

PATHWAYS TO THE NATIVE STORYTELLER: A METHOD TO ENABLE

COMPUTATIONAL STORYTELLING

BY

ARAMIDE O. KEHINDE

A DISSERTATION SUBMITTED TO THE SCHOOL OF COMPUTING, COLLEGE OF

COMPUTING AND DIGITAL MEDIA OF DEPAUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN DATA SCIENCE

DEPAUL UNIVERSITY

CHICAGO, ILLINOIS

2020

1

DePaul University
College of Computing and Digital Media

Thesis Defense Report

I have read the thesis written by:

Name __Aramide Kehinde________________

(To the advisor): The following thesis title is identical to the one on the title page of the draft
returned to the student. This title is approved by me and it is to be used when the final copies of
the dissertation are prepared.

Title of thesis:

Pathways to the Native Storyteller: A Method to Enable Computational Story
Understanding

 Advisor’s Initials ____RS_______

 Acceptable. Candidate may proceed to prepare final copy

 Pass, with revisions stated below:

 Not Acceptable. Please explain:

 Raffaella Settimi, PhD 6/8/2020

__
 Advisor (Print Name) Date

John Shanahan, PhD
__

 1st Reader (Print Name)

Jon Gemmell, PhD
__

 2nd Reader (Print Name)

Tokunbo Hiamang
__

 3rd Reader (Print Name)

__
 4th Reader (Print Name)

ABSTRACT
The primary objective of this thesis is to develop a method that uses machine learning algorithms to
enable computational story understanding. This research is conducted with the aim of establishing a
system called the Native Storyteller that plans and creates storytelling experiences for human users. The
paper first establishes the desired capabilities of the system and then deep dives into how to enable story
understanding, which is the core ability the system needs to function. As such, the research places
emphasis on natural language processing and its application to solving key problems in this context.
Namely, machine representation of story data in a way that adequately respects the contextual information
in the story; and, identification of relationships between multiple stories based on this contextual
knowledge. To do this, the BookNLP pipeline is used as a backbone for extracting structured data from
textual stories sourced from My Book of Bible Stories. The core contribution of this work is the
application of extensions beyond the BookNLP pipeline through NLP algorithms and ELMo neural
language embeddings to create features that represent the system’s computational understanding of its
stories, both at a plot and character-level.

1. INTRODUCTION

1.1 Introducing the Native Storyteller:
We live in the days of media streaming platforms. The advantage these platforms bring is the
democratization of media and storytelling. They have decreased barriers for many more individuals to
participate in both the production and consumption of story content. Such platforms find their competitive
edge in their ability to hyper-personalize the user experience in such a way that optimizes users’ search
for content.

Case in point is Netflix. Netflix has the objective of maximizing member satisfaction and monthly
subscription retention, which correlates with maximizing video consumption [1]. As such, Netflix has
historically employed Cinematch, which is a proprietary set of recommendation algorithms that drives its
hyper-personalization for users. To determine what movies to recommend to a user in each session, their
system of algorithms depend on similarity as described in [1]. For example, similarity between movies in
the Netflix catalogue, or between users across multiple dimensions. This stays true to the prototypical way
that recommendation systems work [7].

Netflix uses a rich set of data features to train its recommendation algorithms and to refresh them after
every user session. For example, they use over a billion user-movie ratings and historical views,
demographics, temporal data, social data, and metadata about the titles (actors, genres, directors, etc.) to
first estimate similarity across multiple dimensions, and then calculate the probability that a given user
will watch and enjoy a set of titles [2]. Netflix uses a complex ensemble of algorithms to determine this

3

probability, which are a mixture of supervised and unsupervised approaches, including for example
logistic regression, restricted Boltzman machines, and multiple clustering algorithms. The titles with the
highest probabilities are then displayed on the Netflix user interface. Likewise, the position of each
recommended title (whether first in the top row of the display screen or in the center of the bottom row) is
further optimized with a ranking algorithm. The result is a personalization experience that maximizes
consumption of video content. If we take Netflix’s underlying system as the prototype for storytelling
systems, a closer look at the features it uses for recommendation shows that they do not capture detailed
content within the stories in its catalogue [2] . Rather, the features Netflix uses to train its algorithms are
primarily external to the story information - they are either metadata about the story, or data about past
user or system actions.

In a different vein, this thesis conceptualizes and introduces preliminary results for the Native Storyteller,
a storytelling system that uses semantic expressions within the stories in its catalogue to determine what
content to display to its users. The system’s objective is to curate a meaningful storytelling experience for
the user. In this context, a storytelling experience is defined as a prioritized compilation of short-form
stories that is designed to create a specific “effect” for the user. The effect can be one of multiple things
based on available data for the user (e.g.: past viewing history, demographics, etc.) or the goals the user
expresses within the system. In its robust form, the Native Storyteller applies a thorough understanding
of both its users and its stories to achieve this effect. It is able to associate the stories in its catalogue with
its users, and identify what compilation of stories optimally achieves the said effect on this user.
Likewise, the system hosts multiple modes of stories in its catalogue - visual, audio, or text - and can
compile stories of different modes in a single storytelling experience.

The focus of this research, however, is to complete the steps needed for the Native Storyteller to
“understand” stories and use its understanding to curate a storytelling experience. This phase of research
focuses strictly on textual stories sourced from the Bible, as a prototype of short-form stories. Two steps
are completed in this research. The first step is the identification of how to create a computational model
of textual story content that enables the system’s story understanding. This involves applying the
BookNLP pipeline and data enrichments (e.g. features from a recurrent neural network architecture) to
represent story data in a way that is semantically aware of the details in each story. This also involves
determining the feature space for all the story representations in order to achieve the second step, which is
association.

For the Native Storyteller to select a compilation of short-form stories in each storytelling experience, it
must be able to make associations across the stories in the feature space, and identify the set of stories to
display in a storytelling experience. Ideally, this selection is based on the user’s data or expressed goals,
as stated earlier. However, this phase of research strictly uses story details to make associations across
multiple stories in the system.

1.2 Building Blocks for the Native Storyteller:
Roger Schank, a renowned artificial intelligence theorist, maintains in his work that artificial intelligence
must mirror human intelligence. Therefore, to create a storytelling system like the Native Storyteller, we
must first discover the building blocks of human storytelling which will help to create a model of this type

4

of intelligence in a machine. Schank’s work on artificial and narrative intelligence provides insights into
these building blocks. They help to define the capabilities of a system like the Native Storyteller, and
highlight the nature of the challenge at hand. The building blocks captured from Schank’s work [18] are
are summarized below:

A. Human memory is story based
Human memory is a cluster of different experiences accumulated through time. Much of these memories
are story based, and are relevant to daily life. A behavioral job interview, for example, requires such story
based memories with prompts like ‘Tell me about a time when…” The interviewer is practically asking to
hear a story. The interviewee uses the terms in the question to retrieve the appropriate story from memory,
as well as details about the story that allow him or her to provide an appropriate response to the prompt.
In the same way that the interviewer uses the story provided to make a decision about the interviewee,
humans also internally parse through and extract lessons from theirs and others’ stored stories in memory
to interact and make decisions daily. Developing the Native Storyteller then, can be considered as
equivalent to building a model of a human story-based memory. This memory has its own cluster of
stories, and each story is stored in a way that allows smart interaction with the system’s users.

B. Conversation is reminding
The next building block from Schank’s work is the process of reminding, which is crucial in
conversation. In every conversation, each individual brings his or her unique cluster of stories that have
been saved to memory. What makes conversation intelligent is the innate ability humans have to call
something to mind once given input, and to express thought based on that reminding. Conversation then,
is essentially responsive storytelling that depends on the ability to select the right story at the right time,
given the input one has heard from those he converses with. In the context of creating a storytelling
experience, the Native Storyteller must perform its own process of reminding. The input it gets in this
process is the user’s data or expressed goals, and that drives its reminding of the relevant set of stories to
display to the user.

C. Storytelling is understanding
Humans tell stories in conversation to indicate understanding of what was heard. For example, a speaker
in conversation instinctively assesses how well her listener understands her comments based on the
relevance of the story the listener tells in response to her statement. Storytelling and understanding then,
are functionally the same thing [18]. A statement heard in conversation requires a relevant response. The
hearer must be able to understand both the speaker’s statement and the stories she has stored in memory
to be able to decide what story to tell in response. That understanding involves associations the hearer
makes between candidate stories in memory and the speaker’s input to determine the best response. Also,
it is a granular understanding of story content involving, for example, awareness of the order in which
events in the story take place, the emotions that certain actions trigger, the traits of individuals in the
story, etc. For humans, this level of granular understanding goes in a plethora of directions because of the
richness of the senses and mental processes.

Given this building block, the Native Storyteller likewise needs to have a degree of story understanding at
its core, in such a way that it is aware of both general story plots as well as story details. These details

5

become the features that are used to train the algorithms the Native Storyteller uses to select stories for
each user session. In this research, multiple NLP methods are applied to accomplish this. There will be
more discussion on these topics to define how the methods work and the specific features they help
generate for each story.

D. Each story in memory is indexed
Story understanding as described in the preceding building block relies on indices humans use to store
stories in memory, and efficiently retrieve them as needed. Indexing is subjective from person to person,
as no two people will identically understand and store an experience in memory. The ways in which the
human brain indexes stories are also very complex. Nonetheless, what consistently happens in each
indexing task is that the brain extracts specific elements in the story and stores them in memory as labels
for the story. In conversation, understanding involves leveraging the elements as indices for the input
story and matching them up with elements used to index stories that are already in memory.

What matters for the Native Storyteller is the manner in which the human brain indexes its memories. For
the human brain, there is no supervision of the story indexing process. It happens unconsciously as one
experiences an event, and the indexing is based on the detailed data encountered within the event.
Humans also do not have an awareness of what indices the brain has assigned to each story in memory -
not until something specifically calls for a recollection of the story. In the same way, there is no
supervised process applied to the Native Storyteller’s understanding and recommendation of stories.
Details provided on the methods of analysis in Section 4 will illustrate this further. While this research
does generate features that influence how stories are represented in a feature space, it also uses a neural
network to embed story details in the space based on semantics in the story, which enriches the features in
an unsupervised manner.

In conceptualizing the Native Storyteller, this section has discussed how the system differs from known
story recommendation systems. Likewise, it posits key building blocks that inform the Native
Storyteller’s target capabilities, and highlights the nature of the challenge to develop such a system. The
following section presents a review of foundational work in the arena of machine enabled story
understanding. They serve as examples that substantiate Schank’s theories on artificial narrative
understanding, and likewise provide tangible outputs that are extended upon in research and development
for the Native Storyteller.

2. FOUNDATIONAL WORK
They two projects described herein have formed a baseline for machine story understanding that multiple
researchers have incorporated in their work. These systems were reviewed to understand how they work
and identify opportunities for extension as it applies to the Native Storyteller.

2.1 Genesis
Focussing on the challenge of implementing story understanding in a machine, Patrick Winston and his
artificial intelligence group at MIT have introduced Genesis [22]. Genesis is a program written primarily
in Lisp that is designed to reason about stories. As described by team papers, Genesis reads stories written
in English and applies word representations and common sense rules to reason about its stories.

6

For word representations, Genesis uses a text parser and George Miller’s WordNet (2011) to create
hierarchical representations for words that it reads in each story. For example, for the word frog, Genesis
creates the following representation: Frog is an amphibian; amphibian is a subtype of vertebrate;
vertebrate is a subtype of chordate; chordate is a subtype of animal, and so on. The words represented (or
objects, as the team calls them) can be concrete items (like frog), or more abstract, like words that express
relationships (e.g the word ‘has’). Then, for a sentence like ‘The boy took a frog to school’, Genesis
combines the representations of each word in the sentence and categorizes the types of objects (classified
as things, derivatives, sequences, or relations) in the composite representation [13].

A known challenge in research of this nature is that machines lack knowledge of the world and common
sense implications of real situations. Therefore, analysis of text to derive meaning is encumbered by
inherent limitations. For example, a machine in a sentiment analysis exercise might be able to associate
the word ‘war’ with negative sentiment, but it cannot independently determine that war implies death and
the loss of loved ones, or the other domino effects that war creates. Winston attempted to address this lack
of world knowledge by building inference and explanation rules that help Genesis ‘reason’ about the
situations it encounters in its stories. Such rules codify the knowledge needed to identify causal
connections in story events. Traditionally, Genesis has needed rule authors to manually encode these rules
in Lisp so that it can attribute actions and goals to the story’s characters. A sample case is a rule defined
in Genesis for ‘unfulfilled desire’ in Figure 1. Once this rule is codified in the Genesis knowledge base as
a specific pattern, Genesis uses that pattern to search all of the stories in its catalogue and identify
instances of unfulfilled desire.

Figure 1: Manually encoded Genesis depiction for ‘unfulfilled desire’

Upon receiving a story input, Genesis applies its object representations and rules to create an elaboration
graph, which is a visual representation of the story. It is important to note here that the team is yet to test
Genesis with the entirety of each story. Rather, an author creates a story summary with a few sentences,
which he or she then feeds to Genesis for reading. The elaboration graph displays a mapping of events in
the story as well as relationships between the events. A study of the graph will reveal key entities (like
characters), their actions and desires, as well as causal effects in the story. The image below displays a
sample elaboration graph for a summary of the American Revolution.

Figure 2: Genesis elaboration graph

7

While the Genesis system makes strong headways in story understanding, a deeper look at its mechanics
reveals potential areas for improvement as it relates to the goals for this thesis. One area has to do with its
recognition of entities in a story. For example, Genesis is able recognize Macbeth as an entity in the
play’s summary, and it is also able to create an elaboration graph of Macbeth’s actions in the play.
However, it does not innately identify Macbeth as a noun, or better yet, as a person, unless it is hard
coded as a rule into the system when the story is entered. Based on the programming framework Genesis
is built on, Macbeth is tagged as a ‘thing’ (Nackoul 2009). An item like money is also tagged as a ‘thing.’
As such, there is a high likelihood for a logical breakdown when comparing entities in a story if no
custom rules for each story exist, let alone comparing entities across multiple stories.

Genesis’ elaboration graph is essentially a visual representation of the inner language it develops for its
stories. The underlying mechanism that enables this inner language is Boris Katz’s START system
(SynTactic Analysis using Reversible Transformations). START (Katz 1997) is a natural language system
that allows a machine to translate English input into an internal knowledge base that includes information
found in the text. START also has a generating module that produces English sentences in response to
user queries.

Nonetheless, the way the START system achieves its question-answering functionality also warrants
caution when considering the goals of this thesis. To answer user queries about its internal knowledge
base, START reorganizes the query so that it is phrased in a way that is identical to its existing knowledge
base. This allows the system to ‘fill in the gap’ when answering user queries. Consider this input sentence
in its knowledge base: ‘Bill surprised Hillary with his answer.’ START internally represents the statement
in two expressions: <Bill surprise Hillary> with answer> and <answer related to Bill>. Now consider the
user query: ‘Whom did Bill surprise with his answer?’ To answer this question, START first reorganizes
it into a structure that is similar to the original text input: ‘Bill surprised whom with his answer.’ The
resulting internal expression in START for this reorganized question then becomes <Bill surprise whom>
with answer>. START then uses ‘whom’ as the matching variable. It recognizes that Hillary takes the
place of whom in the initial input sentence as well the user the query. Then, it fills in the ‘whom’ gap with

8

Hillary and provides the initial statement back as its answer to the user: ‘Bill surprised Hillary with his
answer.’

The approach appears to be smart, but in the event that the user asks a question in a way that is
syntactically different from the way the input sentence is structured, START breaks down. This is also
true of user queries that are semantically the same. For example, START would not be able to answer the
question ‘Who experienced surprise?’ because its internal representation of the question would not be
similar to that of the initial input sentence. Again, we see another loophole for a breakdown in the
proposed storytelling system for this thesis.

2.2 The Book NLP Pipeline
Bamman et al. [3] take the concept of entity-centric modeling of stories further with the Book NLP
pipeline. Their primary goal in developing this pipeline was to train a model that can infer character
archetypes from story text. For example, the model was to have the ability to recognize a ‘villain’ in the
story by processing all story data that the story’s author attributes to the character who plays such a role.
While Genesis requires summarization of large stories to a few sentences, the Book NLP pipeline is able
to scale to book-length documents (e.g.: Oliver Twist).

Prior to creating the pipeline, Bamman et al. first identified a story character as a narrative function. With
that mindset characters in a story are considered as collections of psychological or moral attributes. From
a data perspective, this allows us to think about characters as ‘word masses,’ with each word representing
a character’s attributes, from physical to psychological. With its underlying architecture built upon
Stanford NLP’s POS tagger, entity recognizer, and external tools for parsing, Book NLP creates clusters
from a story’s vocabulary and associates them with specific characters. The pipeline also achieves
pronominal coreference resolution and dimensionality reduction. Coreference resolution allowed the
authors to correctly associate all different mentions of the same character (e.g. Tom Sawyer vs. Tom vs.
Sawyer, including references to the same character using the pronouns he, him, etc.) with 82% accuracy.
The latter allowed them to address degrees of freedom in their trained model.

A few minor rules do apply to Book NLP and these are handled statistically instead of manually. For
example, a character must be mentioned with enough silence in the previous 500 words before Book NLP
associates a new mention of her name and related attributes of the mention to her existing cluster. With
reputable tests on substantial stories like Oliver Twist and Wuthering Heights, Bamman et al. show that
the Book NLP pipeline can scale to novel-length stories with a high degree of textual detail. Processing a
narrative with the Book NLP pipeline yields a structured data file that parses all words (tokens) used in
the story. Each token is tagged with information represented by 15 features as follows:

1. Paragraph id - The number / position of a paragraph in the entire story in which the token appears
(the first paragraph in the story is given an id of 0)

2. Sentence id - The number / position of a sentence in the entire story in which the token appears
(the first sentence in the story is given an id of 0)

3. Token id - The number / position of the token in the entire story (the first word or token in the
story is given an id of 0)

4. Byte start - the byte start position for the token

9

5. Whitespace following the token - Identification of whether or not the token is followed by a
whitespace

6. Head token id (-1 for sentence root) - the position of the preceding token upon which a given
token has a dependency relationship

7. Original token - Representation of the token as it appears in the story
8. Normalized token (for quotes, etc.) - Normalized version of the token
9. Lemma - Lemmatized version of the token which represents the token in its root form (e.g.: made

→ make)
10. Penn Treebank POS tag - Part of speech tag for the token
11. NER tag - Named entity recognition tag for the token. NER tag can be one of the following

options: PERSON, NUMBER, DATE, DURATION, MISC, TIME, LOCATION, MONEY,
ORGANIZATION, SET, O (for tokens for which there is no applicable NER tag)

12. Stanford basic dependency label - The label or type of dependency detected between tokens
13. Within-quotation flag - Identification of whether or not the token appears after an opening

quotation mark, signifying that the token is part of a character’s dialogue
14. Character id - If the token is a character name or a pronoun, it is tagged with a character id

number (all coreferent tokens share the same character id)
15. Supersense - Identification of the noun or verb type for each token (e.g. the word ‘come’ is tag

with a supersence of verb.action)
Considering this outcome, a few questions arise as it relates to the goals of this thesis. While Bamman et
al.’s work rightly focuses on character clustering, is there a way to extend the work to entity clustering in
general? For example, can we identify both instrumental characters and places in the story? In the history
of storytelling, we have seen that not only do characters drive the plot forward, but so do physical
locations, items, etc. Additionally, can we in some way model how these entities evolve in the story, or
perhaps the general trajectory? This is also instrumental to understanding a story. These sample questions
reveal the opportunity to extend provisions of the Book NLP pipeline for the Native Storyteller.

3. RELATED WORK

In addition to the work by Winston and Bamman et al. that serve as foundational work in the area of
computational storytelling, some additional works serve as reference points for the approaches taken to
analyze data for this thesis. These works either address the challenge of storytelling from different angles,
or provide rudiments that are directly used in analysis for this research.

3.1 Finding Narrative Similarity
In their research on story understanding, Srivastava et al. [19] use text analysis to identify
correspondences between stories. The team defined story understanding as the ability for a machine to
recognize similarities in multiple story plots. As such, their goal was to identify movies within a corpus of
plot summaries that are instances, or more specifically, remakes of existing stories. To do this, they
formed a hypothesis based on an observed pattern in storytelling and film: while superficial details of
remakes are often different from their originals (e.g.: character names), their prominent themes, and even
sequence of events to a high degree, remain the same. Then, using a corpus of 577 Wikipedia movie plot
summaries, they complete the required analysis.

10

Srivastava et al.’s core contribution to this type of research is their introduction of a story kernel that
assesses narrative similarity using a character centric approach. The story kernel is bifurcated into a plot
kernel and a character kernel. The former models surface similarity between two plots at a time in terms
of main events and entities, while the latter considers associations at the character-level in terms of their
attributes and social relationships.

In the plot kernel, they create a model for each story plot that is represented by all the verbs and
non-character entities (as well as adjectives that modify these entities) in the plot. The plot model is a
bag-of-words, or BoW for short, composed of these elements. In natural language processing, BoW is a
simplified representation of text data that measures the occurrence of words in a corpus of text data. Since
a computer only understands ones and zeroes, the goal is to create a representation of text data into a
format that a computer can use to make computations. Take for example the following hypothetical
corpus of two documents:

1. “Peters Skating Rink was popular in town.”
2. “Tom and Jesse met at the rink and married.”

BoW involves creating a vocabulary that comprises all the 14 unique words (or tokens) in this data corpus
as follows: [“Peters”, “Skating”, “rink”, “was”, “popular”, “in”, “town”, “Tom”, “and”, “Jesse”, “met”,
“at”, “the”, “married”]. Then, it scores the words in each document by marking whether each of the words
in the corpus vocabulary listed above is present in each document. We use ‘0’ when a word from the
vocabulary is absent in a given document, and ‘1’ if it is present. The result is a fixed-length binary vector
for all texts in the corpus. Using the vocabulary, we create a binary vector for each document in this
example as on Figure 3:

Figure 3: Bag of Words vector for documents in the sample corpus

 Peters Skating rink was popular in town Tom and Jesse met at the married

Doc 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

Doc 2 0 0 1 0 0 0 0 1 1 1 1 1 1 1

With each item in the movie summary corpus represented as a binary vector, the team calculates Splot (si,
sj), which is the cosine similarity between vectors for stories si and sj. Cosine similarity is a measure of the
cosine of the angle between two vectors in a feature space. The more similar two vectors are in direction,
the closer the angle between them is to 0 degrees, and the closer their cosine similarity is to 1.

In the character kernel, the research team makes slightly more granular comparisons between two stories
at the character-level. For this comparison, a constraint is required to make sure that each character in one
story is paired with one and only one character in the other story. The objective is to maximize the
average alignment score of characters in the narrative pair: Schar (si,sj). This metric comprises similarity
scores across four dimensions that are calculated for character pairs between the two narratives: 1)
Character name Sname (ci,cj), which is an indicator function that checks if the names of characters ci and cj

in the two stories are matching strings. 2) Character gender Sgender (ci,cj), a boolean value that is 1 if their
genders are the same and 0 if otherwise. 3) Character prominence Sprom (ci,cj), which is a comparison of

11

the character pair based on whether their fraction of mentions in their respective stories are similar. Sprom

(ci,cj) = 1 - |prom (ci) - prom (cj)|. 4) Character social relationships Sreln (ci,cj), which is a measure of the
similarity between the two characters’ social relationships and attributes associated with them in their
respective stories. Finally, the similarity between two characters in the two stories is identified using a
convex combination of the four dimensions:

Schar(ci, cj) = Sname (ci, cj) + Sgender (ci,cj) + Sprom (ci,cj) + Sreln (ci,cj)
With Splot (si,sj) and Schar (si,sj), the story kernel is then defined as:

S(si,sj) = a(Splot (si, sj)) + (1 - a)(Schar(si, sj))
It is notable that Srivastava et al. initially processed their movie plot summaries with the Book NLP

pipeline to get dependency parses and to identify main characters in their story corpus. The features
provided by BookNLP pipeline allow the team to isolate the verbs and adjectives used to create the story
vectors for the plot-level kernel. Even more, they allow the team to isolate personal attributes associated
with individual characters. For example, the supersense feature which is generated by the BookNLP
pipeline will tag tokens it identifies as character attributes with the values ‘noun.attribute’.

Srivastava et al. applied a layered approach to their research by gradually testing different methods at
their disposal and recording the accuracy scores for each. In each iteration they added more complexity to
their model to get gradually increasing accuracy scores in predicting narrative similarity. In one iteration,
they test results of bag-of-words across their texts (without introduction of their story kernel) to get an
accuracy score of approximately 56%. In another iteration, they pivot from BoW to the plot kernel
approach that includes mentions of character names and get an accuracy score of 60%. Lastly, they create
a composite model of the plot and character kernels and get an accuracy score of approximately 64%. A
full set of results are displayed in Figure 4.

Figure 4: Accuracy scores for multiple methods applied to detecting narrative similarity. Image as displayed by the
research team.

3.2 Question-Answering on Story Data
Tapaswi et al. [20] approached story understanding with the perspective that understanding of a scene is
better portrayed by the ability to answer any question about the scene. Their hypothesis is that a machine
should be able to answer questions about characters’ actions as well as the motivations behind them in
order to prove its understanding of a story. This implies that they also take a character-centric approach to

12

story understanding, similar to Srivastava et al. [19]. To achieve their goal, the team created MovieQA,
which is a dataset of approximately 15,000 questions sourced from over 400 movies with large semantic
diversity. The questions are a set of “Who”, “What”, “Where, “Why”, and “How” quizzes of varying
complexity. Each movie in the dataset has a quiz of questions, each with five multiple choice answers
and only one of such options is the correct answer.

MovieQA is unique in that it comprises a variety of unstructured data for each movie, namely video clips,
subtitles, film scripts, and plots. As such, the resulting data for a story is much richer than other examples
encountered in this research. Nonetheless, this research group found that for an algorithm to be able to
answer more complex “Why” and “How” questions about a given story, it must be trained on more
detailed textual data. Given that, the team primarily used Wikipedia plot summaries and hired annotators
to manually gather their quiz questions.

The analysis approach Tapaswi et al. took is informative for the Native Storyteller for multiple reasons.
Their work shows the need for a tangible way to prove out a machine’s ability to understand its stories. A
series of correctly answered questions with varying complexity does this quite well. Reasoning based
answers are likely reflective of how a machine can relate multiple ideas in one story. In the context of the
Native Storyteller, we can extend this to how the system performs when making relationships between
ideas or plot circumstances across multiple stories in order to present a specific story to a user.

The work for MovieQA also provides a good reference point for potential results in story understanding
research when considering multiple criteria. [20] presents a detailed view of their approach and results
while a summarized version is discussed here. The first criteria has to do with the dataset for analysis. As
mentioned earlier, MovieQA is a composition of different types of unstructured data for each movie -
plot, video clips, subtitles, and the film’s written script. Tapaswi et al. tested and compared their
algorithm’s question-answering performance on these four types of data sets separately. Secondly, the
team experimented with different types of text representations used in NLP when representing the
question-answer data in a feature space that a computer can understand. These representations are namely,
TF-IDF, Word2Vec embeddings, SkipThought, and finally, a fusion of all three representations using
concatenation of the vectors derived from each method. Lastly, the team also experiments with two
different methods to predict answers for each quiz question using their text representation(s) of choice.
They experiment with a standard cosine similarity calculation between a question and its candidate
answers, as well as a convolutional neural network architecture (CNN) that learns cosine similarity with a
sliding window across each layer of the network.

The results of these experiments informed choices made for research on the Native Storyteller (Table 1).
First, the team consistently gets higher accuracy scores for QA using the Wikipedia plot summaries,
which shows that a text with targeted information about a story, and not necessarily all story details,
suffices for the task of enabling story understanding in a machine. Regarding the text representations,
TFIDF appears to perform better when used by itself in both the cosine calculation and the neural
architecture (called SSCB). However, when the team uses a fusion of all three text representations in a
neural architecture, they get the highest accuracy score of 56.7%. Granted, a top accuracy score of 56.7%

13

begs the need for more enhancements, however this speaks to the challenging nature of the QA task in
NLP.

Table 1: MovieQA accuracy scores by algorithm and dataset type. Image as displayed by the research team.

3.3 Story Understanding with External Knowledge Based Attention
Deviating from a character-centric view of story understanding, Li et al. [9] take on the challenge with a
‘fill-in-the-gap’ approach. They train an algorithm using the ROC story cloze task dataset [12] to achieve
the task of predicting the concluding sentence of a story given its preceding sentences. Each story is a
simple document of four sentences, and the model must select the reasonable option between two
candidate story endings. The correct ending for a story should align with the ideas and sentiments
established by the story’s preceding sentences, and thus represents a logical ending for the story. On the
other hand, the incorrect ending may describe a scenario that diverges from the story’s established plot, or
present an illogical conclusion for the story.

A sample story reads: “Sally liked the seltzer waters her mom bought. She grabbed one from the fridge.
She was excited to open it and taste it. Sally did not know her brother shook all of them beforehand.”’ For
candidate endings, the algorithm must select between two options such as: “The water was very still” or
“The water exploded in her face when Sally opened it.” For a human reader, the logical ending to the
story is very clear, but for a machine that lacks world knowledge to know the import of the brother’s
trickery, one has to apply creative approaches with existing tools to make the right selection.

Admittedly, a “fill-in-the-gap” approach does not show an algorithm’s ability to reason about story data.
Nonetheless, Li et al. use methods that notably inform research for the Native Storyteller. They introduce
an external knowledge base that guides the training of the model. This knowledge base comprises two
things: a TF-IDF representation of each sentence in the story that helps to extract keywords from the
corpus of stories, and a calculation of sentiment polarity for each sentence in a story. The knowledge base
is then used in the model to calculate the relationship between the story plots and the two potential
endings. Note that this relationship is calculated using cosine similarity. Therefore, by extracting
keywords across the entire corpus with TF-IDF, the team introduces a type of ‘attention’ mechanism that
removes noise from the story data in preparation for the similarity calculation. As such, at each point the
algorithm must compare a story’s preceding sentences with its candidate endings in the selection process,
the calculation is driven by the more relevant words in the stories and candidate endings.

14

Additionally, the use of sentiment polarity adds value to the task of adding or finding a logical conclusion
to the story. Li et al. reasonably found that the last sentence in the story documents holds much more
precedence in selecting the right candidate story ending. As an example of extremes, it would not make
sense for the last sentence in the story document to have a highly positive sentiment score, and the
selected story ending to have a highly negative sentiment polarity. The external knowledge base thus
provides guidance for the prediction process.

The last point is the team’s algorithm of choice. Once they encode the textual story data (at a word-level
and sentence-level) they combine it with the external knowledge base and feed the components to a
recurrent neural network, more specifically, a bi-directional LSTM. They achieve the strongest accuracy
scores with this combination of components and algorithms.

3.4 Remarks on Related Works

 3.4.1 The Value of a Plot and Character Kernel

Srivastava et al.’s approach to identifying narrative similarity shows the value of analyzing stories at
multiple levels of granularity. With the addition of both a high level plot kernel and granular character
kernel, their algorithm was able to identify movie remakes with increased accuracy. This provides a key
learning for the Native Storyteller. Given the goal of this thesis to enable contextual story understanding
in a machine, the initial hypothesis was to approach the task primarily from a granular level inorder to
provide the machine with as much data that is needed to represent each story in a way that is respectful of
their nuances.

However, the results that Srivastava et al. got with their layered analysis approach shows the value of a
high level approach that first characterizes each story’s plot as a whole. While a plot-level analysis loses
some story information and does not perform strongly in and of itself, the team’s results show that it is
still able to capture information that a granular story kernel would lack. That said, analysis for the Native
Storyteller is also bifurcated into a plot-level and character-level approach. Discussion on applied
methods in Section 4 will provide more detail on this approach and its results.

3.4.2 A Fusion of Story Representations

In their research, both Tapaswi et al. and Li et al. applied a fusion of multiple types of word
representations, or embeddings, to their analysis. Tapaswi et al. combine TF-IDF, Word2Vec, and
SkipThought embeddings to represent each of the stories in their dataset. Li et al. apply TF-IDF for their
external knowledge base and combine it with representations they derive from a neural network (LSTM)
for their stories. As Tapaswi et al.’s results show in Table 1, a fusion of story representations allowed its
algorithms to answer questions about the MovieQA data with increased accuracy.
The key learning for the Native Storyteller is that application of multiple methods to represent story data
in a feature space provides algorithms with more information to better accomplish their tasks. Results
from both teams show that an ensemble of algorithms applied to the same NLP task combines the
strengths of each individual algorithm and accounts for their weaknesses. For the Native Storyteller,

15

results of the BookNLP pipeline, which represent one method of story representation, are enriched and
combined with other methods for story representations that this paper will continue to describe.

A unique inclusion in Li et al.’s work is sentiment polarity. They reasonably hypothesize that the
sentiment score of the sentence that appropriately closes a story should not vary much from that of the
preceding sentence in the story. For example, in a story with four sentences, they expect that the
sentiment score of the third and fourth sentences should be most similar. In that sense, they use sentiment
score as a means of representing the second to last and concluding sentences in each of their stories, and
pair each story with its concluding sentence based on the polarity between both. This provides an
opportunity to explore how sentiment scores, or sentiment polarity between stories can be leveraged in the
Native Storyteller. This paper will first describe what language sentiment represents for the Native
Storyteller’s tasks, and then discuss how it is applied in enabling story understanding.

3.4.3 Considering Word Embedding for Text Representations

Since a computer can only truly understand digits, work in NLP requires us to first translate textual data
to a numerical format that computers can understand. This is where word representations come into play,
as seen in the previous examples. Word representations are natural language data transformations that
allow us to place textual data in a numerical feature space for an algorithm to perform computations on
the data. Given the Native Storyteller’s task to understand contextual information in its stories, it needs
computational word representations that best retain and model the meaning behind each story. The word
representations discussed so far do not provide much in that direction.

Srivastava et al. use bag-of-words representations for their plot-level analyses, which comprised a tally of
all the verbs in their stories. While this gives a computer something suitable to work with (a numerical
vector), the vectors are stripped of all contextual knowledge in the text. As a result, this approach falls
short for story understanding. Tapaswi et al. use both term-frequency-inverse document frequency
(TF-IDF) and Word2Vec for MovieQA. While TF-IDF has the added advantage of emphasizing more
relevant words in the text, one can reason that TF-IDF is naturally more suited to the question-answering
task that Srivastava et al. use it for. After all, a question about a story, and its respective answer, would
naturally have similar word frequencies or distributions. In a different vein, the Native Storyteller’s task is
to find relationships between stories of disparate topics, and therefore vastly different word frequencies,
in order to determine what stories to display in a storytelling experience.

This brings us to the topic of neural word embeddings. Word embeddings are text representations in
which words of similar meaning are given similar numerical representations. Word2Vec has traditionally
been the neural embedding of choice in NLP, however, research into how it works shows where it also
falls short for story understanding. With Word2Vec, each word or token in the text is assigned a
numerical vector based on a standard lookup vocabulary. For example, the word ‘hit’ in a text will always
be assigned the same word representation when it is encountered by Word2Vec; but take into
consideration the following three sentences:

“He hit John in the face”
“He released a new hit song”
“His career hit rock bottom”

16

The word ‘hit’ is used in all three sentences, but in each sentence it conveys a different meaning. We as
humans instinctively use the words surrounding ‘hit’ to understand it’s meaning each time it appears.
Therefore, an algorithm that assigns the same vector to each word regardless of how it is used in the text
completely misses their nuanced meanings. This is the problem of polysemy that characterizes natural
language.

As an advancement over Word2Vec, Peters et al. introduced a deep contextual word embedding with
ELMo (Embeddings from Language Models). ELMo [17] is based on a recurrent neural network
architecture (RNN) with two layers, more specifically called a bidirectional LSTM. By nature, an RNN
architecture allows for memory retention as input data is processed by each layer of the neural network.
This lends itself well to natural language analysis because understanding the meaning of a word in a
sentence requires memory of the words that come before and after it.

Figure 5: ELMO’s bi-directional LSTM architecture. Underlying image (without annotations) from Analytics
Vidhya

Description of the ELMo deep neural architecture:

1. Upon input of a natural language sentence, raw word vectors for each word in the input are created using
a character-level convolutional neural network

2. The first layer of bidirectional LSTM (bi-LSTM) neurons accepts the raw word vectors and generates
intermediate word vectors. The forward LSTMs (in green) take the vector for each input word and
calculate the probability for the next word given the previous word. The backwards LSTMs (in purple) take
a word input and calculate the probability of the previous word. These probabilities feed the intermediate
word vectors

17

3. The word vectors from the first layer of bi-LSTMs are treated as input for the second layer of bi-LSTM and
the same process as in step 2 happens in the second layer. The result is a second set of intermediate word
vectors

4. ELMo calculates a linear combination of all vectors introduced or generated at each layer of the bi-LSTM
architecture and output those results as the contextual word vectors for the input text

Instead of using a standard dictionary of words and their corresponding vectors, ELMo uses a
bidirectional neural architecture to create word representations in context of surrounding words. To create
a representation for a word, for example, ‘hit’ in the first sentence, ELMo trains one left-context neural
network that goes back to the beginning of the sentence the word appears in, and one right-context neural
network that goes from that word to the end of the same sentence. ELMo would create three distinct
representations for the word ‘hit’ from the three sample sentences above, thereby accounting for the
nuanced meanings of the word in each context. Given the task of the Native Storyteller, this research uses
ELMo for the task of story understanding.

4. APPLIED METHODS

This section describes the methods applied in research and analysis for the Native Storyteller. First, it
presents a set of tasks to complete in order to enable story understanding for the Native Storyteller. Story
understanding is a crucial capability for the Native Storyteller because of the system’s objective to
independently create a storytelling experience as described in Section 1.1. These target tasks influence the
decisions made during the analysis. This section also introduces the dataset used for analysis and
discusses novel approaches that extend the previous work done in this area of research.

4.1 Tasks for Story ‘Understanding’
The Native Storyteller’s goal of creating storytelling experiences for human users is highly dependent on
the system’s ability to understand and reason about stories in a way that emphasizes semantics within
each story. Practically, this means the Native Storyteller should have the following functionalities that
necessitate completion of discrete tasks using NLP methods:

○ Ability to identify the overarching themes in each story
○ Ability to correctly characterize the stories and distinguish between them in a way that accounts

for deeper nuances beyond overarching themes
○ Ability to understand and represent the sequence of events in each story
○ Ability to identify and represent the emotional impact of each story
○ Ability to recognize individual characters, and their specific traits or personas

These functionalities are enabled using the following NLP methods which help to derive specific data
features for analysis:
Preprocessing using the Book NLP pipeline: As a data preparation step, the BookNLP pipeline tags all
words, or tokens, in each story with the 15 features described in Section 2.2. A crucial task the BookNLP
pipeline completes is detection of key characters in each story and assignment of a consistent character ID
for every mention of the character in the story. Secondly, the BookNLP pipeline tags each token with an
individual verb type or noun type, or supersense, where applicable. The supersense field is used to derive

18

a feature that characterizes the stories at a plot and character-level in a way that accurately represents their
nuances.
Sentiment analysis: Sentiment analysis is the first step applied to enrich the data provided by the
BookNLP pipeline. For this task, a sentiment score is calculated for each sentence in every story using the
Google Natural Language API [14]. Therefore, each story gets a sequence of sentiment scores that is the
size of the number of sentences in the story. These sequences are aggregated further to represent the
story’s emotion trajectory as a data feature.
Topic modeling: In NLP, topic modelling is used to identify latent topics in a corpus of documents.
These topics are represented by a group of keywords within the texts that are highly coherent in meaning.
This method is useful for abstracting themes from the corpus of stories in the dataset selected for analysis.
While topic modelling is used across multiple fields like genetics and bioinformatics, the value it adds in
literature is the ability to identify latent semantic structures in an extensive body of text that are not
readily recognizable by the human eye. For this analysis, a Latent Dirichlet Allocation (LDA) [4] is used
to derive topics that map to a set of 16 themes, that are ultimately assigned to each story in the corpus as a
data feature (one theme for each story).
Text representation using the ELMo Algorithm: ELMo, as explained in Section 3.4.3, is used to create
a computational representation of the sequence of events in each story. This a much denser feature that is
used to enable story understanding. By virtue of how ELMo works, the result is a representation of story
text that retains the contextual information in the story.

With data from the BookNLP pipeline further enriched by the methods described above, the Native
Storyteller is given a set of features that enable its ‘understanding’ of each story in its catalogue. The
system is then able to apply a clustering algorithm to make associations between its stories and characters,
and identify candidate stories for a user’s experience.

Research for the Native Storyteller is bifurcated into a plot-level and character-level analysis, similar to
Srivastava et al. These provide data at differing levels of granularity that help the Native Storyteller
function. The plot-level representation accounts for each story’s sequence of events, underlying themes,
emotional impact, and its characterization at a high level. The character-level representation focuses on all
characters introduced in the story corpus and represents the events surrounding each character (i.e.: what
they do and what is done to them) and their personas. Figure 6 visualizes the features engineered for the
plot and character-levels and maps them to the methods and tools used to create them.

19

Figure 6: Native Storyteller features and the NLP methods used to derive them

Description of features created for plot-level and character-level analyses in levels a follows:

1. Plot and character-level data features that the Native Storyteller needs for each story in its catalogue
2. The NLP or text analysis methods needed to derive the features in point 1
3. The tools or software used for each NLP or analysis method listed in point 2

4.2 Dataset of Choice

Initially, the target dataset for analysis was Wikipedia movie plot summaries. However, an initial test
using the BookNLP pipeline with sample movie summaries revealed the need to pivot. As with any story,
a movie plot can involve complicated story elements for entertainment value. Initial tests with the
BookNLP pipeline showed limitations of the software in handling these elements. One primary example
is that BookNLP is not built to distinguish flashbacks in a story from the present moment. Therefore, it
falls short for the task of dependably identifying the sequence of events in a non-linear story. Another
limit observed is the software’s ability to identify characters that are not tangible or named persons. Some
sample stories that were initially tested with the BookNLP pipeline had prominent characters that were
nouns; for example, the wind and the sun for a children’s story. Results from the BookNLP pipeline
showed that the software simply tagged such characters as nouns, and as a result the parsed data for the
pipeline made the story appear to have no characters. (For the record, a character in this analysis is
defined as a being with identifiable actions or mentions in a story.)

A dataset that abstracts out such complexities was required for an initial proof of concept of story
understanding and association in the Native Storyteller. For this reason, the story corpus of choice is Bible
stories written for children. Bible stories present the benefit of being short form in nature. Likewise, they
are reliably linear in structure, and their characters are, more often than not, tangible characters that can
easily be identified with known tools for named entity recognition, which the BookNLP pipeline is built
upon. There is also the added advantage of existing relationships between characters and elements in
multiple Bible stories. For example, one story in the corpus can speak primarily about the birth of Jesus,
while another story in the corpus can be about an instance from Jesus’s daily life. This allows a test of
how adequate the computational representation for each story is, as well as how well the NLP methods
described earlier capture patterns and similarities across multiple stories

20

The Bible stories for this research are sourced from My Book of Bible Stories, an online repository of 116
Bible stories that have been re-written in plain English for children. Minimal adjustments were applied to
the data during the web scraping exercise to retrieve the data. For example, the name ‘God’ was changed
to a character name, ‘Emmanuel’, because the BookNLP pipeline treats the name as a noun instead of a
person. Bible stories ascribe tangible actions to God; therefore, his person is a legitimate character to
analyze. Additionally, each story and character was given a unique ID number to allow for analysis of
both entities across the entire corpus. 98 stories from My Book of Bible Stories were used in this analysis
for the Native Storyteller. The stories ranged from a length of 10 sentences to 65 sentences.

4.3 Plot-Level Feature Engineering
As displayed in Figure 7, the goal for feature engineering at the plot-level is to generate features that
represent a story’s theme, a granular characterization, emotion trajectory, and its sequence of events in a
way that stays true to the semantics within the story.

4.3.1 Identifying Story Themes with Topic Modeling

To identify story themes, the raw tokens from BookNLP pipeline were first combined to form one
paragraph for each story, representing the story as one would read it on paper. Additionally, steps to
remove stop words (e.g.: a, and, the), bible character names, bible book names, and words that typically
occur in abundance in the Bible were applied. For example, words like ‘lord’ or ‘thing’ occur frequently
and are taken out to ensure that the themes derived from the corpus are meaningful. Likewise, character
names were removed before topic modeling so that the algorithm does not identify characters with high
mentions as a theme. Case is point is Jesus, a man whom more than half of the Bible stories are explicitly
about.

A topic modelling algorithm seeks to automatically find the underlying, or latent, structure in a corpus of
documents using a number of iterations through the documents. This allows for assigning or clustering the
documents based on the distribution of words that occur in them. LDA does this in a probabilistic manner
by first creating a bag-of-word representation for each document (as described in Section 3.1). Then, it
uses these bag-of-word vectors to identify the document and topic vectors that best explain the data [4].
The topics derived from LDA display as a collection of keywords that the algorithm assigns to the same
cluster. Coherence score is used to evaluate the accuracy of the model by measuring the degree of
semantic similarity between the keywords that are assigned to the same topic. The goal when training the
topic model for the Native Storyteller is to select LDA parameters that maximize the model’s coherence
score, including the number of topics or themes identified by the algorithm, the parameter ⍺ representing
document-topic density, and β representing topic-word density.

The strangest performing LDA algorithm was trained using the Bible corpus itself. A series of tests were
first applied to select optimized parameters that would yield the highest coherence score (16 topics, alpha
of 0.91, beta of 0.61). Then, using those parameters, the LDA is trained to derive topics. Figure 7 below
shows a sample of those 16 topics and the underlying keywords within each topic. The LDA calculates a
weight for each keyword in the topics to represent the keywords’ prevalence in the documents to which its
respective topic applies.

21

Figure 7: Snippet of topics derived for the LDA algorithm

The LDA is then used to classify the Bible stories with one of its 16 topics. Note that LDA results as
displayed above generally require a human in the loop to make subjective judgments about what themes
to call each topic. For this analysis, a manual review was done to assess each story and the topic that the
LDA algorithm classified the story with. This helped to subjectively provide meaningful themes and to
assess how intuitive the algorithm’s classifications were. A review of each Bible story and its topic
classification yielded the distribution of themes displayed in Figure 8. Note that even though the LDA
detected 16 topics across the story corpus, it used only 11 of its topics to classify the Bible stories. The
common pattern found in the 5 unused topics is that their keyword weights were insubstantial. A detailed
mapping of the used LDA topic keywords to the themes defined using subjective judgement is found in
Appendix I.

Figure 8: Distribution of themes across the Bible story corpus

22

A primary purpose of the manual review is also to assess how intuitive the topic assignment for each story
is. Understanding how intuitive the topic assignments are provides a measure of the LDA algorithm’s
predictive power. As such, each theme displayed in Figure 8 is individually assessed to determine if it
correctly represents the stories it is assigned to. For the record, a topic or theme assignment to a story is
determined intuitive based on how much the story details match the assigned theme, as well as on
contextual knowledge about the Bible stories. Table 2 displays the analysis of topic and theme
assignments to determine how intuitive they are.

Table 2: Analysis of topic assignments to the Bible story corpus

Topic
Id Theme

Total Num of
Story
Assignments

Num Intuitive
Assignments

Num Non-Intuitive
Assignments

Percent Intuitive
Assignments

14 Ethnic Wars and Conflict 59 35 24 59%

3 Creation and Heavenly Life 19 16 3 84%

0 God-Worship vs. Idol Worship 4 4 0 100%

1 Jesus at the Temple 3 3 0 100%

15 Healing and Miracles 3 3 0 100%

9 Motherhood and Progeny 2 2 0 100%

6 Persecution of Faith 2 2 0 100%

2 Trials at Sea 2 2 0 100%

13 Orators in Prison 2 2 0 100%

4 Young Mavericks 1 1 0 100%

11 Dinner Table Scenes 1 1 0 100%

The view from Table 1 shows high performance in topics that are assigned to a small number of stories in
the corpus. That performance seems to decline as the number of stories that are assigned a topic increases;
however, deeper analysis shows interesting patterns. The topic id 14 with the theme titled ‘Ethnic Wars
and Conflict’ is assigned to 59 stories, 34 (58%) of which appear to be intuitive assignments. Looking
deeper into the 24 stories that are non-intuitive assignments, however, some common patterns exist. 12 of
the stories are old testament Bible stories while 12 of them are new testament stories.

While all of the 12 old testament stories are not about ethnic wars in and of themselves, 8 of them show to
be part of a broader story arc of ethnic wars and conflict. An example is a story called ‘Isaac Gets a Good
Wife,’ which the LDA algorithm classifies with the topic that maps to ‘Ethnic Wars and Conflict.’ The
story is about the events surrounding Abraham’s desire to find a wife for his son, Isaac. Abraham’s
servant travels to the land where Abraham’s family is from and there, he stops by a well. At the well, a
young woman offers to help the servant water his donkeys and she is eventually presented as Isaac’s wife.
These story details in and of themselves are not about an ethnic war. However, the story states that even
though Abraham lived in a land called Canaan, he does not want his son to marry from the tribe of
Canaanites because they worship false gods. The arc of an ethnic conflict exists in this story to some

23

degree even though there is no explicit war between tribes. Other stories in the corpus cover the explicit
battles between Canaanites and Israelites. This story exhibits events that are shaped by the ethnic conflict.
In Appendix II, is a list of the stories that are assigned this theme that appear to be non-intuitive, yet are
part of the broader story arc of ethnic conflict.

Regarding the new testament stories that are assigned this theme, a different pattern exists. 10 of the 12
new testament stories are about moments in Jesus’s life that one who is familiar with the Bible canon
would categorize as the defining moments of Jesus's life. These stories are also displayed in Appendix II.
These stories are notable because the corpus has multiple other stories about Jesus’s life, for example,
stories about him healing others or teaching others to do good. The LDA algorithm does not assign this
theme to those stories, as if to distinguish the defining moments of Jesus’s story arc from the others. To
summarize the findings for the theme of ‘Ethnic Wars and Conflict,’ if one considers the intuitive topic
assignments and the assignments that are part of broader story arc as part of the same group (titled
‘Assignments Part of a Broader Story Arc’), we get the following results across both testaments:

Total Num of Story
Assignments

Num Assignments Part of
Broader Story Arc

Percent Part of a
Broader Story Arc

Old Testament - Ethnic Wars and
Conflict 47 42 89%

New Testament - Defining Moments
of Jesus' Life 12 9 75%

The question remains as to why the LDA classified the defining moments of Jesus’s life with the same
topic as the ethnic war stories. This is clearly a mismatch. Likewise, the keywords for this topic do not
provide a reasonable explanation about why Jesus’s defining moments are assigned to this theme. This is
where the challenge of the explainability of a predictive algorithm occurs: A clear pattern in the
classification of the new testament stories exists for this topic, however there is no logical explanation for
it. A review of the mathematics behind the LDA algorithm is crucial, especially as one considers that its
assignments are based on a bag of word representations that it creates for all of the documents used to
train the algorithm.

4.3.2 Story Characterization with the BookNLP Supersense Variable

The goal for story characterization is to create a computational representation of deeper nuances in the
stories beyond their themes. While a common theme groups multiple stories together based on topical
similarity, story characterization helps to distinguish stories classified with the same theme based on
patterns in the types of activities and entities encountered within their plots.

The BookNLP pipeline’s supersense variable is used to do this. Appendix III displays all the noun and
verb types that are possible values of the supersense variable. For example, the token ‘run’ when
represented by the supersense variable is always tagged as a motion verb (verb.motion), while the token
‘think’ is tagged as a cognition verb (verb.cognition). The same distinctions are available for nouns. The
token ‘car’, for example, is tagged as an artifact (noun.artifact). Given a story and its set of verb and noun
types, a frequency score is calculated to reflect the proportion of each individual verb type to the total

24

number of verbs in the text, and likewise, the proportion of each noun type to the total number of nouns in
the text. These frequency scores represent a set of 41 story characterization features that were generated
for plot-level analysis.

Initial analysis of results of the BookNLP pipeline and the supersense variable showed that each story’s
verb and noun type frequencies differ enough to distinguish each story. For example, the stories ‘Jonah
and the Big Fish’ and ‘Shipwrecked on an Island’ are classified by the LDA algorithm with the same
topic, which maps to the theme, ‘Trials at Sea.’ The first story is about Jonah, whose ship is caught in a
storm, and is eventually thrown into the sea where he finds himself in the belly of a big fish. The second
story is about Paul, who is captured as a prisoner by Romans and trafficked by ship to Rome and on the
journey, they are shipwrecked on an island due to a terrible storm.

While the classification of these two stories with the same LDA topic is intuitive, there are still nuances in
the story details that largely differentiate both plots. Both stories involve dangers at sea, but Jonah’s story
has the particular distinction of being found in the belly of a large sea animal - an unimaginable event.
The supersense frequencies calculated for both stories help to represent these distinctions
computationally. For example, the top three verb supersense frequencies for Jonah’s story are
verb.communication (0.18), verb.motion(0.12), and verb.social (0.10) while the top three noun
supersenses are noun.person (0.33), noun.animal and noun.phenomenon (0.05), and noun.artifact and
noun.substance (0.05). The top three verb supersenses for Paul’s story are verb.motion (0.17),
verb.contact and verb.change (0.16), and verb.possession (0.08) while the top three noun supersense are
noun.artifact (0.20), noun.person and noun.object (0.15), and noun.time (0.12). Appendix IV displays a
comparison of both plots. As these and other reviewed examples show, the story characterization features
represented by supersense frequencies allow for a more detailed computational representation of the
stories at their plot-level.

4.3.3 Representing a Story’s Emotion Trajectory

To create a feature that reflects each story’s emotion trajectory, each sentence in an individual story is
processed using the Google Natural Language API [14]. The API’s sentiment analysis method is used to
identify the prevailing emotional opinion in the sentence.

The sentiment analysis method provides two measures that are generally interpreted jointly to gauge
emotional content: sentiment score and sentiment magnitude. The sentiment score ranges from -1 to 1,
and reflects the emotional lean of the text, whether it is positive (closer to 1), negative (closer to -1), or
neutral (closer to 0). The sentiment magnitude is a score between 1 and +inf and indicates the strength of
the emotion detected in the text. Both scores were assessed for the Bible story sentences, with the aim of
using them both to provide a rich representation of story emotion at the plot-level. However, in the case of
this corpus, sentiment magnitude was found to consistently be the absolute value of the sentiment score.
As such, the maximum possible value for a measure that can scale to infinity is 1 for this dataset, which
does not provide significant information. The reason for this is the language used in My Book of Bible
Stories. Since the stories are targeted towards children, the language is decidedly simple. Therefore,
while a sentence in a story might have a positive sentiment score that the API can detect, the sentence will
lack the use of words that help the API compute the degree of that positive emotion in a way that allows

25

for rich emotion analysis. A test of the API using more complex, adult language with emotionally
charged words confirms this conclusion. Given these findings, the sentiment magnitude was removed
from consideration.

The goal for the Native Storyteller is to have the ability to distinguish between the emotional trajectory of
its stories, which represents the story’s emotional impact on its audience. This requires knowledge of the
change in emotion as the story progresses. For each story, an array of sentiment scores from the Google
Natural Language API represents this appropriately since each sentence in a story is mapped to its
corresponding sentiment score. The resulting challenge, however, is that each story varies in length, and
therefore the array of sentiment scores for each story is of varying sizes. Downstream work to process
each story with a machine learning algorithm would require that each instance of data has the same
number of features. To achieve that, each story’s set of sentiment scores is compared to a vector of the
same size which is filled with ones - a one-vector. This vector represents a story without any variance in
emotions: essentially, a dull story. Note that a zero-vector which represents the origin in a feature space
was not used as the calculation required would result in null values. The story’s emotion trajectory is then
represented by the degree between its vector of sentiments scores and that of the dull story as follows:

arccos = vstory . vnull / |vstory| * |vnull|
Where acos a is the angle derived when the dot product of the sentiment score vector (vstory) and the dull
story vector (vnull) is divided by the magnitude of both vectors. The values derived for the emotion
trajectory have the range [0 - 2.3] in radian for this corpus or 0 - approximately 130 degrees.

4.3.4 Representing a Story’s Sequence of Events

The last feature derived at the plot-level is the sequence of events in each story. Note that none of the
features discussed at the plot-level so far represent the actual events in the story and the order in which
they occur in a way that is contextually consistent. The ELMo algorithm described in Section 3.4.3 is
used to provide neural embeddings at the document level for this feature representation.

For the ELMo algorithm to work, each story is tokenized and the series of tokens is fed into the algorithm
for processing. By default, the resulting vector created by ELMo has 1024 features. Therefore, the feature
representation for sequence of events is a dense (98 x 1024) matrix.

4.3.5 Summary: Plot-Level Feature Engineering

The four plot-level features generated and hitherto described are concatenated to represent one vector for
each plot. The result is a (98 x 1077) matrix that computationally represents all 98 stories in the original
data corpus. Concatenating the four features allows for the placement of each story in a feature space
where the Native Storyteller can make associations between all stories in its catalogue to determine the
best set of stories to display to a user at a given point in time.

In typical data science work, efforts are made to optimize and select the most predictive features for the
task at hand (i.e.: making associations between all the stories), especially given the data set size and the
number of features available. The task of association in this case is strictly to find similarities between
stories in the corpus using an unsupervised clustering algorithm. There are limited options for feature
selection in unsupervised classification - most feature selection algorithms require joint processing of the

26

independent variables with the desired outputs, or labels to determine themost predictive features.
Nevertheless, some steps to determine if feature reduction is possible. The variance threshold algorithm is
used to assess features for unsupervised learning by detecting and removing all features with low
variance. By default, the algorithm works with a threshold of 0 as a standard (i.e.: it removes all features
that have the same values in all data samples). A test using the variance threshold algorithm with its
default threshold of 0 to analyze the theme, story characterization, and emotion trajectory features yielded
no features without variance.

Additionally, correlation tests were performed to detect significant degrees of correlation amongst the
non-ELMO features. A test for correlation between the theme and emotion trajectory features showed no
correlation. The same finding stands in a test for correlation between the story characterization features
and emotion trajectory features. These tests were not only performed for the purpose of feature selection,
but also to identify any meaningful relationships between a story’s emotional impact and the theme
assigned to it, perhaps to find additional meaningful patterns across the themes.

4.4 Character-level Feature Engineering and Analysis
As displayed in Figure 6, the goal for feature engineering at the character-level is to generate features that
represent each character’s persona as well as the sequence of events in a story that specifically apply to
that character (i.e.: things the character does, or things are done to or in association with the character).
The same tools and methods that were used to create plot-level features are applied in this context,
however they are translated differently for the character-level analysis.

4.4.1 Representing Character Persona with the BookNLP Supersense Variable

While a story’s characterization feature is generated by calculating frequency scores for all noun and verb
types that exist in the story (via the BookNLP supersense variable), a character’s persona is generated by
calculating verb-type frequencies for verbs that are strictly associated to that specific character. Take the
following short story as an example:

Jessica ran down the street while Shirley followed behind. Jessica stopped at the scene
of the accident and slammed the window of the car with her bat to save the baby in it.
Shirley cried as she saw the accident from a distance. Shirley felt the horror of the
scene before her eyes.

These sentences clearly describe two people with very different personas, Jessica being more action
oriented and Shirley being more perception or feeling oriented. To computationally represent Jessica’s
persona, the supersense verb-type values for each of the verbs that are associated only to her (emboldened
in black) are summed up and aggregated as a proportion of the total count of verbs that are associated to
Jessica in the story. A persona for Shirley on the other hand will use only the verbs emboldened in blue,
which are associated only with her.

Table 3: Differentiating Character Personas Computationally

Jessica Shirley

Verb Supersense Verb Type Verb Supersense Verb Type

27

ran verb.motion followed verb.motion

stopped verb.motion cried verb.emotion

slammed verb.contact saw verb.perception

save verb.social felt verb.perception

Each character has four verbs associated with them uniquely. Jessica would score higher on motion verbs (2 out of
4, which corresponds to 0.50). Shirley on the other hand would score higher on perception verbs (also 0.50)

4.4.2 Representing the Character’s Sequence of Events

To represent events in a story that are unique to a character, results from the BookNLP pipeline are used
to isolate story sentences that explicitly mention the character’s name or their associated pronoun used in
reference to the character. The result is a dataset in which each row corresponds to a character, their
name, and textual data on the events or dialogue in a story that specifically apply to the user. In other
words, these are sentences that describe what the specific character is doing or saying.

Once each character’s sentences are collated, they are processed using the ELMo algorithm for context
aware embeddings of the story details. The result is a dense (43 x 1024) matrix representing each
character's event details. Note that while My Book of Bible Stories has more than 43 characters, the 43
selected were the ones the BookNLP pipeline detected and tagged with character Ids which were used for
the analysis.

4.4.3 Summary: Character-Level Feature Engineering

The two sets of character-level features are concatenated to represent one vector for each plot. The result
is a (43 x 1067) matrix that computationally represents 43 key characters in the entire data corpus. These
concatenated vectors are placed in the same character-level feature space, where the Native Storyteller
can make associations between all characters in its stories to determine the best set of stories to display to
a user at a given point based on characters of interest. Note that the idea of identifying a ‘character of
interest’ will typically be derived by data available for the user, which is out of scope for this phase of
analysis.

5. EVALUATION

The ultimate aim for placing all plot-level and character-level vectors in their own individual feature
spaces is to enable the Native Storyteller to make associations across stories and across characters to
determine what stories to display to a user at each point in time. Since this is highly dependent on the
system’s understanding of its stories, there needs to be an evaluation of how well the system
computationally represents its stories and characters in relationship to one another. Therefore, success in
this phase of research is determined by how intuitive the placement of the story or character vectors are in
relationship to each other when they are in their respective feature space. In other words, if one is to
assess the placement of vectors in relationship to each other, there should be some recognizable patterns
and similarities. Additionally, after using a clustering algorithm to group stories or characters in the

28

feature space based on similarities in their features, there should be a recognizable rationale for the stories
or characters that are placed in the same cluster.

5.1 Visualizing the Plot and Character-Level Feature Spaces
To assess the placement of vectors in their feature space, the vectors are visualized in a 2D plot and
reviewed manually to identify meaningful patterns. Figure 9 displays the plot-level visualization which
has some noticeable characteristics. Firstly, the stories are split spatially, with one group of stories
positioned in the left zone of the plot, and the others to the right zone. In the right zone of the plot, there
appear to be outliers (circled in red).

Figure 9: Plot-Level vectors visualized in a 2D plot

Note: Stories are labeled with their story IDs in the 2D visual plot

Looking deeper into these observations, a few questions are asked. Namely, if we assess the meanings of
the stories, is there a clear difference between the stories on the left and right side of the plot that
substantiates the large distance between their physical placement on the plot? Likewise, is there
something that uniquely distinguishes the outliers on the right side of the plot from all other stories in the
corpus?

5.1.1 Analyzing the Plot-Level Feature Space

Regarding the first question, a distinguishing observation of the ‘left zone’ stories from those on the right
is that they are largely characterized by narration of an otherworldly being or occurrence in the affairs of
daily life. Out of 49 stories that are placed on the left side of the plot, 16 of them (33%) exhibit this
characteristic. See Appendix V for a zoomed in view of the stories on the left side of the plot. One might

29

argue that the Bible is filled with stories in which the earthly and otherworldly coexist, which is true. In
fact, there are a small number of stories on the right side of the plot that exhibit coexistence between the
earthly and the otherworldly. However, the language used for narration in the stories on the left more
often explicitly emphasizes the presence of that otherworldly being or occurrence. The ‘left zone’ stories
are narrated in a manner that expresses the peculiar nature of these occurrences. On the other hand, the
narration in the few stories on the right side of the plot that show the coexistence does not have this
emphasis. In fact, these stories are written in such a way that a reader or agent who lacks semantic
understanding of the world can simplistically classify them as regular day to day occurrences. As such,
when an NLP algorithm (like ELMo) processes the story, it cannot distinguish those occurrences as out of
the ordinary.

Two stories are presented as an example - one from the left zone of the plot in Figure 9 and one from the
right. To summarize, the ‘left zone’ story (Story A) is about a man Daniel, and his two friends who are
thrown into a fiery furnace by the Babylonian king because they refuse to worship his god. In the furnace,
they are accompanied by an angel that saves them from the flames. The ‘right zone’ story (Story B) is
about a prophet, Balaam, whose donkey begins to trouble him when he attempts to fight against the
Israelites - so much so that the two have a passionate exchange of words. A short snippet from each story
is provided below:

Story A Snippet
The king looks into the furnace, and becomes very much afraid.'Didn't we tie up three men and throw

them into the burning hot furnace?' he asks . 'Yes, we did,' his servants answer. 'But I see four men
walking around in the fire,' he says. 'They are not tied up, and the fire is not hurting them. And the fourth

one looks like a god.”

Story B Snippet
Balaam is very angry, and beats his donkey with a stick. Then Emmanuel causes Balaam to hear his

donkey speak to him . 'What have I done to you so that you should beat me?' asks the donkey . 'You have
made me look like a fool,' Balaam says . 'If i had a sword I would kill you!’ ‘Have I ever treated you like

this before?' the donkey asks. 'No,' Balaam answers.

For a human reader, both of these stories are examples of extraordinary occurrences and should be
categorized in much the same manner. In both stories however, the treatment in narration is notably
different. In Story A from the left zone, there is first a description of fear at the sight of the otherworldly
occurrence, followed by an expression of subverted expectations due to that occurence - three men are
tied in the furnace and are expected to be burned, but instead the king sees four men unharmed in the fire
and the fourth has the appearance of a god. In Story B, the narration simply focuses on the exchange of
words between man and donkey. There is no explicit expression of shock at the sight of a speaking
animal, and likewise no language used in the narration to emphasize this as peculiar. For an NLP
algorithm processing these texts, the linguistic patterns and words used to describe the otherworldly
occurrences in both stories, in addition to the different subject matter in both texts, would lead to plot
vectors with highly different feature values, hence the distant placements of the two stories on the visual
plot.

30

The second question regarding the visual plot has to do with the identified outliers. In reading these
stories, it is clear that they are stories that are unique in the Bible. The occurrences in the stories have no
precedents, and likewise have no similar events that follow throughout the text. Two stories, for example,
are ‘The Great Flood’ and ‘Crossing the Red Sea.’ In the first story, all of earth is flooded with drowning
waters that destroy humanity, and in the second, the Israelites cross through the Red Sea on dry land after
God pulls back the waters. Stories like these are one-of-a-kind in the corpus, and as such, appear as
outliers. Appendix VI lists the outlier stories and a summary of each.

5.1.2 Analyzing the Character-Level Feature Space

The character-level vectors discussed in Section 4.4 are also placed in their own feature space and
visualized for assessment. As shown on Figure 10, a similar pattern occurs in that the characters are
spatially split to the left and right of the plot. The distinguishing factor of the characters on the left side of
the plot is that they are characters in active dialogue. In other words, their unique stories are told using
dialogue between the character and others, as opposed to descriptive narration. Of 15 characters of
interest on the left side of the plot, 9 of them (60%) are characters in active dialogue.

The characters on the right side of the plot on the other hand, are portrayed using descriptive narration. In
these character snippets, the author describes the things the character does and even the things the
character says or hears, but does not give a substantial speaking voice to the character. The snippets below
provide examples to illustrate - Character A from the left side of the plot and Character B from the right
side of the plot:

Character A: Solomon
Solomon is a teen-ager when he becomes king. One night Emmanuel says to him in a dream, ‘Solomon

what would you like me to give you?’ At this Solomon answers 'Emmanuel my Emmanuel I am very young
and I don't know how to rule.’ Emmanuel is pleased with what Solomon asks. So he says ‘Because you

have asked for wisdom and not for long life or riches I will give you more wisdom than anyone who has
ever lived.’ A short time later two women come to Solomon with a hard problem. What will Solomon do?
He sends for a sword and when it is brought he says, ‘Cut the living baby in two and give each woman

half of it.’ Finally Solomon speaks, ‘Don't kill the child.’

Character B: Eve
One day when Eve was alone in the garden, a snake spoke to her. It told Eve to eat fruit from the tree

from which Emmanuel told them not to eat. Adam and Eve disobeyed Emmanuel and that is why they lost
their beautiful garden home.

Of the 22 characters on the right side of a plot, only three of them (13%) have any speech attributed to
them, and all three cases are very short snippets of speech embedded within heavy descriptive content.
(Appendix VII displays a zoomed in view of characters on the left side of the plot).

The issue of spread is also of interest in understanding the placement of the character-level vectors on the
2D plot. The characters to the left of the plot are clustered closely together while those on the right are
spread apart. An additional observation about the characters on the left side of the plot gives a probable
reason for this. In each of the character snippets they are either having dialogue with God (Emmanuel in

31

this case) or an angel. In fact across the board, the name ‘Emmanuel’ is explicitly mentioned in the
characters’ text snippets as a driving force for the characters’ actions or dialogue.

Figure 10: Character-Level vectors visualized in a 2D plot

5.2 Making Associations Between Plots and Between Characters
Now that the Native Storyteller has a computational representation of its stories and characters, it is able
to achieve the task of identifying a set of stories for a user by making associations across the items in its
catalogue. To test how this might be possible, a clustering algorithm is used to predict what stories or
characters are closely associated with each other.

It is important that the algorithm used does not require a preset number of clusters to be defined ahead of
training much like a K-means clustering algorithm would, for example. Rather, the primary task is for the
system to discover the innate structures of the plot and character data, and identify clusters based on those
structures. Given that the focus data set in this case is story data, there is no expectation that all stories
must be related to each other. In fact, as seen in the visuals displayed for the plot-level and character-level
vectors there are outliers. It is vital that the Native Storyteller is able to identify these outliers and treat
them as such. Therefore, the DBSCAN algorithm (Density-Based Spatial Clustering of Applications with
Noise) is used to identify clusters of similar story plots or characters.

The DBSCAN algorithm thrives in clustering use cases where the spread of the data in question is not
uniform. As alluded to in its name, the algorithm uses distance and density of the data points in a spatial

32

context to determine what points should be clustered together. The driving parameters for the algorithm
are the epsilon neighborhood(ɛ) and min_samples (minimum number of data samples required to form a
cluster). These two parameters work together to inform the algorithm of the size of the space it should be
looking at at each point in time to determine what points to place in a cluster. If the epsilon neighborhood
is too large, the result could be too few clusters. If epsilon is too small, the results could be too many
clusters in the data.

By nature of how the DBSCAN algorithm works, the result is a plot that will show core points, border
points, and outliers (noise). A core point in a specific cluster is the foundation of the cluster and is
contained within the size of the algorithm’s epsilon neighborhood. A border point is a point that is part of
a cluster but not in the dense area of that cluster, and therefore not a core point. An outlier, which the
algorithm designates as noise, is a point that is neither a core point nor a border point. In the visual plots
using the DBSCAN algorithms in this context, core points and border points in the same cluster are given
the same color, yet the core data points are physically larger than the border points. Outliers are left as
black dots with no associated cluster.

For the plot-level vectors, an epsilon of 3 and min_samples size of 3 is used to train the algorithm. The
results are shown in Figure 11.

Figure 11: DBSCAN Clustering for Plot-Level Vectors. Clusters encircled for emphasis

33

There are 5 clusters identified by the algorithm, and a 6th group of outliers that are not associated with
any clusters. These are stories that the DBSCAN algorithm would identify as noise. In analyzing the
clusters closely, a measure is adopted to reflect the level of alignment within the clusters; or in other
words, how well each story in a cluster aligns with an established pattern identified in the cluster. This
pattern can be based on similarity in theme, subject matter, characters or entities present etc. Table 4
displays the alignment score for each of the plot-level clusters displayed in Figure 11

Table 4: Cluster Alignment for Plot-Level Vectors

Plot-Level Cluster Alignment

Cluster
Total Num
Stories Similar Pattern Observed

Num Stories
Aligned

Alignment
Score

1 48 Presence of supernatural beings or occurrences 16 33%

2 4 Narrations of Jesus's Life 2 50%

3 12 Stories centered around animals 4 33%

4 12 Narrations of Jesus's Life 6 50%

5 8 Building and development of people and cities 7 88%

For the character-level vectors, an epsilon of 3 and min_samples size of 2 is used to train the DBSCAN
algorithm to accommodate for the smaller size and sparse nature of the data. The results are shown in
Figure 12 and alignment between character-level vectors is shown in Table 4.

Figure 12: DBSCAN Clustering for Character-Level Vectors. Clusters encircled for emphasis

34

Table 4: Cluster Alignment for Character-Level Vectors
Character-Level Cluster Alignment

Cluster
Total Num
Characters Similar Pattern Observed

Num Characters
Aligned

Alignment
Score

1 15 Characters in active dialogue 9 60%

2 2 Characters whose lives are threatened 2 100%

3 2 Characters in a duel 2 100%

4 7
Characters with drastic change in physical, mental,
or emotional state 5 71%

5 2
Minor characters (mentioned in support of major
characters) 2 100%

5.3 Discussion of Results

Looking at cluster alignment at the plot and character levels, it is clear that alignment at the
character-level is much higher. In fact, there is only one cluster at the plot-level with strong cluster
alignment (Cluster 5). A couple of questions arise from looking at the results. For one, what explains the
large difference in alignment at the plot and character levels? Additionally what distinguishes the clusters
with high alignment from those with low alignment?

A notable contributor in the case of the plot and character level difference is specificity. At the plot-level,
the entirety of each story is used to generate the features discussed in Section 4.3. On the hand, the
character-level features are generated only after all story details are paired down to extract
character-specific information. The result is that the candidate data for each character has a more focussed
subject matter while the candidate data for each plot covers a wider variety of information. In other
words, when we read a sample plot in the corpus, we are more likely to detect a broader range of topics,
while a sample character snippet would more likely express one strong element about a character’s
storyline. This difference translates into the feature generation process and manifests in the resulting
vectors and clusters derived at the plot and character levels. There is much more generality or spread in
the plot-level clusters in comparison to the character level clusters. So much so, that it becomes
challenging to find a common thread that links all the stories that are assigned to the same cluster.

While there are continued improvements in text analysis and natural language methods, there are still
limitations in developing a computational representation of a document in a way that appropriately
reflects all the topics covered within the document. Perhaps, the challenge may not be to represent all
information in a story, but rather to identify the optimal approach to pair down a story to its most relevant
elements, and then build a computational representation of such elements. This still requires a human in
the loop and a good amount of subjective judgement.

35

6. CONCLUSION

In reviewing the results of this phase of research, there are key areas where improvements can be applied.
The first of them is with the data used for analysis. This corpus of Bible stories comprised only 98
samples of data, which is restrictive for finding a rich set of patterns in the placement of plots and
characters in the same feature space, and likewise for finding meaningful patterns when clustering stories
together based on similarities. Additionally, the content of the stories are decidedly simplistic. Each story
involves language in the second person to engage the young reader, and then covers a very minimal
amount of detail. This does not provide much to analyze and extract from each individual story. Given
these qualities of the data used, there is an opportunity to use a larger and richer data set and apply the
same methods described in Section 4 to get more interesting results.

There is also a need for well-defined methods to evaluate the features generated for the problem at hand.
With storytelling being a newer area of research in machine learning, there is a lack of benchmarks to
compare methods used to create a computational representation of story content. Some of the NLP
methods used as rudiments to build the features have such benchmarks. For example, there are existing
benchmarks one can use to compare ELMo against other language embedding models. However, there is
a need for a method to evaluate the amalgamation of features generated at the plot and character levels in
storytelling to determine what works best.

Also, as implied by earlier statements in this paper, this research was done with the perspective that the
storytelling system functions in the context of an interaction with a human user. The currency that the
storytelling system seeks is human attention, so that it may inform and guide it in a way that is conducive
to achieving a specific goal. The target goal can be one of many options based on the specific human user
at a given point in time or over a period of time. As a result, the storytelling system must have access to a
dynamic model of the user to determine what storytelling experience to create. Such a model can be
composed of attributes such as the user’s goals, demographics, geographical location, usage patterns,
preferences, etc. This is a dynamic challenge to solve, and one that can also present a rich dataset by
which to evaluate the strength of the computational model for stories.

36

REFERENCES
1. Amatriain, X., & Basilico, J. (2012, April 6). Netflix Recommendations: Beyond the 5 stars

(Part 1). Retrieved from
https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f42
9

2. Amatriain, X., & Basilico, J. (2012, June 20). Netflix Recommendations: Beyond the 5 stars
(Part 2). Retrieved from
https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-2-d9b96aa399f
5

3. Bamman, D., Underwood, T., & Smith, N. A. (2014). A Bayesian Mixed Effects Model of
Literary Character. Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics , 1, 370–379. doi: 10.3115/v1/P14-1035

4. Blein, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of
Machine Learning Research, 3. Retrieved from http://www.jmlr.org

5. Brownlee, J. (2017, October 9). A Gentle Introduction to the Bag-of-Words Model.
Retrieved from https://machinelearningmastery.com/gentle-introduction-bag-words-model/

6. How Netflix’s Recommendations System Works. (n.d.). Retrieved from
https://help.netflix.com/en/node/100639

7. Isinkaye, F., Folajimi, Y., & Ojokoh, B. (2015). Recommendation systems: Principles,
methods and evaluation. Egyptian Informatics Journal, 16(3), 261–273. doi:
10.1016/j.eij.2015.06.005

8. Katz, B. (1997). Proceedings of the 5th Riao Conference on Computer Assisted Information
Searching on the Internet. Proceedings of the 5th RIAO Conference on Computer Assisted
Information Searching on the Internet. Retrieved from
https://groups.csail.mit.edu/infolab/publications/Katz-RIAO97.pdf

9. Li, Q., Li, Z., Wei, J.-M., Gu, Y., Jatowt, A., & Yang, Z. (n.d.). A Multi-Attention based
Neural Network with External Knowledge for Story Ending Predicting Task. In Proceedings
of the 27th International Conference on Computational Linguistics (pp. 1754–1762).
Association for Computational Linguistics. Retrieved from
https://www.aclweb.org/anthology/C18-1149

10. Wikipedia. (n.d.). In Wikipedia. Retrieved from
https://en.wikipedia.org/wiki/List_of_biblical_names

11. Liu, X., He, P., Chen, W., & Gao, J. (2019). Multi-Task Deep Neural Networks for Natural
Language Understanding. Retrieved from https://arxiv.org/pdf/1901.11504v2.pdf

12. Mostafazadeh, N., Chambers, N., He, X., Parikh, D., Batra, D., Vanderwende, L., … Allen, J.
(n.d.). A Corpus and Evaluation Framework for Deeper Understanding of Commonsense
Stories. In Proceedings of the 2016 North American Chapter of the ACL (NAACL HLT).
Retrieved from https://arxiv.org/abs/1604.01696v1

13. Nackoul, D. D. (2010). Retrieved from http://groups.csail.mit.edu/genesis/papers/Nackoul
2010.pdf

14. Natural Language API Basics. (n.d.). Retrieved from
https://cloud.google.com/natural-language/docs/basics

15. Nicholson, C. (n.d.). A Beginner's Guide to Attention Mechanisms and Memory Networks.
Retrieved September 10, 2019, from
https://pathmind.com/wiki/attention-mechanism-memory-network

37

https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://machinelearningmastery.com/gentle-introduction-bag-words-model/
https://help.netflix.com/en/node/100639
https://groups.csail.mit.edu/infolab/publications/Katz-RIAO97.pdf
https://www.aclweb.org/anthology/C18-1149
https://en.wikipedia.org/wiki/List_of_biblical_names
https://arxiv.org/pdf/1901.11504v2.pdf
https://arxiv.org/abs/1604.01696v1
https://cloud.google.com/natural-language/docs/basics
https://pathmind.com/wiki/attention-mechanism-memory-network

16. Nicholson, C. (n.d.). A Beginner's Guide to Word2Vec and Neural Word Embeddings.
Retrieved from https://pathmind.com/wiki/word2vec

17. Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L.
(2018). Deep Contextual Word Embedding. Proc. of NAACL. doi: arXiv:1802.05365v2

18. Schank, R. (1990). Tell Me a Story: A New Look at Real and Artificial Memory. Chicago, IL:
Northwestern University Press.

19. Srivastava, S., Roth, D., & Chaturvedi, S. (n.d.). Where Have I Heard This Story Before?
Identifying Narrative Similarity in Movie Remakes. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Vol. 2, pp. 673–678). Association for Computational Linguistics.
doi: 10.18653/v1/N18-2106

20. Tapaswi, M., Zhu, Y., Rainer, S., Torralba, A., Urtasun, R., & Fidler, S. (n.d.). Proceeds,
Computer Vision and Pattern Recognition (CVPR). In Proceeds, Computer Vision and
Pattern Recognition (CVPR). doi: 10.1109/CVPR.2016.501

21. Watch Tower Bible and Tract Society of Pennsylvania. (1978). My Book of Bible Stories.
doi: https://www.jw.org/en/library/books/bible-stories/

22. Winston, P. H. (2016). The Genesis Story Understanding and Storytelling System
(dissertation). Retrieved from http://groups.csail.mit.edu/genesis/papers/StoryWhitePaper.pdf

23. Winston, P. H. (2015). International Workshop on Computational Models of Narrative .
International Workshop on Computational Models of Narrative . Retrieved from
http://hdl.handle.net/1721.1/99102

24. Winston, P. H. (2011, December 15). The Strong Story Hypothesis and the Directed
Perception Hypothesis (dissertation). AAAI Fall Symposium Series

38

https://pathmind.com/wiki/word2vec
https://www.jw.org/en/library/books/bible-stories/
http://groups.csail.mit.edu/genesis/papers/StoryWhitePaper.pdf
http://hdl.handle.net/1721.1/99102

APPENDIX

Appendix I - Mapping of LDA Topics to Themes

Appendix II - Analysis of Non-Intuitive Stories Assigned to the ‘Ethnic Wars and Conflict’ Theme
Bible Book Story Id Notes

Old Testament
(Ethnic Wars)

17 Part of a broader story arc of ethnic conflict

19 Non-match

20 Non-match

31 Part of a broader story arc of ethnic conflict

37 Part of a broader story arc of ethnic conflict

42 Part of a broader story arc of ethnic conflict

45 Part of a broader story arc of ethnic conflict

47 Part of a broader story arc of ethnic conflict

53 Non-match

60 Part of a broader story arc of ethnic conflict

55 Non-match

72 Non-match

New Testament
(Defining Moments
in Jesus's Life)

89 Jesus' birth predicted

90 Jesus born in manger

91 Wise men led by a north star to meet baby Jesus

92 Jesus as a 12 year old stands out before old religious leaders

93 Jesus is baptized and the voice of God is heard by all

98 Jesus's cousin beheaded

99 Non-match

39

105 Jesus' betrayed by judas

111 Pentecost: Jesus' spirit given to men

114 Jesus' appearance from Heaven blinds Saul

115 Non-match

117 Non-match

Appendix III - List of noun and verb types from Book NLP pipeline

Supersense Verb and Noun Type Description

noun.Tops unique beginner for nouns

noun.act nouns denoting acts or actions

noun.animal nouns denoting animals

noun.artifact nouns denoting man-made objects

noun.attribute nouns denoting attributes of people and objects

noun.body nouns denoting body parts

noun.cognition nouns denoting cognitive processes and contents

noun.communication nouns denoting communicative processes and contents

noun.event nouns denoting natural events

noun.feeling nouns denoting feelings and emotions

noun.food nouns denoting foods and drinks

noun.group nouns denoting groupings of people or objects

noun.location nouns denoting spatial position

noun.motive nouns denoting goals

noun.object nouns denoting natural objects (not man-made)

noun.person nouns denoting people

noun.phenomenon nouns denoting natural phenomena

noun.plant nouns denoting plants

noun.possession nouns denoting possession and transfer of possession

noun.process nouns denoting natural processes

noun.quantity nouns denoting quantities and units of measure

noun.relation nouns denoting relations between people or things or ideas

noun.shape nouns denoting two and three dimensional shapes

noun.state nouns denoting stable states of affairs

40

noun.substance nouns denoting substances

noun.time nouns denoting time and temporal relations

verb.body verbs of grooming, dressing and bodily care

verb.change verbs of size, temperature change, intensifying, etc.

verb.cognition verbs of thinking, judging, analyzing, doubting

verb.communication verbs of telling, asking, ordering, singing

verb.competition verbs of fighting, athletic activities

verb.consumption verbs of eating and drinking

verb.contact verbs of touching, hitting, tying, digging

verb.creation verbs of sewing, baking, painting, performing

verb.emotion verbs of feeling

verb.motion verbs of walking, flying, swimming

verb.perception verbs of seeing, hearing, feeling

verb.possession verbs of buying, selling, owning

verb.social verbs of political and social activities and events

verb.stative verbs of being, having, spatial relations

verb.weather verbs of raining, snowing, thawing, thundering

Appendix IV -Comparing supersense Frequencies of Two Stories Classified With the Same Topic

● Theme: Trials at Sea
○ Story 1 - Jonah and the Big Fish
○ Story 2 - Shipwrecked on an Island

Jonah and the Big Fish Shipwrecked on an Island

Look at the man in the water. He is in a lot of trouble, isn't
he? That fish is about to swallow him! Do you know who
this man is? His name is Jonah. Let's see how he got into so
much trouble. Jonah is a prophet of Emmanuel. It is not long
after the death of the prophet Elisha that Emmanuel tells
Jonah: 'Go to the great city of Nine.veh. The badness of the
people there is very great, and I want you to speak to them
about it.'

But Jonah does not want to go. So he gets on a boat that is
going in the opposite direction from Nine.veh. Emmanuel is
not pleased with Jonah for running away. So He causes a big

Look! The boat is in trouble! It is breaking to pieces! Do you
see the people who have jumped into the water? Some are
already making it to shore. Is that Paul there? Let's find out
what's been happening to him. Remember, for two years Paul
is held prisoner in Caesarea. Then he and some other
prisoners are put on a boat, and they start for Rome. When
they pass near the island of Crete, a terrible storm hits them.
The wind blows so hard the men can't steer the boat. And
they can't see the sun during the day or the stars at night.
Finally, after many days, those on board give up all hope of
being saved.

41

storm. It is so bad that the boat is in danger of sinking. The
sailors are very much afraid, and they cry out to their gods
for help. Finally Jonah tells them: 'I worship Emmanuel, the
Emmanuel who made the heaven and the earth. And I am
running away from doing what Emmanuel told me to do.' So
the sailors ask: 'What should we do to you to stop the storm?'

'Throw me into the sea, and the sea will become calm again,'
Jo?nah says. The sailors don't want to do it, but as the storm
gets worse they finally throw Jonah overboard. Right away
the storm stops, and the sea is calm again. As Jonah sinks
down into the water, a big fish swallows him. But he doesn't
die. For three days and three nights he is in the belly of that
fish. Jonah is very sorry that he did not obey Emmanuel and
go to Nine.veh. So do you know what he does? Jonah prays
to Emmanuel for help. Then Emmanuel makes the fish vomit
Jonah out onto dry land. After that Jonah goes to Nineveh.
Doesn't this teach us how important it is that we do whatever
Emmanuel says?
Bible book of Jonah.

Then Paul stands up and says: 'Not one of you will lose his
life; only the boat will be lost. For last night an angel of
Emmanuel came to me and said, "Don't be afraid, Paul! You
must stand before the Roman ruler Caesar. And Emmanuel
will save all those who are sailing with you."' About midnight
on the 14th day after the storm began, the sailors notice that
the water is becoming less deep! Because of fear of smashing
into some rocks in the dark, they drop their anchors. The next
morning they see a bay. They decide to try to sail the boat
right up onto the beach there.

Well, when they get closer to shore, the boat hits a sandbank
and gets stuck. Then the waves begin to smash it, and the boat
starts to break in pieces. The army officer in charge says: 'All
of you who can swim jump into the sea first and swim ashore.
The rest of you jump in after them, and grab some pieces
from the boat to hold onto.' And that's what they do. In this
way all 276 persons who were on the boat get to shore safely,
just as the angel promised.
The island is called Malta. The people are very kind, and they
take care of those from the boat. When the weather gets
better, Paul is put on another boat and taken to Rome.
Acts 27:1-44; 28:1-14.

Verb Type Frequencies (Top 3):
verb.communication - 0.18
verb.motion - 0.12
verb.social - 0.10

Noun Type Frequencies (Top 3)
noun.person - 0.33
noun.animal - 0.06
noun.phenomenon - 0.06
noun.artifact - 0.05
noun.substance - 0.05

Verb Type Frequencies (Top 3):
verb.motion - 0.17
verb.contact - 0.16
verb.change - 0.16

Noun Type Frequencies (Top 3)
noun.artifact - 0.21
noun.person - 0.15
noun.object - 0.15
noun.time - 0.12

42

Appendix V - Left Side of the Plot-Level 2D Plot (Zoomed in)

Appendix VI - Outliers at the Plot-Level

Outliers - Stories with one-of-a-kind miracles or human interactions

Story 10:
‘The Great
Flood’

A flood of waters suddenly began to fall from the sky for 40 days and 40 nights. All people on earth
perish, save Noah and his family who are in the ark the God tells them build.

Story 31:
‘The Burning
Bush’

Moses is caught off guard when he sees a bush engulfed in flames of fire, yet it does not burn. There, he
hears the voice of God speak to him

Story 34:
‘Crossing the
Red Sea’

Moses leads the Israelites out of Egypt and they find themselves trapped when they reach the Red Sea and
the Egyptians are behind them in pursuit. God tells Moses to stretch his stick out over the Red Sea and the
waters of the sea were parted and held up on both sides. Then the Israelites began to march through the sea
on dry ground.

Story 52:
‘Two Brave

A prophetess, Debʹo·rah and a young woman, Sisʹe·ra are key women who help to destroy the Israelites

43

Women’ enemies in the days of judges.

Appendix VII - Left Side of the Character-Level 2D Plot (Zoomed in)

44

45

	aramide_kehinde_MS thesis (002)
	Pathways to the Native Storyteller_Aramide Kehinde

