 72% 91% 64% 53% 58% 65% 60% 85% 66% 73% 50% 41% 

AllF AB 93% 94% 95% 95% 96% 97% 79% 78% 88% 88% 84% 82% 

Table 14. Phase I Stage I Mean Test and Validation (Val) Sensitivity: Physician Gaze Classifiers 

 Interaction 
 D1_P1 D1_P2 D1_P3 D2_P4 D2_P5 D2_P6 

Classifier Test Val Test Val Test Val Test Val Test Val Test Val 

CBF DT 49% 51% 95% 95% 45% 47% 22% 22% 79% 80% 62% 61% 

AllF DT 81% 79% 84% 83% 85% 85% 81% 79% 79% 78% 83% 82% 

CBF AB 48% 50% 95% 95% 45% 47% 22% 22% 79% 80% 62% 61% 

AllF AB 92% 92% 94% 93% 96% 95% 80% 79% 86% 86% 86% 84% 
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Table 15. Phase I Stage I Mean Test and Validation (Val) Specificity: Physician Gaze Classifiers 

 Interaction 
 D1_P1 D1_P2 D1_P3 D2_P4 D2_P5 D2_P6 

Classifier Test Val Test Val Test Val Test Val Test Val Test Val 

CBF DT 90% 46% 58% 40% 68% 45% 92% 64% 63% 82% 68% 42% 

AllF DT 90% 48% 91% 81% 86% 72% 74% 37% 86% 94% 76% 21% 

CBF AB 91% 48% 58% 40% 68% 45% 92% 64% 63% 82% 68% 42% 

AllF AB 94% 60% 96% 92% 96% 93% 79% 42% 91% 97% 82% 27% 

For five of six interactions, AllF AB achieved the highest accuracy and sensitivity scores on 

testing and validation (at or exceeding 82%). Regarding D2_P5, for which the AllF AB model did not 

achieve the best accuracy and sensitivity scores on testing and validation, an analysis of the results 

showed that the feature extraction phase itself performed poorly. D2_P6 also had low performance 

in terms of precision on the validation data.  

Table 16 summarizes the effect of Markov Chains on the performance of AllF AB predictions 

for each interaction made on a frame by frame basis and subsequent performance metrics. The 

accuracy percentages listed in Table 16 refer to the efficacy of the algorithm across the complete 

sequence of 10,745 frames.  
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Table 16. Phase I Combined Validation and Test Predictions: Number of Frame-by-Frame Physician Gaze Predictions 

and Percentage of Predictions out of 10,745 total labels 

 Accuracy 

Interaction Segmentation Classification Refined 
Segmentation 

Refined 
Classification 

D1_P1 72%  69% 93% 88% 

D1_P2 89%  85% 93% 89% 

D1_P3 70% 68% 98% 95% 

D2_P4 18% 14% 75% 60% 

D2_P5 50%  45% 79% 70% 

D2_P6 87% 73% 97% 81% 

For interactions involving Physician 1, the application of Markov Chains to fill in missing 

values from the AllF AB predictions produced an average of 1,733 additional accurate predictions. 

The mean percentage of frames (out of 10,745) accurately predicted for the three interactions 

involving Physician 1 before filling in missing values was 74.85%. After filling in missing values via 

the application of Markov Chains, the mean percentage of frames (out of 10,745) accurately 

predicted for the three interactions involving Physician 1 increased to 90.98%. For interactions 

involving Physician 2, the application of Markov Chains to fill in missing values from the AllF AB 

predictions produced an average of 2,844 additional accurate predictions. The mean percentage of 

frames (out of 10,745) accurately predicted for the three interactions involving Physician 2 before 

filling in missing values was 43.81%. After filling in missing values via the application of Markov 

Chains, the mean percentage of frames (out of 10,745) accurately predicted for the three 
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interactions involving Physician 2 increased to 70.28%, while the minimum accuracy (D2_P4) met 

a 60% threshold.  

3.9. Phase I. Conclusions 

The combination of feature segmentation, AdaBoost classification, and Markov chains 

applied in the Phase I analysis demonstrated that a combination of computer vision and machine 

learning algorithms could be used to successfully predict physician gaze with at least 60% accuracy 

across all frames. On correctly segmented frames, the accuracy of AdaBoost AllF was at least 77% 

on all interactions for both the test and validation data, while the use of Markov chains allowed for 

the classification system to be successfully employed even across a series of frames with poor 

segmentations.  

While the Phase I analysis and results bore a degree of success in introducing automation to 

the process of manually annotating features from clinical interactions, the degree of automation 

was seriously inhibited by an intensive labeling process to determine the number of physician 

hands in each image, which was necessary to account for the limitations of the segmentation system. 

Further, the segmentation system itself required manually setting thresholding and search space 

parameters for each interaction. The goal of Phase II, introduced in Chapter 4, would be to increase 

the degree of automation in the feature extraction and labeling phases by eliminating the problem 

of poor segmentation via the application of YOLO and optical flow algorithms.  
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Chapter 4: Phase II. Interaction Classification using Body Positioning and 

Optical Flow Approaches for Feature Extraction   

In Phase I of our thesis analysis, we successfully utilized a combination of thresholding 

approaches and classification techniques to make predictions regarding frame annotations of 

physician gaze with at least 60% accuracy in sequences from six clinical interactions. However, the 

process required intensive manual labeling and did not provide predictions for all frames of interest 

due to bad segmentation. These problems caused by poor segmentation were addressed in Phase II 

via the application of the YOLO [29, 30] algorithm and optical flow [31] measurements. 

4.1. Phase II. Optical Flow 

In Phase II of our project analysis, published at the 2019 IEEE International Conference on 

Bioinformatics and Biomedicine[32], we demonstrated that the YOLO [29, 30] algorithm and optical 

flow [31] measurements could solve the problem of poor segmentation that inhibited the Phase I 

analysis and thus increase automation and provide annotation predictions for all frames while 

improving the average and minimum accuracy rate for predicting physician gaze. Optical flow is 

defined as “the velocity field in the image plane due to the motion of the observer, the motion of 

objects in the scene, or apparent motion which is a change in the image intensity between frames 

that mimics object or observer motion [33].”  For the Lucas Kanade [31] method, the relationship 

between temporal and spatial gradients of intensity is exploited to calculate the velocity vector 
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between frames [33]. According to the Brightness Constancy Constraint, by which the projection of 

the same points looks the same in every frame: 

 𝐼(𝑥, 𝑦, 𝑡 − 1) = 𝐼(𝑥 + 𝑢(𝑥, 𝑦), 𝑦 + 𝑣(𝑥, 𝑦), 𝑡);      (1)         

where [x, y] = image coordinates, t = time, and [u, v] = velocity vector representing displacement 

between t – 1 and t.         

Upon linearizing the right side of the Brightness Constancy equation using a Taylor expansion 

series: 

𝐼(𝑥, 𝑦, 𝑡 − 1) = 𝐼(𝑥, 𝑦, 𝑡) + 𝐼𝑥 × 𝑢(𝑥, 𝑦) + 𝐼𝑦 × 𝑣(𝑥, 𝑦)       (2) 

Hence:  

𝐼𝑥 × 𝑢 + 𝐼𝑦 × 𝑣 + 𝐼𝑡 ≈ 0;         (3) 

where 𝐼𝑥 = Spatial Gradient with respect to x and 𝐼𝑦 = Spatial Gradient with respect to y.       

According to the assumption of Spatial Coherence, which states that points move like their 

neighbors, the velocity vector [u, v] can be solved by providing the same value of [u, v] to the pixel’s 

neighbors. Thus: 

 

 (4) 
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In this formulation, the components of the velocity vector – u and v – can be solved via least squared 

regression [33]. For synchronized frames in each interaction, we calculated optical flow 

measurements in the Patient-Centered and Doctor-Centered videos.  

For each optical flow computation, we calculated 14 summary statistic variables regarding 

each of the following variables: velocity U, velocity V, orientation, and magnitude. The values for 

velocity U and velocity V refer to the values for u and v in Equation 4. Orientation [34] was 

determined from the phase angles [35] of the vectors of u and v from Equation 4. The magnitude 

[24] of optical flow was also derived from the values for u and v in Equation 4 [34]. The pertinent 

summary statistics are as follows: Maximum, Minimum, 25th Percentile, 50th Percentile, 75th 

Percentile, Sum, Skewness, Kurtosis, Range, Mean, Variance, Standard Deviation, Covariance, and ‘# 

Non-Zero Values’. The statistic ‘# Non-Zero Values’ refers to the number of non-zero values for the 

designated feature in the region of interest (Patient-Centered Physician, Patient-Centered Patient, 

or Physician-Centered frame) for optical flow measurement. 

Due to the large number of null optical flow values with regard to velocity U, velocity V, 

orientation, and magnitude, their variables – with the exception of # Non-Zero Values – were 

calculated for the top 25th percentile of feature values in the regions of interest. 

4.2. Phase II. YOLO: Human Boundary Boxes 

Upon each of Patient-Centered image, we applied the YOLO (You Only Look Once) [29, 30] 

algorithm, which uses an individual convolutional neural network to predict class probabilities for 



Information Extraction from Primary Care Visits to Support Patient-Provider interactions 

 

Master Thesis, College of Computing and Digital Media, DePaul University   40 

 

 

a series of conditional bounding boxes for specified objects and human beings. An SxS grid is created 

for each input image, and grid cells are tasked with predicting bounding boxes and creating 

confidence scores describing the confidence of creating an object and describing accuracy of the 

predicted box. Furthermore, each cell contains predicted class probabilities. The predicted 

bounding boxes and confidence scores, as well as class probabilities, are used as inputs to estimate 

final bounding boxes.  

Using domain knowledge, we assumed that when multiple persons were detected in an 

image, the corresponding bounding box for the physician had the leftmost bounding box X 

coordinate. Further, the second bounding box corresponded to the patient. When only a single 

person was detected in a Patient-Centered image, that person was assumed to be the patient. The 

(X, Y) coordinates of the corner coordinates of these bounding boxes represented the eight 

positioning variables. In the Patient-Centered frames, the calculations of optical flow described in 

section 4.1. were quarantined to the regions within the Patient and Physician bounding boxes. In 

the Physician-Centered frames, in which the physician was generally exclusively present, the 

calculations of optical flow described in section 4.1. were applied to the entire frame region. The 

application of YOLO and optical flow velocity vectors in Physician-Centered and Patient-Centered 

frames for Interaction D1_P3 are depicted by the frames in Figure 12. 
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Figure 12. Phase II Interaction D1_P3: Bounding Boxes and Optical Flow Measurement  

A summary of the variables extracted using YOLO and optical flow in Phase II is shown in 

Table 17. 

Table 17. Phase II Variables: YOLO body positioning coordinates (4 Coordinates) and optical flow summary statistics 

(14 Each for Magnitude, Orientation, Velocity X, and Velocity Y) 

  Patient-Centered Physician-Centered 

Variable Patient Physician Entire Image 

Body Positioning  
✔ ✔  

O.F Magnitude  
✔ ✔ ✔ 

O.F Orientation  
✔ ✔ ✔ 

O.F Velocity X 
✔ ✔ ✔ 

O.F Velocity Y  
✔ ✔ ✔ 

  

Patient-Centered YOLO 
Bounding Boxes  

Patient-Centered Optical Flow Doctor-Centered Optical Flow 
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4.3. Phase II. YOLO/Optical Flow based Classification 

To map optical flow and body positioning coordinate features automatically extracted using 

the Lukas Kanade and YOLO algorithms to annotations capturing physician behavior, we applied 

AdaBoost [27] classifiers to three data formulations. 

The first data formulation (referred to as OF_56) for each interaction consisted of 56 optical 

flow measurements derived from the Physician-Centered frames. The second data formulation 

(referred to as OF_168) for each interaction consisted of the same data as 0F_56 plus 112 optical 

flow measurements from the Patient-Centered frames (168 variables total). The third data 

formulation (referred to as OF_176) comprised of 168 optical flow variables in addition to eight 

Patient and Physician bounding box coordinate variables derived from the Patient-Centered frames. 

(176 variables total). The hyper-parameters of the AdaBoost classifiers (MNS is an abbreviation for 

Maximum Number of Splits, MLS is an abbreviation for Minimum Leaf Size, and Trees is a reference 

to the number of AdaBoost cycles used in the classification process) were tuned accordingly for each 

of the three data formulations within each physician in order to optimize the classifiers without 

resulting in overfitting. Depictions of the three classification processes are shown in Figures 13–15. 
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Figure 13. Phase II Classification of Physician Gaze: Physician-Centered Optical Flow (OF_56) 

 

Figure 14. Phase II Classification of Physician Gaze: Physician-Centered Optical Flow + Patient-Centered Optical Flow (OF_168) 

 
Figure 15. Phase II Classification of Physician Gaze: Patient-Centered Bounding Box Coordinates + Patient-Centered Optical Flow + 

Physician-Centered Optical Flow (OF_176) 
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4.4. Phase II. Results and Analysis 

Table 18 and Table 19 present the mean accuracy (Acc), sensitivity (Sns), and precision (Prc)  

scores for the classification of physician gaze on the test and validation sets within the interaction 

that each classification algorithm was trained upon.  

Table 18. Phase II Classification of Test Data 

 OF_56 OF_168 OF_176 

Classifier Acc Sns Prc Acc Sns Prc Acc Sns Prc 

D1_P1 76% 74% 77% 89% 87% 90% 93% 92% 94% 

D1_P2 72% 71% 72% 84% 85% 84% 88% 88% 88% 

D1_P3 75% 76% 75% 82% 84% 82% 87% 88% 87% 

D2_P4 65% 62% 66% 79% 80% 78% 83% 84% 82% 

D2_P5 77% 78% 76% 79% 79% 79% 84% 83% 84% 

D2_P6 70% 70% 70% 73% 73% 73% 81% 81% 81% 

Table 19. Phase II Classification of Validation Data 

 OF_56 OF_168 OF_176 

Classifier Acc Sns Prc Acc Sns Prc Acc Sns Prc 

D1_P1 78% 75% 54% 89% 88% 74% 93% 93% 82% 

D1_P2 73% 72% 54% 85% 85% 71% 88% 88% 77% 

D1_P3 75% 76% 48% 82% 83% 58% 87% 88% 67% 

D2_P4 67% 62% 13% 78% 79% 22% 82% 83% 27% 

D2_P5 79% 80% 92% 80% 80% 93% 84% 84% 95% 

D2_P6 68% 71% 15% 72% 75% 17% 80% 82% 24% 
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For all six interactions, the OF_176 classifier, which incorporated positioning data from the 

Patient-Centered videos and optical flow from the Patient-Centered and Physician-Centered videos, 

proved to be the most robust of the three forms of classification. The OF_176 classifiers had the 

highest average accuracy, sensitivity, and precision scores on testing and validation in each 

interaction. More specifically, the OF_176 classifiers exhibited excellent stability, as the average 

accuracy, sensitivity, and precision scores were at or exceeding 80% for each interaction – such as 

93% for Interaction 1. Furthermore, on the validation data, the OF_176 classifier produced average 

accuracy and sensitivity scores at or exceeding 82% for each interaction. The OF_176 classifier also 

reached or exceeded a threshold precision score of 67% on the validation data for four of the six 

interactions. However, for Interactions 65 and 71, the combined average precision score was 25.5%, 

which may have been due to variability in the validation data which was not accounted for in the 

training and test data. 

4.5. Phase II. Conclusions 

The usage of YOLO and optical flow for feature extraction, as well as the application of 

AdaBoost classification, demonstrated that computer vision and machine learning algorithms 

combined can be used to successfully predict physician gaze with at least 80% on both test and 

validation data. The usage of YOLO and optical flow in Phase II addressed the major areas of concern 

which emerged from the Phase I analysis, namely the problem of poor segmentation that had caused 

the individualized setting of hyper-parameters and excessive amounts of manual labeling 
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(regarding the number of physician hands in each image). The Phase II analysis thus achieved an 

increased degree of automation as well as improved accuracy scores, as the minimum accuracy on 

the combined test and validation data (measured across all 10,745 frames) increased from 60% in 

Phase I to 80% in Phase II. 

The improved automation and accuracy of the Phase II process – by using optical flow and 

YOLO for feature extraction – was overwhelmingly successful on the same six interactions which 

were featured in Phase I. However, the findings were limited to a total of two doctors and a total of 

six interactions. Further, there was a degree of instability in the validation results. The goal of Phase 

III, introduced in the upcoming chapter, became to address the issues of instability and limited test 

case by expanding and diversifying the classifiers to include more interactions and doctors. The 

issue of instability would also addressed via the addition of pitch-related audio features to aid the 

prediction manual annotations. 
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Chapter 5: Phase III. Interaction Classification using Improved Audio 

Features and Improved Phase II Processes   

Phase III of this project analysis, published for the first time in this thesis, seeks to improve 

and expand upon the findings of Phase II in terms of the expansiveness and stability of the 

classification scheme. The improved Phase II process – via the usage of optical flow and YOLO for 

feature extraction – succeeded in introducing increased automation and improving the power of 

predicting the annotations of physician gaze. However, the findings were limited to a total of two 

doctors and a total of six interactions, while the classification only predicted annotations of 

physician gaze. Further, there was a degree of instability in the results of the validation. Also, in 

order to validate a system’s efficacy to perform feature extraction and classification for the purpose 

of providing simultaneous feedback to physicians, it is necessary to demonstrate the efficacy of the 

model on video data which can simulate an additional interaction. In Phase III, we address these 

issues by expanding the data gathering and annotation and by further developing the schema of 

feature extraction, validation data organization, and classification. The changes implemented in 

Phase III are explained in sections 5.1.–5.5. 

5.1 Phase III. Annotation and Data Gathering 

 Phase I and Phase II used manual labels of physician gaze annotations as a dependent 

variable to be predicted. In Phase III, we have added manually labeled speaking annotations. 

Furthermore, instead of limiting the annotation and subsequent data gathering and analysis to the 
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same two doctors and six interactions (10,745 frames per interaction) used in Phase I and Phase II, 

Phase III focuses upon 17 interactions (10,770 frames per interaction) for three physicians, with six 

interactions for Physician 1, six interactions for Physician 2, and five interactions for Physician 3. 

The distribution of physician gaze annotations for each doctor is illustrated in Figure 16. The 

distribution of speaking annotations for each doctor is illustrated in Figure 17.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 16. Distribution of Physician Gaze Annotations: Doctors 1 – 3 

Figure 17. Distribution of Speaking Annotations: Doctors 1 – 3 

Doctor 1 Doctor 3 Doctor 2 

Doctor 1 Doctor 3 Doctor 2 
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5.2. Phase III. Feature Extraction 

In the sequences of interest, we sought to automatically extract audio features from each 

Doctor-Centered video interaction that could be mapped to the 10,770 frames of interest. Mel 

Frequency Cepstral Coefficients (MFCCs) are an integral factor of numerous speech automatic 

speech recognition systems [36]. The computation of MFCCs utilizes framing and Fourier 

transforms to extract coefficients which are correlated with perceptions of pitch [37]. The 

procedure for extracting MFCCs and mapping them to the video frames is to: 

1) Apply pre-emphasis filter to amplify high frequency aspects of the signal 

2) Slice signal into overlapping frames 

3) Upon every frame  

• Apply window function 

• Perform Short-Term Fourier Transform and derive power spectrum 

• Compute filter banks 

• Apply Discrete Cosine Transform 

• Perform mean normalization 

The 14 Mel Frequency Cepstral Coefficients, along with 14 delta (change in coefficients) 

coefficients and 14 deltaDelta (change in delta) coefficients were calculated using MATLAB’s Audio 

Toolbox [37, 38, 39].  
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The variables extracted using YOLO, optical flow, and variables related to MFCCs are 

summarized in Table 20. In Phase III, an additional optical flow summary statistic not calculated in 

Phase II – sum of squared – was also computed. 

Table 20. Phase III Variables: YOLO body positioning (4 Coordinates), Optical Flow Summary Statistics (15 Each for 

Magnitude, Orientation, Velocity X, and Velocity Y), and Audio Features (14 variables for each audio feature) 

  Patient-Centered Physician-Centered 

 Patient Physician Entire Image 

Body Positioning  
✔ ✔  

O.F Magnitude  
✔ ✔  

O.F Orientation  
✔ ✔  

O.F Velocity X 
✔ ✔ ✔ 

O.F Velocity Y  
✔ ✔ ✔ 

MFCC 
✔ ✔ ✔ 

Delta 
✔ ✔ ✔ 

Delta-Delta 
✔ ✔ ✔ 
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 Table 21 summarizes the feature extraction techniques which are used in each phase of the 

analysis. 

Table 21. Feature Extraction Techniques: Phase I, Phase II, Phase III 

 Phase I Phase II Phase III 

Search Space 
Definition 

✔   

HSI/RGB Based 
Thresholding 

✔   

YOLO Positioning  ✔ ✔ 

Optical Flow  ✔ ✔ 

Audio Features   ✔ 

5.3. Phase III. Validation Data 

The different interactions, even within the same physician, often contain varying camera 

angles, motion characteristics, and spatial relationships. This variability in the data inhibits the 

ability of a classifier trained upon one interaction to predict behavior in other interactions. We 

created simulated validation data by removing entire sequences of consecutive frames from the 

data before training the classifier. The “new” sequential data possesses a measure of separation 

from the interaction, since a great number of the frames in the validation data are not temporally 

close to frames in the training and test data. Yet, the factors of the patient and camera angle were 

held constant, and therefore, we make inferences about the durability of the model in terms of 

introducing new interaction data based upon its performance on sequential validation data. 
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5.4. Phase III. Classification 

Each classifier in Phase II was separately trained using data from a single interaction. In 

Phase III, wherein the number of interactions per physician and the number of physicians were both 

increased, we trained and tested the labels for all the interactions within each physician. In other 

words, the data to predict labels for the six interactions for Physician 1 were trained and tested 

together, the data to predict labels for the six interactions for Physician 2 were trained and tested 

together, and the data to predict labels for the five interactions for Physician 3 were trained and 

tested together. Three classifiers were trained in Phase III. 

1) Visual features (optical flow and YOLO body positioning bounding boxes) were used to aid 

the predictions of physician gaze in Test and Validation data. This process is depicted in 

Figure 18. 

2) Audio features (MFCC, LOC, delta, and delta delta) were used to aid the predictions of 

speaking annotations in Test and Validation data. This process is depicted in Figure 19. 

3) A combination of visual features (Optical flow and YOLO positioning measurements) and 

audio features (MFCC, LOC, delta, and delta delta) were used to aid the predictions of 

physician gaze and speaking annotations in Test and Validation data. This process is 

depicted in Figure 20. 
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Figure 18. Phase III Classification of Physician Gaze: Patient-Centered YOLO Bounding Box Coordinates + Patient-

Centered Optical Flow + Physician-Centered Optical Flow 

 

Figure 19. Phase III Classification of Speaking: MFCC Based Audio Features 

 

Figure 20. Phase III Classification of Physician Gaze and Speaking: Patient-Centered YOLO Bounding Box Coordinates 

+ Patient-Centered Optical Flow + Physician-Centered Optical Flow + MFCC based audio features 
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5.5. Phase III Results and Analysis 

Tables 22–25 present the mean accuracy, sensitivity, and specificity scores for the 

classification of physician gaze and speaking annotations on test and defined validation data. There 

are two forms of validation data, the first formed by sequential frames in each interaction and the 

second formed by a random assortment of frames in each interaction. The results are presented 

according to each physician. For predicting physician gaze annotations, the model including only 

visual parameters (pertaining to optical flow and positioning) is defined as Visual: P.G. The model 

incorporating audio (pertaining to MFCCs) and visual information (pertaining to optical flow and 

positioning) to predict physician gaze annotations is defined as Audio + Visual: P.G. For predicting 

speaking annotations, the model including only audio parameters (pertaining to MFCCs) is defined 

as Audio: Speaking. The model incorporating audio (pertaining to MFCCs) and visual information 

(pertaining to optical flow and positioning) to predict speaking annotations is defined as Audio + 

Visual: Speaking.  

Table 22. Phase III Annotation Prediction Results: Training Data (P.G = Physician Gaze) 

 Physician 1 Physician 2 Physician 3 
Prediction Method Acc Sens Spec Acc Sens Spec Acc Sens Spec 

Visual: P.G 99% 99% 99% 98% 97% 99% 96% 96% 95% 

Audio + Visual:  P.G 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Audio: Speaking 90% 93% 92% 84% 80% 95% 93% 98% 93% 

Audio + Visual: Speaking 97% 99% 97% 92% 93% 97% 97% 99% 97% 
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Table 23. Phase III Annotation Prediction Results: Test Data (P.G = Physician Gaze) 

 Physician 1 Physician 2 Physician 3 
Prediction Method Acc Sens Spec Acc Sens Spec Acc Sens Spec 

Visual: P.G 94% 93% 94% 92% 89% 94% 88% 91% 85% 

Audio + Visual:  P.G 97% 96% 97% 96% 95% 97% 95% 96% 94% 

Audio: Speaking 84% 88% 87% 79% 72% 93% 87% 94% 86% 

Audio + Visual: Speaking 92% 96% 93% 86% 86% 95% 91% 96% 90% 

Table 24. Phase III Annotation Prediction Results: Sequential Validation Data (P.G = Physician Gaze) 

 Physician 1 Physician 2 Physician 3 
Prediction Method Acc Sens Spec Acc Sens Spec Acc Sens Spec 

Visual: P.G 77% 84% 68% 70% 69% 72% 67% 73% 61% 

Audio + Visual:  P.G 77% 82% 70% 76% 67% 83% 60% 64% 55% 

Audio: Speaking 76% 83% 80% 64% 43% 90% 74% 91% 69% 

Audio + Visual: Speaking 78% 83% 84% 71% 56% 93% 77% 93% 75% 

Table 25. Phase III Annotation Prediction Results: Random Validation Data (P.G = Physician Gaze) 

 Physician 1 Physician 2 Physician 3 
Prediction Method Acc Sens Spec Acc Sens Spec Acc Sens Spec 

Visual: P.G 93% 92% 93% 91% 88% 93% 87% 89% 84% 

Audio + Visual:  P.G 96% 95% 96% 95% 94% 96% 93% 94% 91% 

Visual: Speaking 93% 92% 93% 91% 88% 93% 87% 89% 84% 

Audio + Visual: Speaking 90% 95% 92% 85% 85% 94% 89% 96% 89% 

For all three physicians, with respect to the test labels for both physician gaze and speaking 

annotations, the Audio + Visual models proved to be most robust/statistically significant in terms 

of accuracy, sensitivity, and specificity. In terms of physician gaze for the Audio + Visual model 

performed for each physician, classification met or exceeded 94% accuracy, sensitivity, and 

specificity on each physician. In terms of speaking for the Audio + Visual model performed for each 

physician, classification met or exceeded 86% accuracy, sensitivity, and specificity on each 

physician. 
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The purpose of introducing sequential frames within the validation data was to test how each 

classification model performed when introduced to a large chain of data points which were removed 

in time and spatial proximity from the test data. In this way, we hoped to simulate the usage of 

validation data from additional interactions while keeping the camera positioning, doctor, and 

patient constant. To demonstrate that the large differences between test data and sequential 

validation data were due to unincorporated information within the models rather than overfitting, 

we also provide results for randomly assorted validation data. The random validation data did not 

necessarily contain many data points which were far disparate, both temporally and spatially, from 

the test data. 

Regarding the classification of physician gaze annotations on the sequential validation data, 

for both Physician 1 and Physician 2 the accuracy met or exceeded 75%, while for Physician 3 the 

accuracy was 60%. In terms of predicting speaking annotations on the sequential validation data, 

for all three physicians the accuracy met or exceeded 71%. Thus, the sequential validation data, 

while proving somewhat more susceptible than the test data to error due to the introduction of new 

information, classifies both physician gaze and speaking annotations in a manner that can aid the 

extraction of features in the future creation of a clinician feedback system. The superiority of the 

classification results on the random validation data over the classification results on the sequential 

validation data can be attributed more to the uniqueness of the sequential validation data in 

comparison to the training and test data than to overfitting. 
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Chapter 6: Discussion 

This work represents the initial step toward the creation of an automated system to provide 

interactive feedback systems for physicians in primary care environments with the goal of 

improving the efficacy of patient-provider clinical interactions. While in this work we focused on 

the verbal characteristic of speech recognition and the nonverbal characteristic of physician gaze, 

the presented methodologies can be extended to capture other parameters of the clinical 

interactions such as eye-contact, turn-taking, and screen sharing, which have themselves been 

shown in certain studies to impact patient outcomes [1, 2].  

The goal of Phase I was to demonstrate that feature extraction techniques could be used as 

part of a classification process to predict an aspect of the clinical interaction. We successfully 

segmented features by leveraging search spaces and thresholding within the HSI and RGB color in 

conjunction with a classification system of AdaBoost and Markov Chains. The results of our analysis 

in Phase 1 demonstrated that – for two physicians and a total of six patients – we could perform 

two-class predictions regarding the object of physician gaze with an excess of 90% accuracy. 

However, due to the problem of poor segmentation in the feature extraction phase, significant 

amounts of manual labeling and hyper-parameter setting were necessary to facilitate the feature 

extraction process.  

The goal of Phase II became to improve upon the findings of Phase I by increasing both 

automation and classification results. We analyzed the same two physicians and six patients from 
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Phase I while expanding the data collection to synchronized multiple cameras (Patient-Centered 

and Physician-Centered) and decreasing the amount of manual input necessary in the feature 

extraction and classification stages. The usage of YOLO and optical flow allowed us to automatically 

extract energy level measurements specific to Patient and Physician in the Patient-Centered videos 

without adjusting hyper-parameters between interactions, whereas the application of optical flow 

in the Physician-Centered videos automatically extracted energy flow information from the entirety 

of each Physician-Centered frame. After training and testing an AdaBoost classifier within each 

interaction, we achieved accuracy scores in excess of 90% on the test and validation data (from 

within same interaction). In Phase II we demonstrated that within the framework of two physicians 

and six patients, the use of YOLO and optical flow could solve the problem of poor segmentation 

while improving the classification results in the prediction of physician gaze.  

However, the findings from Phase II were limited by two factors. First, the classification 

models were successfully trained, tested, and validated according to each patient. The 

generalizability of the results was thereby limited, and thus the goal of Phase III became to create a 

more expansive, diversified system of analysis while also enlarging the nature of the analysis to 

include automatically extracted audio information, an additional optical flow summary statistic, the 

prediction of speaking annotations, and sequential validation data. 

In Phase III, which operated upon three physicians, each with 5-6 patients, we demonstrated 

that audio data could be used to predict speaking annotations with at least 77% accuracy, while 

visual data from images could be used to predict physician gaze with at least 90% accuracy. By 
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combining the audio and visual data, we were able to make predictions at or in excess of 95% for 

physician gaze and at or in excess of 86% for speaking annotations. Furthermore, on sequential 

validation data, the classification system combining audiovisual information predicted physician 

gaze with an average accuracy at or in in excess of 60%, while the predictions for speaking 

annotations met or exceeded 71%. Across a broadened spectrum of physicians, the Phase III 

classification system demonstrated the capability to use audiovisual information to automate verbal 

and non-verbal annotations of human behavior.  
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Chapter 7: Conclusions and Future Work 

The goal of this thesis has been to build toward the creation of a system to extract audio and 

visual features in the context of naturalistic, non-simulated interactions, with the final goal of 

objectively and efficiently labeling video data with verbal and nonverbal characteristics of patient-

provider interactions.  In this work, we effectively demonstrated how the usage of the YOLO 

algorithm, optical flow, and MFCC coefficients can overcome the problem of poor segmentation to 

extract features regarding body positioning, energy output, and audio pitch perception. These 

features can then be mapped via classification systems to accurately predict physician gaze and 

speaking annotations on both test and sequential validation data. Moving forward, we seek to gather 

additional information and advance our algorithms to further develop our predictions of physician 

gaze and speaking annotations into meaningful predictions of eye-contact and turn-taking. From 

there, based upon the research of Schneider et al. [40] – whose findings determined that HIV-

infected patients who provided higher ratings in the form of overall satisfaction, willingness to 

recommend a physician, and physician trust were more likely to adhere to medication plans – we 

will seek to map positioning information, energy flows, and audio pitch perception to patient ratings 

and outcomes of physician behavior as well as measures of physician burnout in the context of EHR 

usage. We expect that the use of MFCCs, optical flow, and YOLO will enhance the understanding of 

the effects of different forms of EHRs on physician behavior and further inform the design of more 

efficient, effective EHRs to enhance the quality of the physician-patient interaction so as to also 

reduce physician burnout. Ultimately, the proposed work has the potential to inform and aid the 
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design of technologies for capturing interactions from multiple view video data and providing real-

time feedback to physicians within the context of EHR usage to facilitate reduced levels of physician 

burnout and improved measures of patient care. 
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