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AUTOMATIC INFERENCE OF CAUSAL

REASONING CHAINS FROM STUDENT

ESSAYS

Abstract

While there has been an increasing focus on higher-level thinking skills

arising from the Common Core Standards, many high-school and middle-

school students struggle to combine and integrate information from multiple

sources when writing essays. Writing is an important learning skill, and there

is increasing evidence that writing about a topic develops a deeper understand-

ing in the student. However, grading essays is time consuming for teachers,

resulting in an increasing focus on shallower forms of assessment that are easier

to automate, such as multiple-choice tests. Existing essay grading software has

attempted to ease this burden but relies on shallow lexico-syntactic features

and is unable to understand the structure or validity of a student’s arguments

or explanations. Without the ability to understand a student’s reasoning pro-

cesses, it is impossible to write automated formative assessment systems to

assist students with improving their thinking skills through essay writing.

In order to understand the arguments put forth in an explanatory essay

in the science domain, we need a method of representing the causal structure

of a piece of explanatory text. Psychologists use a representation called a

causal model to represent a student’s understanding of an explanatory text.

This consists of a number of core concepts, and a set of causal relations linking

them into one or more causal chains, forming a causal model. In this thesis
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I present a novel system for automatically constructing causal models from

student scientific essays using Natural Language Processing (NLP) techniques.

The problem was decomposed into 4 sub-problems - assigning essay

concepts to words, detecting causal-relations between these concepts, resolving

coreferences within each essay, and using the structure of the whole essay to

reconstruct a causal model. Solutions to each of these sub-problems build upon

the predictions from the solutions to earlier problems, forming a sequential

pipeline of models. Designing a system in this way allows later models to

correct for false positive predictions from downstream models. However, this

also has the disadvantage that errors made in earlier models can propagate

through the system, negatively impacting the upstream models, and limiting

their accuracy. Producing robust solutions for the initial 2 sub problems,

detecting concepts, and parsing causal relations between them, was critical in

building a robust system.

A number of sequence labeling models were trained to classify the con-

cepts associated with each word, with the most e↵ective approach being a

bidirectional recurrent neural network (RNN), a deep learning model com-

monly applied to word labeling problems. This is because the RNN used

pre-trained word embeddings to better generalize to rarer words, and was able

to use information from both ends of each sentence to infer a word’s concept.

The concepts predicted by this model were then used to develop causal rela-

tion parsing models for detecting causal connections between these concepts.

A shift-reduce dependency parsing model was trained using the SEARN algo-
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rithm and out-performed a number of other approaches by better utilizing the

structure of the problem and directly optimizing the error metric used.

Two pre-trained coreference resolution systems were used to resolve

coreferences within the essays. However a word tagging model trained to

predict anaphors combined with a heuristic for determining the antecedent

out-performed these two systems. Finally, a model was developed for parsing

a causal model from an entire essay, utilizing the solutions to the three previous

problems. A beam search algorithm was used to produce multiple parses for

each sentence, which in turn were combined to generate multiple candidate

causal models for each student essay. A reranking algorithm was then used to

select the optimal causal model from all of the generated candidates.

An important contribution of this work is that it represents a system

for parsing a complete causal model of a scientific essay from a student’s writ-

ten answer. Existing systems have been developed to parse individual causal

relations, but no existing system attempts to parse a sequence of linked causal

relations forming a causal model from an explanatory scientific essay. It is

hoped that this work can lead to the development of more robust essay grad-

ing software and formative assessment tools, and can be extended to build

solutions for extracting causality from text in other domains. In addition, I

also present 2 novel approaches for optimizing the micro-F1 score within the

design of two of the algorithms studied - the dependency parser discussed in

Chapter 5 and the reranking algorithm discussed in Chapter 7. The depen-

dency parser uses a custom cost function to estimate the impact of parsing

mistakes on the overall micro-F1 score, while the reranking algorithm allows
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the micro-F1 score to be optimized by tuning the beam search parameter to

balance recall and precision.
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Chapter 1

Introduction

1.1 Overview

In the US, educational standards have improved as a result of the Common
Core Standards and also the Next Generation science standards [107, 161].
These standards push for the development and assessment of higher-level
thinking and reasoning skills, including an understanding of scientific reason-
ing, evaluating scientific theories, explanations and evidence, and understand-
ing material from multiple documents in di↵erent formats. However, many
middle school, high school and even college students struggle to combine in-
formation from multiple documents in science and history [15, 243].

Writing is considered to be one of the key 21st century skills and has
become an important part of many national standards. The U.S. Common
Core State Standards [107, 161] now require students to improve their writing
skills by developing the ability to synthesize and summarize text, formulate
arguments and link ideas to texts and argumentation [68]. Writing is also
an important learning skill as it can help develop higher-order thinking skills
such as communication and logical reasoning skills in addition to the core
literacy skills of reading and writing. Writing has been shown to promote a
higher level of comprehension of information from multiple sources [14, 245]
because it provides opportunities to transform the source text and synthesize
and integrate information [98, 244] across sources.

By forcing the writer to process information more deeply, it is also
thought that writing promotes the construction of a ‘situation model’, a mental
model of the topic which leads to better understanding than more superficial
tasks [120]. To develop better writing skills it is important for students to
get both practice at writing essays and receive personalized feedback [116].
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However, due to increasing class sizes and the time taken to e↵ectively grade
written assignments, the dominant form of assessment in US classrooms and
colleges has become the multiple choice test, in place of essay writing [239].
This is due to the ease at which the multiple choice test can be constructed
and automatically graded.

To help address these problems with essay grading and make it a more
practical form of assessment, considerable work has been conducted into creat-
ing automated essay assessment software (or AES, e.g. [128, 204]). Proponents
of AES software claim that AES systems can perform on a par with, or in some
cases better than human graders when evaluated in terms of inter-rater reliabil-
ity [163, 203, 204] and level of agreement with human graders [185]. However,
most of this work has been focused on traditional essay grading - summative
assessments where each essay receives a single grade only. An alternative form
of assessment is formative assessment - rather than providing a student with
a single score they are provided with feedback throughout the essay writing
process. This feedback highlights areas of potential improvement to help the
students to become more proficient writers, and typically covers many di↵erent
aspects of writing providing a more holistic assessment rather than a single
score for the entire essay.

While time spent practicing reading and writing is strongly predictive
of ability, receiving timely feedback is particularly critical to the quality of
improvement in writing skills [10, 127]. Research into providing automated
feedback during essay writing has primarily focused on extending traditional
AES systems to provide automated feedback to students as they construct the
essays rather than designing new approaches specifically to solve this problem.
Existing AES systems rely heavily on surface level features of an essay - such
as the word count, syntax, quality of the grammar, and lexical proficiency
(variety and rarity of words used) [185, 48]. While these features have proven
e↵ective at predicting an essay’s grade by measuring the student’s overall
writing competency, they are insu�cient to e↵ectively judge the relevancy and
appropriateness of the essay response [164, 56, 247]. A similar criticism of AES
systems is on the grounds of ‘construct validity’, specifically the algorithms fail
to determine the writer’s level of understanding and knowledge of the subject
matter [185, 40], nor the strength and validity of their arguments [48]. As a
result, the level of feedback provided by these systems is restricted to ‘writing
mechanics’ - matters of form, structure and style of essay writing. It is not
surprising then that studies have shown that providing feedback from these
systems results primarily in improvements in writing mechanics but not overall
quality when measured in terms of subject matter understanding, and validity
of arguments [205].
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To provide personalized feedback to improve higher-level writing and
reasoning skills, it is necessary to understand the arguments put forth in an
essay, and evaluate them for validity and completeness with respect to the essay
question and source text. This requires a departure from the methods used in
traditional AES systems in order to provide more e↵ective writing feedback.
While some work has been conducted into providing some forms of automated
formative assessment (e.g. [68]), little work has focused on determining the
level and quality of causal reasoning presented in an essay. Natural Language
Processing (NLP) is a sub-field of computer science and artificial intelligence
(AI), that studies algorithms for understanding and modeling natural language
data. This work focuses on building an application to identify causal relations
in explanatory scientific essays. Specifically, this research investigates NLP and
machine learning methods for automating the construction of ‘causal models’
from written essays, as explained in the next section. Creating a solution to
this problem would not only have many potential applications in education,
but could also be adapted to extract causality from more general scientific
texts.

1.2 Causal Models

In order to understand the causal reasoning in an explanatory essay, we re-
quire a method of representing the causal structure of an essay. Psychologists
construct mental models which attempt to describe the thought processes and
mental algorithms underlying certain tasks to better understand how humans
perform them. In their 1983 book ‘Strategies of Discourse Comprehension’
[230], Van Dijk and Kintsch described a form of mental model of text compre-
hension called a ‘Situation Model’. A form of situation model that specifically
describes causal reasoning is referred to as a ‘Causal Model’. This defines
a set of core concepts for a particular domain along with causal inferences
between these concepts representing cause-e↵ect relations. These inferences
can be connected to form causal chains which represent a logical sequence of
inferences in an explanatory essay. Causal models can therefore be used to
represent the causal reasoning present in an essay in a human and machine
readable format. Given a set of essays annotated according to such a model, a
machine learning system can then be created to recreate these mental models
automatically from the essay texts. Causal models and the essay annotation
scheme will be discussed in more detail in chapter 2.
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1.3 Problem Statement and Research Ques-
tions

Science education has focused on explaining causality for some time [242, 26,
for example]. However, automatically detecting causality in scientific essays
has received little attention in the literature. Research into causality detection
has instead focused on di↵erent kinds of texts [33, for instance]. Presumably
due to the di�culty of the task, most work in this area has attempted to
address a simpler problem - detecting the presence or absence of causal rela-
tions only between certain sub-types of causal relation, such as between two
noun-phrases [11], or between nouns and verbs only [79]. To overcome these
limitations in the types of causal relation that can be detected, this research
has focused on developing techniques to automatically infer complete causal
models for scientific essays directly from essay texts. As previously described,
a ‘causal model’ consists of a series of concepts linked together through causal
relations. To automatically construct a causal model of an essay, a system
would need to first identify the core essay concepts referenced in the essay,
and then determine the causal relations between these concepts. To accurately
identify concepts and causal relations between concepts, the system would also
need to resolve anaphoric references within the essay text. Finally, the system
would need to analyze the essay holistically to determine how all the concepts
are connected to one another via causal relations in order to construct a causal
model of the entire essay. Consequently, this problem has been decomposed
into four simpler sub-problems:

1. How do we automatically label words with their associated essay con-
cepts from a pre-defined causal model?

2. How do we determine the causal links between essay concepts?

3. Can we improve the accuracy of the word-tagging and causal relation
extraction models by first resolving coreferences within the text?

4. Can we utilize the overall structure of the essay to improve the system’s
accuracy?

For each of these problems, the current literature was used to determine
the best approach or approaches that were most likely to solve the problem,
and re-phrase each problem as a specific research question in order to incorpo-
rate the di↵erent approaches. These will be described in the following sections.
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1.3.1 Research Question 1

Problem 1 states:

“How do we automatically label words with their associated
essay concepts from a pre-defined causal model?”

This is a word labeling or word-tagging problem - for each word in a
sentence, assign zero, one or more concepts from the causal model to that
word. This is related to a number of sequence labeling problems which are
common in the field of NLP, for example part-of-speech tagging and named-
entity recognition. The most commonly used approach for solving a sequence
labeling problem is to use a linear chain probabilistic graphical model (dis-
cussed in section 3.4.2.1). These are a simple form of probabilistic graphical
model that are used to solve sequence labeling problems because they are
able to model both the probability of the label given the current and previous
words, and also given the previous labels. Two of the most common examples
of this type of model include Hidden-Markov Models (HMM) and Conditional
Random Fields (CRF), and both have been successfully applied to many NLP
sequence labeling tasks, including part-of-speech tagging, named entity recog-
nition, information extraction and text segmentation [129]. In general, the
CRF algorithm out-performs the HMM because it does not su↵er from the
‘label-bias’ problem (see section 3.4.2.1). While the strength of these models
lies in their ability to model dependencies between consecutive labels, they are
trained using the previous labels assigned to the training data, which are al-
ways 100% correct. They cannot be trained using their own noisy predictions
for the previous labels, and thus fail to accurately model the unreliability of
their own predictions.

A simpler approach to solving this problem is to use a window-based
tagging model - use a window of words around the word to be labeled as
features to train a traditional classifier (see section 3.4.2.3). The advantage
of this approach is that any traditional machine learning algorithm can be
used to build a tagging model, and the algorithm can take advantage of any
contextual features from the words within the window. However, the main
disadvantage of this approach is that unlike the HMM and CRF model, it is
unable to model dependencies between the consecutive labels in the training
data. In addition, it is unable to make use of any information outside of the
word window, and thus cannot model longer-range dependencies.

Online tagging models exist that can be trained iteratively to make
predictions using both the contextual information from the sentence and their
previous label predictions. These iterative machine learning methods have
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been show empirically to outperform alternative approaches that rely solely
on the training data labels [45]. Two examples of popular iterative tagging
models are the averaged perceptron, and a recurrent neural network. The
averaged perceptron has been shown to out-perform a specific form of linear
chain probabilistic model called a Maximum-Entropy Markov Model on part-
of-speech tagging and noun-phrase chunking problems [35], and is commonly
applied to the more challenging problem of natural language parsing [37, 43]
(see section 3.4.5). A recurrent neural network (RNN) is a type of neural
network capable of handling sequential prediction tasks by maintaining an in-
ternal state that is updated as each new input is processed. This allows it to
model longer-range dependencies than is possible with simpler model types,
such as a CRF model or an averaged perceptron, and it can be trained in
an iterative fashion using its own prior predictions. RNN’s have been suc-
cessfully applied to a wide range of complex sequence labeling tasks [78, 86],
for example they have achieved state-of-the-art performance on unsegmented
connected handwriting recognition [87], named entity recognition [27, 170],
language modeling [146, 248, 170] and speech recognition [85].

Considering these di↵erent techniques, the following research question
was created to address problem 1:

“Which of the following model types is the most e↵ective ma-
chine learning model to automatically label words with their asso-
ciated essay concepts from a pre-defined causal model?”

A Window-Based Word Tagging Model

B Conditional Random Field

C Hidden Markov Model

D Averaged Perceptron

E Recurrent Neural Network

For the reasons stated above, I predicted a recurrent neural network
would out-perform the other algorithms on the sequence labeling task.

1.3.2 Research Question 2

Problem 2 states:

“ How do we determine the causal links between essay con-
cepts?”
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This problem requires determining, for a given sentence, whether or
not a causal relation exists between any two concept codes discovered in that
sentence. The prior literature on causal relation extraction focuses on the use
of lexico-syntactic patterns to detect specific types of causal relations that can
occur in open domain text. To solve this problem however, we need to be
able to detect any type of causal relation that can occur only between any two
concept codes. The solution could not be restricted to specific types or cate-
gories of causal relation, and should only care about domain specific relations
that are present within the causal model. I therefore needed a more flexible
approach that could be trained on data specific to this particular problem.

A simple solution would be to adapt the optimal word tagging problem
determined from Research Question 1 to detect causal relations by treating
that problem also as a word-tagging problem, where the tags to be predicted
are causal relations instead of concept codes. However, the causal relations
that occur in the essays can span the length of the entire sentence, and the
occurrence of one causal relation can also be influenced by the presence of
other concept codes within the sentence that are not part of the causal rela-
tion. To make use of this information, a stacking or ‘stacked generalization’
approach can be applied [246]. Stacking takes the predictions from a number
of base-classifiers and feeds them as inputs to a meta classifier which can make
predictions in light of the predictions of all of the base-learners (see section
3.3.1.5). To use stacking to solve the causal-relation extraction problem, the
optimal word labeling model’s predictions about which concepts exist within
a sentence were used as inputs to train a stacked model.

The disadvantage of these two approaches is that they treat each causal-
relation as a separate label to be predicted. A lot of the observed causal rela-
tions are very rare in the training data, making it hard for the model to learn
to accurately predict these relations without a much larger amount of positive
training examples. A better approach would be to build a system that can
treat this problem as a binary classification problem - given a pair of concept
codes, is there a causal relation between them? One analogous problem from
the domain of NLP is dependency parsing, a form of natural language pars-
ing that detects a series of binary dependencies between words in a sentence.
Framing the problem as one of detecting binary dependencies between concept
codes, the predicted concept codes could be used to build a dependency parser.
One of the most successful methods of building a dependency parser is to use
a conditional-history, transition-based based parsing model that parses a sen-
tence by making a sequence of parsing decisions, each decision conditioned on
the remaining input and all prior parsing decisions (see section 3.4.3). At the
center of any parsing problem is a di�cult search problem - given the many
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di↵erent ways in which a sentence can be parsed, determine the most likely
parse tree. The SEARN algorithm has been shown to outperform a number
of structured learning algorithms, including the averaged perceptron, CRF,
SVMSTRUCT, and M3N, on a number of NLP structured learning tasks [43, 44]
(see section 3.4 for a description of structured learning). SEARN treats a com-
plex problem such as dependency parsing as a sequence of search decisions,
and trains a separate machine learning model to make each decision.

One important aspect of detecting causal relations is understanding the
context of how each concept code is used in a sentence, and how the author is
connecting the two concepts. In order to do this e↵ectively, the model needs
to be able to process the whole sentence and learn long distance relationships
between words. Recurrent Neural Networks (RNNs) have achieved state-of-
the-art results in tasks like sequence labeling and language modeling [146,
248, 170] where learning long term dependencies between words and phrases
are important for achieving good results. Furthermore, RNN’s are able to
take advantage of neural word embeddings which have been pre-trained on a
large external corpus. Neural word embeddings capture semantic information
about the meaning of each word in the form of a vector representation, allowing
the RNN to better generalize on out-of-vocabulary words not present in the
training data. See section 3.5 for more information on RNN’s and neural word
embeddings.

Incorporating these di↵erent approaches, Research Question 2 became:

“What is the most e↵ective approach for determining causal
links between concepts from the algorithms below?”

A Extending the optimal tagging model from Research Question
1 to detect causal relations

B Creating a Stacked Model using the predictions from the op-
timal word tagging model from Research Question 1

C Transition-Based Parsing Model

D Recurrent Neural Network

Due to its strong performance in solving a wide range of complex NLP
problems, I believe that using the SEARN algorithm to build a transition-
based dependency parser would be the most e↵ective solution for detecting
causal-relations.

1.3.3 Research Question 3

Problem 3 states:
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“Can we improve the accuracy of the word-tagging and causal
relation extraction models by first resolving coreferences within the
text?”

Anaphoric references are common throughout the research data set as
the students often refer to essay concepts mentioned earlier in the sentence,
or discussed in previous sentences using anaphoric references. The system’s
performance could therefore be improved by attempting to resolve anaphoric
references to detect certain concept codes within an essay. To resolve anaphoric
references, two publicly available coreference resolution libraries were used to
detect and resolve coreferents - the Berkeley and Stanford coreference res-
olutions systems. The Berkeley coreference resolution parser is part of the
Berkeley Named Entity Resolution system, which demonstrated state-of-the-
art performance on the CoNLL 2012 shared task [59] at the time of the paper’s
publication, attaining an F1 score of 61.71. The Stanford neural coreference
system [31] is the most accurate model from the Stanford CoreNLP library
on the CoNLL 2012 shared task at the time of writing, and achieved an F1

score of 65.73, improving on the Berkeley parser’s accuracy on that dataset.
Because the performance of any coreference resolution system depends largely
on the dataset evaluated, both systems were evaluated on our data.

The accuracy of the word tagging and causal-relation extraction models
could be evaluated when using each of these coreference resolution systems,
resulting in the following Research Question:

“Does the accuracy of the word-tagging and causal relation
extraction models improve when coreferents are resolved using ei-
ther of the following two state-of-the-art coreference resolution sys-
tems?”

A The Stanford Coreference Resolution System

B The Berkeley Coreference Resolution System

Given the relative frequency of anaphors in the essay data, I predicted
that using one or both of these coreference parsers would improve the perfor-
mance of both the word-tagging and causal relation extraction models, pro-
vided at least one of these parsers was e↵ective at detecting coreferences within
the essay data. I also expected the Stanford parser to produce a greater im-
provement than the Berkeley parser due to its stronger performance on the
CoNLL-2012 data.

The Stanford Coreference Resolution System is available to download
from [90], while the Berkeley Named Entity Resolution System can be down-
loaded from [89].
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1.3.4 Research Question 4

Problem 4 states:

“Can we utilize the overall structure of the essay to improve
the system’s accuracy?”

The first two research questions look at determining the concept codes
associated with the words in a sentence, and the causal relations occurring
within a sentence, and do not use information outside of the sentence when
making classification decisions. While Research Question 3 looks at anaphoric
references occurring within and between sentences, it does not utilize the over-
all structure of the essay. The location of a particular sentence within the essay
and also within the current paragraph, as well as the concept codes and causal
relations that are discussed in the other sentences of the essay likely influence
the codes and causal relations that exist in that sentence. This problem subse-
quently asks whether we can more accurately create a causal model by making
use of this additional information.

To solve this problem, it could again be framed as a problem of learning
to make a sequence of decisions, and similarly apply a conditional-history,
transition-based based parsing model to solve this problem. However, unlike
in Research Question 2 where we limited the parsing history to that of the
current sentence, for this problem the conditional history could be extended
to encompass all previous and subsequent sentences in the essay. The optimal
model for research question 2 was extended to solve this problem by including
additional structural features from the essay, as well as a larger conditional
history that spans the rest of the essay.

While transition-based parsing models are one of the most successful
and widely used types of natural language parsing model, another very suc-
cessful approach is to use a reranking model. First a generative model is used
to generate a number of likely parses for a sentence, or in this case a set of
likely causal models for an essay. Then a second model is used to rerank the
candidates according to their likelihood given the input sentence, or in this
case the essay. This can be a very powerful approach, because the reranking
model can use a number of new features computed from the generated parse
trees, in addition to the original features extracted from the essay text, to
rerank the parses. Unlike the transition-based parser which uses local features
to make a sequence of parsing decisions, the reranking approach is a global
model, which is able to evaluate the consistency of entire causal models with
that of the training data to determine which model is most probable. The
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main limitation of this approach is that it is only able to consider causal mod-
els produced by the generative model. If the most accurate causal model is not
produced by the generative model, it can not be considered by the reranking
model.

Incorporating these two di↵erent techniques, Research Question 4 be-
comes:

Can a more accurate causal model of an entire essay be con-
structed by using information from the whole essay using either:

A A Transition-Based Parsing Model to parse the entire essay

B A Reranking Model to rerank possible causal models

Because a reranking model is able to evaluate each generated causal
model as a whole rather than constructing it iteratively, I predicted this would
be the more successful approach at solving this problem.

1.4 Contributions of this Work

This research presents the first system to extract causal relations from es-
says according to a pre-defined causal model of the essay topic. Furthermore,
this work aims to further advance the techniques of causal relation detection
from detecting the presence or absence of individual causal relations to auto-
matically inferring chains of causal reasoning, and building complete causal
models from a text document. To the best of my knowledge, this is the first
piece of work to attempt to tackle these two problems, and also the first study
investigating approaches to detecting causality in explanatory scientific essays.

In recent years, advances in deep learning techniques have produced
big improvements in the areas of speech recognition, image classification, and
sentiment analysis, as well as numerous other applications [51, 123, 206]. How-
ever, little work has attempted to apply deep learning techniques to identify
complete causal chains or causal models in scientific essay text. This research
compares the e�cacy of deep Recurrent Neural Networks for solving these
problems with that of a number of more traditional machine learning tech-
niques.

1.5 Potential Applications

The final system outputs the set of concepts found in the essay, identifying
where in the original essay text these concepts where located. In combination
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with the causal model, this could be used to determine which essay concepts
were omitted by the student altogether to bring these concepts to their atten-
tion. The system also extracts individual cause-e↵ect pairs mentioned in the
essay. This could help identify invalid inferences where the cause and e↵ect
are not connected in the causal model. It could also help identify incomplete
explanations, where the student has omitted intervening concepts when speci-
fying a cause and e↵ect relation. The system output could also be analyzed to
determine the order in which the causes and e↵ects are introduced within the
essay, which could be used to evaluate whether or not the explanations in the
essay were presented in a logical order, and if not it could be used to suggest
a clearer and more structured explanation. Finally, the system could be used
to present example sentences and sections of essays from other students that
more completely answer parts of the essay question.

This analysis could be used in a wide range of teaching applications,
such as providing immediate feedback to the learner whilst writing an essay,
or to improve upon existing systems for providing formative assessments. Fur-
thermore, it could help address the issue of construct validity in AES systems,
and could be used to assist manual essay grading by helping a teacher more
rapidly identify which essays have the most problems and may need to be
manually graded.

There are also additional potential applications for this research outside
of the educational domain. There are many domains where causal models al-
ready exist alongside a wealth of unstructured textual data on the domain, for
example determining the mechanism of action of a new drug from a scientific
paper, or identifying the key arguments in a legal case from a legal document.
Given a causal model of the domain and su�cient annotated text documents,
this system could be adapted to generate causal models from text for a new
domain.

This system could also advance the field of Natural Language Process-
ing (NLP). Traditional question answering (QA) systems are mostly restricted
to answering simple questions, as they are unable to follow chains of reasoning.
If a QA system is able to build a causal model of a piece of text, it could answer
more complex questions by analyzing a causal model of that text. Dialog sys-
tems, where a user interacts with a system using a natural language interface,
could also benefit from this work as they could build a causal model of the
user’s problem by combining information across the entire dialog it has had
with the user. This could also guide the dialog agent to ask more appropriate
questions by analyzing the causal model to look for gaps in its current knowl-
edge of the problem. Finally, this system could be used to enhance the field of
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information extraction by extracting more complex causal relations from text
documents.

The remainder of this thesis will be laid out as follows. Chapter 2 will
describe in more detail the causal model, along with the process by which the
essays were collected and annotated. Chapter 3 will describe related research
in the areas of text classification, sequence learning and causal relation detec-
tion that are relevant for this topic, including an array of machine learning
techniques applicable to this task. Chapters 4 to 7 will then describe the
research conducted to solve research questions 1 to 4.
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Chapter 2

From Student Essays to Causal
Models - The Dataset

Situation models are an important form of mental model principally used
in psychology for modeling how people acquire knowledge and understanding
from reading. In this chapter, I will describe a specific form of situation model,
a ‘causal model’, that focuses solely on the causal inferences present in a body
of text. I will describe how this form of model is identified from an essay
by an annotator and then used to evaluate the quality and completeness of
the inferences demonstrated by the student through their writing. Automatic
extraction of a causal model from student essays will form the focus of this
research.

2.1 Situation Models

The term ‘situation model’ was first defined by Van Dijk and Kintsch in
1983 [230] to attempt to create an abstract model of the thought processes
underlying text comprehension. To develop an understanding of a piece of
text, it is thought that the reader accumulates knowledge of the topic as
they read each sentence, combining new knowledge with that acquired from
previous sections of the same material [234]. Following the initial paper in
1983, a number of di↵erent situation models have been described, including
the ‘construction-integration model’ [119], the ‘landscape model’ [229], and
the ‘resonance model’ [77]. These models have shown that text comprehen-
sion cannot be the sole product of inferences made within the text. Instead
the reader has to also build upon their own prior knowledge to construct new
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factual information from the material that is relevant to their individual ex-
periences and knowledge of the world [234].

A situation model is defined as consisting of 5 di↵erent dimensions of
information within the text to which readers attend when forming a mental
model of the text: spatial information, temporal information, causality, inten-
tionality and finally information about the main protagonist(s) [259]. Accord-
ing to the theory, when information from one of these 5 dimensions is extracted
from the text, the user updates their current situation model to integrate this
new information. Studies into ‘priming e↵ects’ lend compelling evidence in
support of this theory of text comprehension. Experiments have shown that
after reading a passage of text, information related to the text that falls into
one or more of these 5 di↵erent dimensions is more readily available to the
reader (it is ‘primed’) compared to other types of information [259]. This
has been measured using various experimental techniques, including the time
taken to make certain verbal utterances or recognize words that were primed
following reading, compared to words that were not primed. In this research,
I will focus on a di↵erent form of situation model that focuses solely on the
causal dimension, called a ‘causal model’.

2.2 Causal Models

A causal model is a type of situation model that focuses on modeling the
causal inferences present in some written material, for instance, a causal model
of some scientific phenomena represents the relevant underlying scientific pro-
cesses at work, and the di↵erent cause-e↵ect relations that occur between
them. Such a model shows how various initiating factors lead, via a number
of intervening concepts, to the final outcome.

Two examples of a causal model are shown in Figures 2.1 and 2.2
below. Figure 2.1 shows a causal model for the causes of coral bleaching (a
whitening of coral reefs as they die). In this model, there are two di↵erent
initiating factors - Decrease in Trade Winds and Storms / Rainfall.
These lead via two di↵erent causal chains and various intervening factors to the
final outcomeCoral Bleaching. Figure 2.2 shows a causal model describing
the di↵erent factors that lead to an increased risk of getting skin cancer. In
the Figure, the two initiating factors - Closer to the Equator, and -
Increased Melanin initiate two separate causal chains, both resulting in
a single final outcome - Increase in Skin Cancer Risk via a number of
di↵erent intervening factors, such as - Increase in Direct Sunlight and
- Decrease in Protection.
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Figure 2.1: Causal model for Coral Bleaching

Figure 2.2: Causal model for Skin Cancer

Both of these models include one or more causal links not explicitly
mentioned in the source text. These are represented by the dotted lines linking
two concepts in the Figures, for example the causal relation between concepts
6 and 7 in Figure 2.1. The students were expected to infer these causal links
based on their overall understanding of the source material.

2.3 The Construction of Causal Models for
Explanatory Essays

In conjunction with the READI grant [70] (funded by the National Center for
Education Research), causal models were created to evaluate how e↵ectively
students are able to synthesize and combine information from di↵erent source
texts. Three di↵erent domains were studied as part of this research - science,
history and english literature, and the READI grant was created with the goal
of improving adolescents’ skills at reading multiple texts to produce discipline
specific explanations in the case of literature, or causal explanations in the case
of science and history. The two causal models described above were created as
part of this research. This research project will focus solely on the aspects of
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this research related to improving causal explanations of scientific phenomena,
and will use the document sets collected during the 2014-15 school year in the
science domain only.

Middle school and high school science students were asked to read a set
of documents, and asked to explain the principal underlying causes of some sci-
entific phenomena by integrating information across several di↵erent sources.
The writing prompts for each essay topic can be seen in appendix A. A causal
model was first constructed for each essay topic that described the principal
causal chains underlying the phenomena, and then used to construct a set of
source documents (see appendix B for examples of the source documents). The
source documents were created from reputable sources (e.g. the US Geological
Survey, the NASA earth laboratory, and online science textbooks) and were
constructed to facilitate the evaluation task; no individual source could be
used on its own to explain the scientific phenomena. This forced the students
to combine information from the di↵erent documents when constructing the
causal explanations. Each document was written at a level appropriate for the
target audience, and separate documents were presented on separate pages
without staples or numbering so that the students could more easily compare
documents from di↵erent sources.

Initially, a pilot study was conducted to help the researchers understand
and evaluate all aspects of the experimental design, including the creation of
the causal model and accompanying documents sets, as well as the annotation
processes and machine learning approaches used to automate the annotation
process [95]. Guided by the findings of this pilot study, two subsequent studies
were conducted, the first on the topic of coral bleaching, and asked the students
to “explain how and why coral bleaching rates vary at di↵erent times”, and
the second on skin cancer, and asked students to “explain how and why rates
of skin cancer di↵er around the globe”. See Figures 2.2 and 2.1 for the causal
models that were created for these two di↵erent topics. Each set of documents
began with a short background document (255 and 273 words) to establish
the main outcome, and provide the necessary framing, background material
and vocabulary to answer the essay question. This background document
was followed by 4 additional documents consisting of a number of di↵erent
document types (images, maps, graphs, and descriptive text). Students were
instructed to write their essays using the sources provided, and were given
several hints to ensure they understood the goal of the task (e.g. “you have
to piece together important information”, and “you are the one making con-
nections across sources”). The 2 studies focused on 10th grade high school
students only, and the same 1,300 students were used for both studies. Three
coders were trained as annotators of the essay data; one coder was trained for
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each of the two topic, and a third was trained on both topics. Inter-rater reli-
ability was high for each each of the datasets, with a  values ranging between
0.76 and 0.97 for the di↵erent studies. A detailed description of the annotation
procedure can be found in appendix C, and examples of some essays from both
datasets can be found in appendix D.

In Figure 2.3 below you can see an example of an annotated coral
bleaching essay, showing a sequence of three causal relations forming a causal
chain. First there is a code 3, the cause - Increase in Water Tempera-

tures leading to the e↵ect, code 5 - Decrease in Photosynthesis. This
forms part of a causal chain with code 5 in turn acting as the cause of e↵ect
5b - Decrease in Supply of Chemicals to Coral for Food. Finally,
there is a third causal relation, that of code 5b leading to code 50 - Coral

Bleaching. This last causal relation overlaps the 5→5b causal relation, and
the e↵ect precedes the cause in the sentence. In each causal relation, the cause
and e↵ect codes constitute a sequence of multiple words, and the cause is con-
nected to the e↵ect via an ‘explicit’ connector concept code. This demonstrates
how one sequence of words can have multiple overlapping causal relations, and
shows that the cause, explicit and e↵ect concept codes do not always appear
in the same order within a sentence.

Figure 2.3: An Annotated Coral Bleaching Essay

Overall, the students were successful at identifying some of the core
essay concepts, but struggled to integrate information between sources. For
example, 74.3% of all essays contained one or more concept codes from the
causal model, and 58.6% of the essays contained some causal chain. However,
only 30.9% of the essays contained a causal chain with one or more intervening
factors between a cause and the final outcome. Consequently, most of the
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causal chains observed in the essays linked a cause directly to the final outcome.
For example, in a coral bleaching essay a student may state that an Increase

in Coral Stress causesCoral Bleaching, omitting the intervening factor
Ejection/Death of Algae (see Figure 2.1). One possible explanation for
the small number of essays with longer causal chains is that creating such
a chain required the students to combine information from multiple sources,
indicating this was the most challenging form of causal relation for them to
identify from the source text.

2.4 Analysis of the Dataset

The number of essays, sentences, words, and the vocabulary sizes (unique
words) are listed in Table 2.1 below. Note that the vocabulary size was com-
puted after the application of a simple spell checker.

Table 2.1: Dataset Sizes and Vocabulary

Dataset Essays Sentences No. Words Vocabulary
Coral Bleaching 1,127 10,198 167,656 4,770
Skin Cancer 1,088 10,670 180,899 4,702

The essays from each dataset vary greatly in length, with the skin
cancer essays being slightly longer and using more unique terms (see Table
2.2 and Table 2.3). While the skin cancer essays have more unique words per
essay, on average, there are slightly fewer unique words in that corpus: 4,702
words, compared with 4,770 unique words for the coral bleaching corpus.

Table 2.2: Coral Bleaching Essay Statistics

Min Max Mean Median Std. Deviation

Word Length 1 461 148.8 142.0 81.7
Unique Words 1 226 83.9 83.0 37.8

Sentence Length 1 31 9.0 8.0 5.2
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Table 2.3: Skin Cancer Essay Statistics

Min Max Mean Median Std. Deviation

Word Length 4 479 166.3 157 82.4
Unique Words 4 215 90.2 88 36.2

Sentence Length 1 36 9.8 9 5.0

2.4.1 Concept Code Analysis

There are 13 unique concept codes in the coral bleaching essays, and 9 in the
skin cancer essays and there is a small amount of overlap between the essay
concepts assigned to each word in both datasets. For the coral bleaching essays,
out of 167,656 words, there are 52,014 words assigned concept codes (31%), 12
words of which have multiple concept codes associated with them (0.007%).
For the skin cancer dataset, out of 180,899 words, 43,024 words were assigned
concept codes (24%), and just 2 words have multiple concept codes (0.001%).
At the sentence level, the proportion of sentences with multiple codes is much
higher. In the coral bleaching dataset, 7,085 out of 10,198 sentences (69%)
have one or more concept codes, and 3,132 sentences (31%) have multiple
codes. For the skin cancer dataset, 6,671 sentences out of 10,670 (63%) have
concept codes and 4,555 (43%) have multiple concept codes. Comparing both
datasets, a greater percentage of words and sentences in the coral bleaching
dataset were assigned concept codes than in the skin cancer dataset. The
length of each concept code reference in the essays was shorter for the skin
cancer dataset, with an average of 3.1 words per code, compared with 4.0
words per code for the coral bleaching dataset. These data are summarized in
Table 2.4 below.

Table 2.4: Concept Code Statistics

Coral Bleaching Skin Cancer

Number of Concept Codes 13 9
MEAN Number of Words Per Concept Code 4.00 3.10
% Words with Concept Codes 31.03 23.78
% Words with Multiple Concept Codes 0.0072 0.0011
% Sentences with Concept Codes 69.48 62.52
% Sentences with Multiple Concept Codes 30.71 42.69
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To determine if there are any statistical dependencies between the con-
cept codes occurring in a sentence, we can calculate the pointwise mutual
information (PMI) between pairs of concept codes as they occur within sen-
tences in the dataset. PMI is computed as follows:

pmi(x; y) = log
p(x, y)

p(x) · p(y) (2.1)

PMI divides the joint probability of two events occurring - p(x, y) by the
probability of these 2 events occurring by chance - p(x) · p(y), and then takes
the natural log of this number. PMI values greater than zero denote events
that are more likely to occur together than by chance alone, whereas negative
PMI values indicate two events that are unlikely to occur together (they occur
together less frequently that would be expected by random coincidence). Given
the structure of the causal model, it seems likely that if 2 concept codes exist
in a sentence, that they are adjacent codes in the causal model, i.e. there is a
direct causal relation between them. If we examine the PMI values for adjacent
concept codes in each model, we see that there are positive PMI values for all
but one pair of codes in each model (see table 2.5 and table 2.6 below):

Table 2.5: Coral Bleaching Concept Code Dependencies

Concept Code Adjacent Code PMI

1 2 2.23
2 3 1.53
3 4 1.73
4 5 2.11
5 5b 2.11
5b 14 -0.69
6 7 2.24
7 50 1.20
11 12 3.93
12 13 3.58
13 14 2.59
14 6 2.34
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Table 2.6: Skin Cancer Concept Code Dependencies

Concept Code Adjacent Code PMI

1 2 1.83
2 3 1.19
3 4 1.54
4 5 1.39
5 6 1.69
6 50 1.10
11 12 2.82
12 6 -1.50

From this we can conclude there is quite a strong dependency between
the adjacent concept codes, indicating that the ordering of concept codes
within the essay is not random. In other words, the occurrence of one concept
code in a sentence makes the appearance of an adjacent concept code from the
model much more likely. It is interesting to note that the only negative PMI
values between adjacent codes in each causal model are for one of the pair of
codes that occur when the two di↵erent paths in each model combine, between
codes 5b and 14 for the coral bleaching dataset, and between codes 12 and 6
for the skin cancer dataset. The causal connection between codes 12 and 6
in the skin cancer model is also an implied causal relation; it is not stated
explicitly in the source texts, making this a more challenging causal relation
for the students to determine.

In terms of the coverage of concept codes, 22% of the 13 coral bleaching
concept codes were included on average in each essay, and 36% in the skin
cancer dataset. However, not all concept codes occurred at the same frequency
in the dataset, some were much more prevalent than others, resulting in an
imbalanced dataset as seen in Tables 2.7 and 2.8 below. In this calculation, a
sentence was assigned a code if that code occurred one or more times anywhere
in the sentence.
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Table 2.7: Percentage of Words and Sentences Assigned Each Concept Code
in the Coral Bleaching Dataset

Coral Bleaching

Concept Code Percentage of Words Percentage of Sentences
1 3.33 12.69
2 0.85 2.27
3 5.36 14.61
4 1.88 5.38
5 1.46 6.26
5b 1.44 2.69
6 0.88 4.00
7 3.03 9.17
11 0.63 3.67
12 0.51 1.23
13 1.34 4.92
14 1.47 3.34
50 8.86 39.36

Table 2.8: Percentage of Words and Sentences Assigned Each Concept Code
in the Skin Cancer Dataset

Skin Cancer

Concept Code Percentage of Words Percentage of Sentences
1 3.38 13.46
2 3.33 17.22
3 2.30 12.69
4 1.86 7.71
5 2.82 21.94
6 2.88 9.20
11 0.33 2.98
12 0.52 6.08
50 6.36 29.29
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2.4.2 Causal Relation Analysis

Because each causal relation consist of 2 concept codes, there are a lot more
unique causal relations than concept codes and fewer sentences contain causal
relations than concept codes. There are 86 unique causal relations in the coral
bleaching dataset, and 49 in the skin cancer dataset. 35,303 out of 167,656
words (21%) and 2,781 out of 10,198 sentences (27%) of sentence are assigned
causal relations in the coral bleaching dataset. In the skin cancer dataset,
53,742 out of 180,899 words (29%) and 4,483 sentences out of 10,670 sentences
were assigned causal relations, so a greater percentage of words and sentences
were assigned causal relations than in the coral bleaching dataset. This di↵ers
from the concept codes where a larger proportion of words and sentences in the
coral bleaching dataset had concept codes assigned. 4% of words and 12.5% of
sentences had multiple causal relations as opposed to 2.9% and 6.6% for the
coral bleaching dataset, so there is a much higher degree of overlap for the skin
cancer dataset. There is also a higher degree of overlap for the causal relations
compared to the concept codes for both datasets. The average number of words
assigned to a single causal relation is shorter for the skin cancer dataset than
is observed with the concept codes; 10.0 words compared to 11.17 words for
the coral bleaching data. The average number of words constituting a causal
relation is over twice the average length of a concept code because each causal
relation involves two concept codes and usually one or more words linking
the two codes in the relation. These datapoints are summarized in Table 2.9
below.

Table 2.9: Causal Relation Statistics

Coral Bleaching Skin Cancer

Number of Unique Causal Relations 86 49
MEAN Number of Words Per Causal Relation 11.17 10.00
% Words with Causal Relations 21.06 29.71
% Words with Multiple Causal Relations 2.91 4.03
% Sentences with Causal Relations 27.27 42.02
% Sentences with Multiple Causal Relations 6.63 12.50

In addition, the causal relations show a similar class imbalance to the
concept codes, although each causal relation is much rarer. Please refer to
Appendix F for the relative frequencies of the causal relations at the word and
sentence level.
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2.5 Anaphora and Coreference

In linguistics, coreference is the phenomenon where two or more statements
in text refer to the same entity [139]. Anaphora is a type of coreference where
a word such as a pronoun refers to an entity that occurs earlier in the same
sentence or document, called the antecedent. Anaphora resolution presents a
challenging problem for machine learning algorithms when working on NLP
problems; the algorithm must be able to infer the antecedent, being referred to
by the anaphor in order to make correct classification decisions. To understand
the relative importance of anaphora in the di↵erent datasets, anaphoric refer-
ences were annotated as part of the annotation procedure. Table 2.10 below
shows the relative frequencies of anaphoric references within both datasets.

Table 2.10: Anaphora Statistics

Coral Bleaching Skin Cancer

Essays with Anaphora tags 21.02% 29.78%
Sentences with Anaphora tags 3.12% 4.10%
Words with Anaphora tags 0.22% 0.32%
Concept Codes with Anaphora Tags 3.25% 3.84%
Causal Relations with Anaphora Tags 6.64% 6.70%
Causal Relations Spanning Sentences 3.83% 5.39%

When writing the essays, a common writing style was to develop an
explanation of the causal phenomena over several sentences. Consequently, a
number of causal relations described by the students refer to concept codes
that are either causes or e↵ects mentioned in previous sentences, but were
not marked as explicit anaphoric references. These are shown in Table 2.10
as ‘Causal Relations Spanning Sentences’. 3.83% of the coral bleaching causal
relations and 5.39% of the skin cancer causal relations were of this form. Thus,
any machine learning algorithm designed to automatically infer causal relations
from these datasets will be more accurate if it can accurately resolve these
di↵erent types of coreference.

Coreference is a general linguistic phenomenon, and is not specific to
this type of problem or dataset. Therefore. this research can provide insight
into how coreference is used when explaining cause and e↵ect relationships,
and in constructing a causal chain, and has implications beyond this dataset
and this specific set of problems.

25



Chapter 3

Related Work

The 3 di↵erent research questions outlined in Chapter 1 present complex prob-
lems, which are not amenable to traditional machine learning regression and
classification problems. Research Questions 1 and 2 are types of sequence la-
belling problems, where the task is to assign a label to each word in a sentence,
while Research Question 4 involves predicting a causal model - a complex graph
structure. Both of these types of problem are structured learning problems, a
type of machine learning problem where the output has a complex structure
such as a sequence or a graph structure. Furthermore, the 2 sequence labelling
problems also present examples of multi-label classification problems, a special
form of classification problem where there can be varying numbers of labels
for each data point. In this Chapter, I will discuss the main techniques for
solving these kinds of problem. However, I will start by discussing the previous
literature on causal relation extraction, and why the techniques described are
ill-suited to solving the problems outlined in this research.

3.1 Causal Relation Extraction

Science education has focused on explaining causality for some time [242, 26,
for example]. However, automatically detecting causality in scientific essays
has received little attention in the literature. Research in this area has in-
stead focused on di↵erent kinds of texts. In 1987, Cohen [33] outlined a set
of problems that he believed needed addressing to fully understand argumen-
tative discourse. These included defining a set of linguistic clues that define
the structure of an argument, the relative importance of a coherent struc-
ture in argumentative discourse, and the need for a pragmatic analysis when
the participants di↵er in their beliefs. Thirty years later, a workshop at the
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SemEval-2007 conference focused on relation extraction, and included a task
for “the classification of semantic relations between nominals”, which included
the detection of causal relations as a sub-task [80]. The highest F1 score on
this category was 0.82 with an accuracy of 77.5% in a system that used features
based on WordNet, VerbNet, lexico-syntactic features and dependency-parse
features.

The Semeval 2007 causal relation task typifies the prior work in this
area, which has focused on detecting specific sub-types of causal relation that
only occur between certain specific grammatical constructs, and has relied
primarily on the use of surface lexical features and syntactic patterns. Lit-
tle work to date has focused on detecting arbitrary causal relations in text.
This is mainly because arbitrary causal relations are hard to annotate, and
systems designed to detect them have historically achieved very poor perfor-
mance [180]. In 2002, Girju and Moldovan [79] used lexico-syntactic patterns
to detect causal relations between two noun phrases of the form <NP1 verb
NP2>, where the verb was a simple causative. They achieved an accuracy of
65.6% compared to the average of two human annotators. In 2008, Blanco et
al. [11] used lexical, syntactic and semantic features to train a machine learn-
ing model to detect causal relations, attaining an impressive F1 score of 0.895.
However, as with other studies in this area, they restricted the type of causal
relation detected, in this case focusing on explicit and marked causal relations
that consisted of a verb phrase, with a relator and a clause. In a very di↵er-
ent approach, Rink et al [183] built a system that detected causal relations
containing verb events joined with a conjunction. In a novel approach, they
created graphical models of sentences that encoded both syntactic and hyper-
nym information, as well as dependencies from a dependency parser. They
then extracted sub-graph patterns that occurred in causal sentences and used
a constraint satisfaction solver to detect these patterns from new sentences,
attaining an F1 score of 0.39 on this type of causal relation.

A number of authors have attempted to combine pattern matching
and machine learning approaches to benefit from the advantages of both ap-
proaches. To move beyond surface lexical features, in 2014 Riaz and Girju
[182], [181] used Integer Linear Programming [188] to combine verb and noun
semantics with the predictions of a supervised machine-learning model trained
only on linguistic features. They focused on detecting only causal relations
between noun and verbs, achieving an F1 score of 0.41 and an accuracy of
80.73%, a 15% improvement over using linguistic features alone. A more com-
mon approach is to use the syntactic patterns as training data in a machine
learning system. In [212], the authors manually defined lexico-syntactic pat-
terns over words to identify possible sentences involving causal relations. They
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then trained a Näıve Bayes classifier to determine which sentences contained
causal relations, attaining an F1 score of 0.64. However, they focused only on
causal relations where the cause and e↵ect were both present, and indicated
by specific linguistic units.

Additionally, there has been some work in this area from within the
medical domain. In 2000, Khoo et al [117] manually constructed a set of
graphical patterns that indicated causal relations, and matched these against
syntactic parse trees to extract causal relations, and identified the cause and
e↵ect by filling in specific slots in the patterns. They achieved an F1 score for
detecting causal relations of 0.681, with F1 scores of 0.497 and 0.512 at de-
tecting the specific causes and e↵ects respectively. Chang and Soi [21] in 2004
designed a system to identify causal relations existing between two events
expressed as noun phrases. While other work in this area has focused on
extracting causal relations within a sentence, they extended their system to
detect inter-sentence causal relations. Using an unsupervised approach for
detecting cue-phrases and lexical pairs from the training data in conjunction
with a Naive Bayes classifier, they attained a precision of 0.746 on detecting
inter-sentence causal relations. In 2006, Giuliano et al used shallow linguistic
information to train an SVM classifier to extract gene and protein interactions
[81]. They used a combination of two di↵erent kernels in the SVM classifier,
one that used the whole sentence and a second that used only the local context
around the entities involved. Fundel et al [73] also worked on extracting reg-
ulatory interactions between genes and proteins, building the RelEx system.
This used patterns extracted from dependency parse trees to identify these
interactions, achieving an F1 score of 0.8 on extracting these domain specific
relations. More recently, in 2010 Volkova et al [236] used syntactic patterns
and part-of-speech tagging to identify semantic relations in biomedical text,
including causal relations to automatically expand a manually constructed on-
tology. Similar to other work, only causal relations matching specific syntactic
patterns could be identified.

The causal relations present in the student essays are not restricted
to types of causal relation that only exist between certain grammatical con-
structs. Instead, the casual relations can take any grammatical form, are
specific to the essay question, and consist of scientific explanations relevant
to the essay question. Furthermore, some causal relations span multiple sen-
tences, referencing concept codes described much earlier in the essay, and thus
contain long distance dependencies between the annotations present. Detect-
ing these causal relations is not possible when using syntactic patterns that
rely on the grammatical structure of a sentence, or when using only simpler
lexical features and patterns. To e↵ectively detect these more complex types
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of causal relation, techniques that can leverage short and long-term dependen-
cies between the concepts detected in an essay were needed. In addition, the
final system needed to be able to predict complex graph structures (the causal
model of each essay), and could not be restricted to detecting the presence or
absence of causal relations in sentences. The next sections will discuss some
di↵erent approaches that are better designed to address these issues.

3.2 Discourse Analysis

Discourse analysis is a sub-field of NLP and computational linguistics that
studies coherent sequences of natural language utterances, such as sentences,
propositions, or conversational dialog (written or spoken) where two or more
people take it in turns to communicate. Discourse analysis covers both ‘lo-
cal’ structures of discourse (sentences, propositions, etc) and so-called ‘global’
structures such as the overall topics and schematic structure of a conversation
or an article of text [113]. The study of discourse analysis and modeling has
focused primarily on discourse relations, also referred to as coherence relations
and rhetorical relations. Discourse relations are possible relations or connec-
tions between utterances in a discourse. One example, from [99], is “John
bought an Acura. His father went Ballistic”. This is an example of a ‘Result’
relation, where the first sentence causes or could cause the second. This repre-
sents a form of causal discourse relation, although many other types of relation
exist, for instance ‘Elaboration’, where the second utterance elaborates and
expands on the information in the first.

3.2.1 Rhetorical Structure Theory

Expanding on this idea, Mann and Thompson developed Rhetorical Structure
Theory (RST) in 1988, which proposes a hierarchically structured organization
of texts based on a set of discourse relations between text spans [138]. A related
idea is the notion of coherence. Coherence in natural language describes how
logically and semantically related two utterances are. It is widely believed
that coherence in natural language arises through these types of discourse
relations between discourse units. Most RST relations denote 2 types of text
segment - a central segment called a ‘nucleus’ and a more peripheral segment
called a ‘satellite’ [113], illustrating the fact that most discourse relations are
asymmetrical. For example the text “I love to collect classic automobiles. My
favorite car is my 1989 Duryea” is an example of the ‘Elaboration’ relation. In
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this example, the first sentence is the nucleus and the second is the satellite,
which is interpreted in light of the nucleus [113].

3.2.2 Automated Discourse Parsing

RST and discourse analysis have given rise to the field of discourse parsing,
where parsing models are developed to produce ‘discourse trees’ - a hierar-
chical representation of a piece of text, structured according to the discourse
relations contained within. Automated approaches to discourse parsing have
a long history. Soricut and Marcu [213] in 2003 developed the SPADE sys-
tem that used probabilistic models for sentence-level discourse parsing that
utilized lexical and syntactic features derived from a lexicalized syntactic tree
parsed from each sentence. SPADE had a number of limitations however; it
relied solely on lexical and syntactic features, used a generative rather than a
discriminative approach to estimate the model parameters, and assumed in-
dependence between the label and the structure while modeling a constituent
[111]. Subba and Di Eugenio (2009) [217] developed a shift-reduce parser that
utilized an inductive logic programming classifier (ILP) to identify the type
of discourse relation. The ILP classifier learns a set of first-order logic rules
using features derived from a semantic parser that identifies a number of rich
linguistic features, including compositional semantics features.

Later, in 2013 Joty et al [112] improve on their earlier discourse parsing
model [111] by building a two-phase parsing algorithm using a dynamic CRF
model. First, they construct an intra-sentential discourse parser to produce
a discourse tree for each sentence. Then a multi-sentential parser combines
the sentence-level discourse trees to produce a text-level discourse tree. The
strength of this approach lies in the fact that their model jointly models both
structure and discourse relations, allowing it to capture dependencies between
these two aspects. It achieves this by separately modeling the probability of
two adjacent discourse units being connected, and the probability of two con-
nected units belonging to a particular discourse relation. The result is a joint
model utilizing both of these types of relationship. A CKY-like parsing algo-
rithm is then used to find the globally optimal discourse tree [67]. Their system
achieves an overall accuracy in relation assignment of 55.73%. The main limi-
tation of this approach is the high order of the time complexity - O(n3), where
n is the number of discourse units. This makes using this model impractical
for larger documents. To address this problem, Feng and Hirst (2014) develop
a more accurate discourse parser that has linear-time complexity [67]. Inspired
by Joty et al’s model, they also build a two phase parsing model consisting of
an intra-sentence parser followed by a multi-sentential parser. Their system
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uses a greedy bottom-up parser that uses a cascade of two CRF models, one
for each parsing task, and is capable of a linear time complexity, in terms of the
number of discourse units. In addition they use a novel post-editing approach
that modifies the parse tree by considering information from constituents on
multiple-levels to further improve their accuracy. Their system achieves an
overall accuracy of 58.2% in relation assignment.

3.2.3 Detecting Argumentative Discourse Relations

A lot of previous work on discourse parsing has focused on detecting argu-
mentation. In this context, argumentation is seen as the author making a
claim in the text, and then presenting evidence, or the premise, that they
believe supports the claim. Although a claim could involve stating a cause
and e↵ect relationship, argumentation in this context is not restricted to the
identification of causal relations, as they form just one of many di↵erent types
of argumentative discourse relation. One of the first studies in this area was
done by Teufel in 1999 [220]. She classified sentences from scientific articles
as one of seven rhetorical roles, including claim, result and purpose, achieving
an F1 score of 0.46 using lexical, syntactic and structural features. Later, in
2012, Rooney et al identified claims, premises and non-argumentative text in
the Araucaria corpus, and achieved an accuracy of 65% at this task.

Some authors have focused on detecting argumentative discourse struc-
tures in student essays. In 2001, Burstein et al [18] improved the accuracy of
the e-rater AES software by building a separate module for detecting argumen-
tative discourse relations. The agreement between the argumentation module
and the human raters was 82%, 13% higher than the 69% accuracy achieved
using a bag-of-words approach that ignored argumentation. In 2014, Stab and
Gurevych [216] used a two-step classification approach for identifying argu-
mentative discourse structures in persuasive essays. They trained an initial
set of classifiers to first identify argumentation components, such as claims
and premises. To then identify the structure of the argumentative discourse,
they trained a second classifier to determine whether a pair of argument com-
ponents were support or non-support (i.e. supported or did not support the
claim). They used a variety of di↵erent features, including structural, lexical,
syntactic and contextual features, and attained an F1 score of 0.726 for identi-
fying argument components and 0.722 for identifying argumentative relations.
In both the Stab and Gurevych and the Burstein et al papers, the authors
found that the presence of modal verbs such as would, could, should and might
were useful features in detecting argumentative relations.
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Discourse analysis has also been applied to build more e↵ective essay
tutoring systems. In 2003, Burstein et al [19] built a discourse analysis system
designed to help students improve their essay writing by identifying discourse
elements in their essays. Similar to the other related work in this area, they
focused on persuasive and informative essays where students were required to
state their opinion on a topic and provide arguments in support of that opin-
ion. While other work has primarily focused on argumentative discourse, this
system annotated discourse units as introductory material, thesis, main ideas,
supporting ideas, conclusion, title, and other. The authors used a discourse
parser to parse discourse relations from the RST framework and trained a
number of di↵erent models, including a decision tree classifier and a proba-
bilistic model. They evaluated their system on essays written on topics that
were di↵erent from the training data to see how well the system generalized
to new domains, and achieved an F1 score of 0.79 on these essays.

3.3 Multi-Label Classification Problems

The simplest form of machine learning classification problem involves predict-
ing whether or not the input belongs to a single class, and this is referred
to as a binary classification problem. For more than two classes of labels
where a single label is predicted, the problem is referred to a a multi-class
classification problem. A more complex variant of this is where there can be
a varying number of labels for each example in the dataset, which is called
multi-label classification (MLC). One example of MLC is generating a set of
keywords to use to tag a document with. When a document is uploaded to a
website, the site may ask for a list of di↵erent keywords describing the core
topics and ideas contained within the document to aid search and discovery.
For any given document, it could have zero, one or several di↵erent keywords
describing its contents. Other examples include detecting objects in images,
identifying emotional expressions on faces [135], and assigning genres to a
movie on the IMDB website [24]. Multi-label classification presents a problem
for traditional machine learning algorithms which are usually designed to out-
put a single label for every row, and are unable to learn dependencies between
the output labels. The first two research questions described in Chapter 1,
labeling words with their associated concepts and detecting causal relations
within sentences, both present examples of MLC problems. In this section I
will describe the two main types of approach for addressing this sort of prob-
lem - problem transformation methods, and algorithm adaptation approaches
[25].
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3.3.1 Problem Transformation Methods

One approach to solving multi-label classification problems is to transform
the problem in such a way that traditional classification algorithms, such as
support vector machines and logistic regression, can be applied to solve it. A
number of transformations have been proposed to solve this problem, includ-
ing binary relevance, BR+, classifier chains, the label powerset method, and
stacking [25, 49]. These techniques transform the problem in a number of
di↵erent ways, from breaking down the MLC problem into a series of binary
classification decisions, to training a separate classifier for each unique combi-
nation of labels in the training data. Each transformation method has certain
advantages and limitations that tend to make it better suited to solving certain
types of MLC problem.

3.3.1.1 Binary Relevance

In binary relevance (BR), a multi-label classification problem with L labels
is broken down into L separate binary classification problems, and a separate
binary classifier trained separately for each label. This method has been shown
to be e↵ective at multi-label classification by multiple authors [106] and [135].
One limitation of binary relevance is that it assumes independence between
labels and cannot make use of dependencies between the output labels [136].
The other approaches to multi-label classification discussed in this section
attempt to address this problem by utilizing correlations between the output
labels.

3.3.1.2 BR+

BR+ modifies the binary relevance method to take into account dependencies
between labels during learning [25]. First, an initial set of classifiers are trained
using the BR approach. Then a second set of classifiers are trained, one per
class, on the original dataset but with the labels predicted by the first set of
classifiers used as additional features, excluding the label to be predicted [3].
When the algorithm is tested on unlabeled data, the dataset is augmented
with the predictions from the initial BR classifiers.

3.3.1.3 Classifier Chains

Classifier chains also extend the binary relevancy method to incorporate label
dependency information while learning. L binary classifiers are trained, one
per class, in a chain where each classifier is trained on a separate copy of the
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training data containing all the labels predicted by the previous classifiers in
the chain. When the classifier chain is trained, the true labels from the training
data are used, but for new unlabeled data points, the predictions made by the
classifiers earlier in the chain are used to augment the data [179, 3]. One
disadvantage of this approach is that each classifier can only take advantage
of dependencies between its target class, and the target classes of classifiers
earlier in the chain, thus assuming independence between a class and the
classes predicted later in the chain [25]. Therefore the order in which the
classifier chain is trained is very important, and not all dependencies between
labels can be utilized by the algorithm. In order to solve this problem, it
is possible to train an ensemble of classifier chains, where each model in the
ensemble is trained on a subset of the training data, using a random ordering
of classifiers in the chain [184]. However, this increases the computational
complexity of this approach.

3.3.1.4 The Label Powerset Method

The label powerset (LP) method addresses the independence assumptions of
the binary relevance transformation by treating every unique combination of
labels in the training dataset as a separate new target class to be learned. A
separate binary classifier is then trained for each unique combination [226, 49].
The disadvantage of this approach is that if there are a lot of target classes,
the number of occurrences of each unique combination of classes is often very
rare, even in large datasets [225]. With only a small number of training ex-
amples for each class, it becomes very hard for most machine learning models
to achieve low generalization error on new datapoints. Also, the number of
generated target classes can produce challenges in terms of the computational
complexity of the resulting algorithm [226]. Specifically, this technique creates
up to 2|L| binary classification problems, typically the number of classifiers
growing exponentially with |L| [25]. Furthermore, it is also likely that new
data points will have unique combinations of class labels not seen in the train-
ing data. Classifying these data points with 100% accuracy is impossible with
this approach.

3.3.1.5 Stacking

One approach that attempts to address the limitations of the binary relevancy,
label powerset and classifier chains approach is to use stacking [246], a form
of meta-learning. Stacking is an ensemble method, where the predictions from
a number of base classifiers are used to train a separate meta-classifier on

34



the same supervised learning task. Stacking has been shown empirically to
be particularly e↵ective for solving multi-label classification problems [145].
In the context of MLC, the meta-classifier is trained on the outputs of a set
of models trained using the binary relevance method [49], where each model
predicts a separate class. The main advantage of this technique is that the
stacked model is able to correct the initial predictions for a class in light of
the initial predictions of all the other classes [227, 184], thus overcoming the
label independence assumptions of both the binary relevancy method and the
classifier chains approach. This can also be thought of as a form of multi-task
learning, where training a classifier on several independent tasks improves its
performance on all tasks. Stacking is usually more computationally e�cient
than the label powerset method, requiring fewer classifiers to be trained (two
per label, instead of one classifier for every unique combination of labels),
and does not su↵er from the problem of rare target classes. The features
used to train the meta-classifier are also an important consideration when
training a stacked ensemble classifier. Using the confidence estimates of the
base learners in place of the binary label predictions has been shown to improve
the classification accuracy of the meta-classifier [221, 198].

While problem transformation approaches focus on adjusting the prob-
lem so that traditional machine learning classification algorithms can be used,
other research has focused on adapting the algorithms themselves to perform
multi-label classification.

3.3.2 Algorithm Adaptation Methods

A number of approaches have been used to modify existing machine learning
classifiers so that they can handle multi-label classification problems. Boosting
approaches are one common approach to algorithm adaptation. Adaboost.MH
extends Adaboost to minimize Hamming loss over the set of output labels and
Adaboost.MR extends Adaboost to find the group of labels with the optimal
ranking [196]. Another common approach is to adapt the k-nearest neighbor
algorithm (kNN) for this problem. BRkNN first performs binary relevance to
get a set of predictions for each class, and then uses the kNN algorithm to find
the most similar k set of neighbors in the training data based on output labels
[214]. The output labels are aggregated across the nearest neighbors to deter-
mine the final set of predicted classes. ML-kNN computes the output labelset
based on the prior and posterior probabilities for each of the k nearest neigh-
bor labels [254]. In addition, a number of other traditional machine learning
algorithms have been extended to handle the multi-label classification prob-
lem, including neural networks [253], decision trees [233], and support vector
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machines [12, 82, 62]. This research will focus on applying problem trans-
formation methods to label words with concepts and detect causal relations
rather than adapting existing algorithms to tackle these problems. This will
allow more rapid experimentation with a wider range of existing algorithms
than would be possible when adapting individual algorithms to solve these
problems. For a more complete review of algorithm adaptation methods for
multi-label classification, see [149].

Multi-label classification presents a more challenging problem than
multi-class classification because the output labels depend on one another as
well as on the inputs. However, the output is still restricted to a set of labels.
There exists a wide range of more complex problems that cannot be solved by
MLC alone because the output consists of complex structured objects, such
as graph structures or natural language sentences. I will cover this topic in
the next section, before describing the field of deep learning, which consists
of a set of algorithms especially well adapted to process unstructured data
such as text documents, and which can also be used to produce more complex
structured outputs.

3.4 Structured Learning

Most machine learning algorithms are designed to solve problems where the
output is a single label, and thus could be deemed “simple” [43]. Simple
problems include regression problems, where the label is a single continuous
number, and both binary and multi-class classification problems where the
label is categorical. However, there are a set of problems where the output
is not “simple” and is said to contain structure in some form, such as se-
quences, strings, lattices, trees or more general graph structures [153]. This
type of problem is called Structured Learning, or Structured Prediction. Usu-
ally, the structures predicted involve dependencies between di↵erent labels in
the output [55], as is common with some multi-label classification problems.
However, it is the additional structure that exists between these labels that
di↵erentiates structured learning from multi-label classification. For instance,
when translating a sentence, the order of the words in the output matters,
not just which words are translated. This structure results in an output space
that is exponential for most problems [153], and will contain many structures
not observed in the training data, which is what makes this such a challenging
problem.

The literature as a whole lacks a consistent definition of structured
learning; it is typically defined in terms of the sort of problems it encapsulates
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[43]. Some examples of these kinds of problems include machine translation,
natural language parsing, part-of-speech tagging, creating textual descriptions
of visual scenes [55], image segmentation, and document summarization [45].
Structured learning therefore encompasses a wide variety of complex NLP
tasks as well as problems from other domains such as computer vision. In each
of these types of problem, the number of predicted labels varies over di↵erent
data points [43], and often the output can be represented in the form of a
graphical structure, for example a parse tree (e.g. natural language parsing),
a tag sequence (e.g. part-of-speech tagging) or a bipartite graph (e.g. sentence
alignment in machine translation).

In 2006, Hal Daumé III attempted to provide a more formalized defini-
tion of Structured Prediction in his thesis on the topic [43]. He describes two
conditions that together are necessary and su�cient to identify a structured
prediction problem. Firstly, the training data contains strong correlations be-
tween the output labels. Secondly, the loss function does not decompose simply
over the output vector such that it can be broken down into a relatively small
number of classification problems. To put this more formally, there is no poly-
nomial decomposition of the loss function over the output labels, and the loss
function is not invariant over identical permutations of the output labels [43].
This second condition is necessary to di↵erentiate structured prediction from
multi-label classification, for which only the first condition holds.

Three of the research questions outlined in Chapter 1 are examples of
structured learning problems; Research Questions 1 and 2 are both sequence la-
beling problems, while Research Question 4 involves predicting a causal model,
which takes the form of a graphical model. Building machine learning systems
for structured prediction presents many additional challenges, including how
to e�ciently integrate learning and inference, and how to assign credit for
partially complete solutions. In the next section I will discuss the main chal-
lenges in building structured prediction systems, and then describe some of
the existing solutions.

3.4.1 Challenges in Structured Learning

At the heart of any structured learning problem is the following computation:

ŷ = argmax
y2Y

f(x, y;w) (3.1)

This calculation chooses the structure ŷ from the set of all possible
structures Y that maximizes some function f over the set of all inputs x
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in some dataset, where the structured model is parameterized by the weight
vector w [46]. The weight vector w represents all the parameters learned by
the machine learning model used to solve the structured prediction problem,
whether this is a simple logistic regression model, or a non-linear deep neural
network consisting of many layers.

In most ‘simple’ classification problems, this computation is tractable
as Y lacks structure, and the algorithm only has to choose one from a hand-
ful of potential classes. However, in structured learning, there can be a large
number of possible structures that y can take, many of which will not have
been observed in the training data. In a natural language parsing problem, for
example, the argmax computation would potentially have to iterate over all
possible parses for a given sentence. Similarly, in machine translation prob-
lems, the model has to consider all possible translations in the target language.
Consequently, structured learning algorithms involve an ‘inference phase’ or
‘search phase’ not present in machine learning problems where only a single
label is predicted. Similarly, some approaches to multi-label classification use
a separate model to search the space of possible output vectors, for instance
the BRkNN algorithm [214] and the ML-kNN algorithm [254] discussed earlier
in section 3.3.2.

The inference phase is responsible for solving the argmax computation
shown in equation 3.1. In the general case, this can involve an exhaustive enu-
meration of all possible outputs and this can be computationally intensive or
even intractable for real problems with complex structures [37, 54, 219]. How-
ever, empirically most possible outputs are unlikely when conditioned on the
inputs, allowing for more compact models than would otherwise be possible
[219]. In order to avoid an exhaustive search of all potential output struc-
tures, approximate inference algorithms are usually used including dynamic
programming algorithms such as the Viterbi algorithm [76, 126]. Re-ranking
approaches are another common solution where the top N candidate solutions
are re-ranked by a second model [35, 36], although this assumes a baseline
model with reasonable computational performance. Alternatively, structured
learning can be re-framed as a search optimization problem, solving both learn-
ing and inference in a single approach, as discussed in section 3.4.8 later in
this Chapter.

The choice of loss function has a large impact on the design of a struc-
tured learning algorithm. For a ‘simple’ classification problem, distinguishing
between a correct and incorrect prediction is straight forward, the answer is
either right or wrong and a simple loss function such as log loss or 0/1 loss
can be applied. However, when the output is ‘complex’, the problem is typi-
cally more complex than a binary decision because we may wish to distinguish
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between an answer that is almost correct, and one that is completely wrong
[54]. For example, in a part-of-speech tagging problem, if the model makes a
mistake on a single word, we may want the loss to be lower than if it predicted
the tags for all words incorrectly. One example of this sort of loss function is
Hamming loss, which measures the fraction of incorrect labels in the output.
The choice of loss function is critical to e↵ectively solving the classification
problem because providing partial credit for a nearly correct answer can be
very useful in guiding the learning process towards the optimal solution during
the training phase [45], provided the learning algorithm can take advantage of
this form of loss function.

One of the principle challenges to building e↵ective structured learning
algorithms is taking advantage of the dependencies between the labels in the
outputs. As features in the outputs are not independent, exploiting these
dependencies is critical for good classification accuracy. For instance, in fraud
detection, the sequence of financial transactions is very important for detecting
fraud; looking at an individual transaction in isolation is often insu�cient
to determine whether it is fraudulent. However, depending on the specific
problem, the possible number of interactions between the output labels can be
exponential in nature [219]. One approach to solving this problem is to focus
on local interactions between labels, for instance in a named entity recognition
problem, the system may only examine relations between the current and last
two named entities. However, this may not be su�cient where there are long
distance relationships between the output labels [54], such as in a parsing
problem where relations may exist between words at the start and end of the
sentence. Some approaches avoid learning dependencies altogether, instead
training a series of local classifiers and enforcing constraints over the predicted
outputs [173].

Computing the entire joint distribution between the input and output
labels for a structured prediction problem is infeasible for most practical prob-
lems [54]. For sequence learning, the problem can be solved by conditioning
each prediction on both the previously predicted labels, and the inputs ob-
served up to that point in the sequence. However this approach can also be
adapted to solve any structured prediction problem, by decomposing the prob-
lem into a sequence of decisions which guide the construction of the structured
output [45, 178]. In this method, each subsequent decision is conditioned on
some or all of the previous decisions made by the classifier, in addition to the
current inputs. For example, in a part-of-speech tagging problem, the current
word’s tag depends on the tags of the previous words, and in a shift-reduce
dependency parser, the parsing problem can be decomposed into a sequence
of shift-reduce actions, for example in [156].
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As this approach relies on using predictions made earlier by the same
model, this can cause challenges when training the model, because unless those
predictions are 100% accurate, the model will be learning from unreliable data
points. This is particularly problematic at the start of the training phase,
when the initial predictions will be very noisy because the model has not had
chance to learn e↵ectively from the data. If instead the labels from the train-
ing data are used to simulate perfect predictions, for instance in [126], this can
also lead to problems at test time as the algorithm has to rely on its own im-
perfect prior predictions when classifying unlabeled data. The model therefore
needs to be robust enough to correct future decisions in the presence of earlier
mistakes, and if it is only trained as if it has never made a mistake, then this
is not possible. A more robust approach that has been show empirically to
produce better results [45] is to start training the algorithm using the perfect
predictions derived from the training data, and gradually switch during train-
ing to use the model’s own noisier predictions. This approach was pioneered
with the SEARN algorithm [45], which will be covered later in this Chapter.
An alternative solution is to use an online algorithm such as the structured
perceptron of Collins [35]. An online algorithm can be trained using its own
previous predictions, and because it is trained iteratively, the algorithm grad-
ually relies more and more on these predictions as training proceeds and they
become more accurate.

3.4.2 Sequence Labeling

Sequence labeling is one of the simplest forms of structured prediction, where
the input is a sequence of observations of some kind, and the output is a
sequence of labels drawn from a fixed alphabet. For each element in the input
sequence, a single output label is predicted. Often these labels are referred to
as states, and the problem is viewed as one of predicting transitions between
di↵erent states. One example of this sort of problem is part-of-speech tagging,
where each word in a sentence is labeled with its corresponding part of speech
- noun, verb, adjective, etc. Another example would be determining which of
the transactions in a sequence are fraudulent. In both cases, the labels or states
can not be reliably assigned to each observation without a knowledge of both
the previous observations and the states, for example the word bank can be
either a verb (‘they bank at the building just down the road’) or a noun (‘they
went to the bank ’). Similarly, determining if a single transaction is fraudulent
depends on the history of previous transactions that describe a person’s usual
spending habits, and also depends on which of these transactions were deemed
fraudulent or not.
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A number of di↵erent algorithms and methods have been developed
to solve the sequence labeling problem. In this section I will cover three of
the more common categories of techniques, linear chain probabilistic graphical
models, sliding window methods, and recurrent neural networks.

3.4.2.1 Linear Chain Probabilistic Graphical Models

A probabilistic graphical model is a probabilistic model that expresses the con-
ditional dependencies between random variables using a graph structure. A
number of linear-chain probabilistic graphical models have been developed for
sequence labeling, including hidden Markov models (HMMs) [175, 241], max-
imum entropy Markov models (MEMMs) [142] and conditional random fields
(CRFs) [126]. These models have been applied to many NLP sequence labeling
tasks, including part-of-speech tagging, named entity recognition, information
extraction and text segmentation [129].

All of these algorithms are restricted by the Markov property - obser-
vations in the sequence are labelled based on only a small number of previous
labels or tags, which is necessary for most problems to be tractable [129, 45].
MEMMs are a discriminant version of HMMs, combining the aspects of an
HMM with a maximum entropy model. This also allows them to incorporate
additional features that make use of multiple previous observations and states,
something that is not possible with the standard HMM due to its generative
nature [54]. Consequently, MEMMs are typically more accurate than HMMs
in practice, and are usually faster in the training and decoding phases than
both HMMs and CRFs. However, MEMMs su↵er from the label-bias problem
where states with low probability transitions e↵ectively ignore the observation
data [54, 129].

In order to overcome the label-bias problem, CRFs were created in
[126], and are generally more accurate than both HMMs and MEMMs [129].
La↵erty, et al. compared the accuracy of the HMM, MEMM and CRF models
on a part-of-speech tagging problem [126]. When they constrained the MEMM
and CRF to use the same features as the HMM, they found the error rates
were 5.69% for the HMM, 6.37% for the MEMM and 5.55% for the CRF. The
authors then added additional spelling features that the HMM wasn’t able to
utilize, and found the error rates dropped further to 4.81% for the MEMM and
4.27% for the CRF [54]. This result argues that the MEMMs’ discriminative
nature leads to its improved performance over the HMM, while the CRF is
more accurate overall because it is a discriminative model that does not su↵er
from the label-bias problem. However, in all of these approaches, the models
are trained using known labels taken from the training data. As a result, they
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all struggle to deal with the uncertainty of relying on their own predictions
when classifying new unlabelled data points.

3.4.2.2 Transformation Based Learning

In 1993, Eric Brill presented the ‘Brill Tagger’ for part-of-speech tagging as
part of his PhD thesis ‘A corpus based approach to language learning’ [13].
The Brill tagger is an example of ‘Transformation-Based Learning’. The Brill
tagger initially assigns each word its most common tag from the training cor-
pus. Then the tagger applies a series of transformation rules, that will correct
a specific tag to some other tag under a specific context. This context can
include the subsequent or preceding words and\or word tags in the sentence.
Given a set of manually defined transformation rules, rules learned using a
statistical approach, or a combination of both, the system determines the sub-
set of rules which result in the biggest reduction in the tagging error on the
training data. Consequently, this technique is also referred to as ‘error driven
learning’. One advantage of type of tagging model over probabilistic models
and other statistical models is that the transformation rules are easier for a hu-
man to interpret and understand compared to the parameters learned by these
probabilistic models. Hasan et al [93] compared the performance of the Brill
Tagger to that of a HMM and unigram and bigram tagging approaches and
found the Brill Tagger to out-perform the other techniques on part-of-speech
tagging tasks involving three di↵erent African languages.

3.4.2.3 The Sliding Window Method

The sliding window method converts the problem of sequence labeling into
a supervised classification problem. For every label to be predicted in the
sequence, for a window of size w, the current observation and (w � 1)/2 ob-
servations before and after the current label are used to make the prediction.
Null tokens are added to the start and end of the sequence so that all win-
dows are of a fixed width. The model then predicts the current label based
on the surrounding observations. The main advantage of this approach is that
any machine learning classifier can be used to solve this problem. However,
because only the observations are used as features to train the model, this
approach is unable to take advantage of dependencies between labels [54].

A number of studies have shown this to be an e↵ective approach to
sequence labeling tasks. In [105], the authors used a sliding window tagging
model to attain a weighted mean F1 score of 0.73 on the task of assigning
words to di↵erent concepts in student science essays. Qian and Sejnowski
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[174] trained a neural network with a 15-letter sliding window of amino acid
sequences to predict the secondary structure of a protein. Eskin, et al. used a
sparse Markov transducer to compute a dynamic siding window over system
call traces to create an intrusion detection system [64]. Sanchez et al [194]
found that a simple window-based part-of-speech tagger with a window size
of 3 out-performed a HMM tagger on the same dataset.

3.4.2.4 Recurrent Methods

One way to improve the sliding window method is to incorporate the previously
predicted labels as additional inputs to the model [54]. For a window of size
w, the model’s (w � 1)/2 previous predictions are typically used to predict
the current label, in addition to the sliding window of observations. Bakiri,
et al. [2] applied a recurrent decision tree with a 7-letter window to build
a system to pronounce English letters. They compared the accuracy of a
decision tree trained with a recurrent sliding window to one trained only on a
sliding window of observations. The task was English pronunciation, and they
found the recurrent sliding window method to be around twice as accurate at
predicting word pronunciations than the sliding window technique. They also
found that training the classifier in a right-to-left direction was more accurate
than training it from left-to-right. As with the sliding window method, the
key advantage of this approach is that it can use any supervised classification
algorithm.

The important question that arises when using this approach is: What
labels should be used when training the model? The ‘ground truth’ - the
actual labels from the training dataset can be used, but this can introduce
errors when running the algorithm on new data as the algorithm has been
trained only on correct labels, as discussed in section 3.4.1. Alternatively, a
sliding window model can be trained first, and its predictions used to train
a recurrent sliding window model [54]. This produces noisier predictions for
previous labels which are closer to what will be observed when the algorithm
is run on new data. A similar approach is used in a recurrent neural network
(RNN), as discussed later this Chapter in section 3.5.

3.4.3 Data Driven Natural Language Parsing

Another common application of structured learning algorithms is in construct-
ing discriminative natural language parsers that can learn from a labeled
dataset. A classifier-based parser typically consists of three principal compo-
nents: a parsing algorithm which defines the parsing procedure as a sequence
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of simple parsing decisions; a feature extractor which extracts a set of features
representing the current state of the parse; and finally a classifier which maps
the parsing states represented by the feature extractor to parsing actions that
are used by the parsing algorithm [156]. Most structured learning approaches
to natural language parsing fall into the category of conditional-history based
parsing models. Similar to the sequence learning algorithms described in the
section 3.4.2.4, conditional-history parsers make a sequence of parsing deci-
sions, each decision conditioned on all of the prior parsing decisions made by
the parser, in addition to the words present in the sentence. This is achieved
by using the parser’s previous parsing decisions as additional inputs into the
feature extractor. History-based parsing models were first introduced by Black
in 1992 [9], and subsequently adopted by several authors, for example [177]
and [34].

More recently, conditional-history based techniques have been devel-
oped for dependency parsing in the form of transition-based parsers. Depen-
dency parsing is an approach to syntactic analysis centered around the idea
of a dependency grammar. In a dependency grammar, a dependency is the
idea that words are connected to each other by directed links, representing
asymmetric binary relations. A dependency parse of a sentence thus consists
of a sequence of binary dependency relations defined between the words in
a sentence to form a graph structure. Transition-based dependency parsing
represents the parsing problem as a sequence of decisions that read words in
sequence from an input stream and combine them iteratively to form a depen-
dency parse-tree [60]. A number of di↵erent machine learning algorithms have
been used to train transition-based dependency parsers, including SVMs [159],
the structured perceptron [257] and a two-layer neural network [23]. Since the
rise in popularity of deep learning approaches, recurrent neural network mod-
els, such as LSTM networks (long-short term memory), have recently been
used to train shift-reduce transition-based parsers and have achieved state-of-
the-art accuracy [250, 60] while retaining a high parsing rate. One recent ad-
vancement incorporates an attention mechanism into a neural-network based
shift-reduce parser [57]. Graph based dependency parsing models also exist
that incorporate a bi-directional LSTM POS tagger directly into the depen-
dency parser to improve parsing performance [152].

3.4.4 Bayesian Networks

A Bayesian Network is a probabilistic graphical model that uses a directed
acyclic graph to represent the conditional dependencies between a set of ran-
dom variables. Bayesian networks have been applied to a number of di↵erent
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structured learning problems, including a variety of NLP problems. In 2003,
Peshkin et al applied a Dynamic Bayesian Network (DBN) to build a part-
of-speech (POS) tagger [169]. A DBN is a Bayesian network unwrapped in
“time” (i.e. over a sequence of items) allowing it to represent dependencies
between adjacent items. Representing morphological features from the tar-
get word, as well as contextual features in a DBN, they were able to achieve
state-of-the-art performance on unknown words (i.e. words absent from the
training data) at the time of publication. In 2005, Savova and Peshkin also
used a DBN to construct a dependency parser for English [195]. Their system
modeled the dependency parsing process as a sequence of local decisions: for
each word in the sentence, determine whether to create a dependency to the
left or right, or defer that decision until later. Each decision made by the net-
work depended on a set of local features: the word, the POS tag of the word,
the words to the immediate left and right and their POS tags, and the number
of dependents currently linked to the current word and that of its neighboring
words. Their system achieved an accuracy of 79% correct link attachments for
directed dependencies, and 82% for undirected.

In addition to POS tagging and dependency parsing, Bayesian Net-
works have also been used for word sense disambiguation (WSD). A lot of
words have multiple di↵erent meanings depending on the context in which
they are used. For instance, the word bank can mean ‘an organization which
stores and lends money’ or ‘a slope of land’. WSD involves determining the
correct meaning, or ‘sense’, for a word given its context. In 2000, Chao et
al used Bayesian networks as part of a WSD system. They used Bayesian
networks to represent knowledge extracted from the training data to model
the selectional preferences of adjectives, and used them to disambiguate the
word senses of unseen adjective-noun pairs on open domain (unrestricted) text.
They reported an accuracy of 81.4% at this task, which was competitive with
other approaches at the time.

3.4.5 The Structured Perceptron

The perceptron algorithm was originally invented by Rosenblatt [186], who
built on the earlier ideas of McCulloch and Pitts [143] to build a computa-
tional model of how a biological neuron learns. The perceptron has since been
shown to be competitive with a number of classification algorithms such as
support vector machines [35]. In his seminal 2002 paper [35], Collins showed
how Rosenblatt’s perceptron algorithm could be extended to handle multi-class
classification problems. Furthermore, he showed it could also be adapted to
solve structured learning problems by introducing a GEN(x) function. This
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function iterates over all possible output structures for a given input x, al-
lowing the perceptron to rerank these structures to determine the optimal
prediction. Collins went on to show that the structured perceptron, as it has
since become known, out-performed a maximum entropy tagging model on 2
sequence labeling tasks, part-of-speech tagging and noun phrase chunking.

In the same paper, Collins also introduced the averaged perceptron,
a variant of the voted perceptron introduced in [71]. The voted perceptron
stores all weight updates that occurred during training, and takes a weighted
majority vote over these updates to make a prediction. The weight of each up-
date is based on how long the updated weights survive during training before
a subsequent change in the weights occurs. The averaged perceptron instead
computes and stores a single value for each of the perceptron’s weights as the
average over all updates, resulting in a model that is equivalent to the voted
perceptron, but requires less storage space, and is more computationally e�-
cient when making predictions. Collins showed that on both of the sequence
labeling tasks, the averaged perceptron achieved higher classification accuracy
on the test data than the regular perceptron algorithm. This indicates that
the procedure of averaging the weights acts to regularize the model and reduce
overfitting. The structured perceptron has since been shown to be e↵ective at
solving a variety of more complex NLP structured learning tasks such as de-
pendency parsing [156, 102], coreference resolution [8] and machine translation
[252].

One limitation of the structured perceptron is that it requires search-
ing over all possible output structures in order to solve equation 3.1. In many
problems this may be intractable, or all of the possible outputs may not be
analytically available [43]. To address this problem, Collins and Roark [37] pro-
posed a modification to the structured perceptron which replaces the argmax
from equation 3.1 with a beam search algorithm, to give:

ŷ = BeamSearch(x;w) (3.2)

Beam search is a modification of the best-first search algorithm, which
searches through the search space by expanding the most promising nodes
first, according to some heuristic [192]. Beam search modifies best-first search
by keeping only a fixed number of ‘best’ candidate solutions around [192].
The key insight in the incremental perceptron is that as soon as the beam
search algorithm has made an error, we can detect it and abort without com-
pleting the search. Empirical results on natural language parsing problems
have demonstrated that this approach typically produces faster convergence
and better results [37, 43]. Furthermore, it removes the need for an external
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model to fulfill the role of the GEN(x) function, or the need for potentially
expensive dynamic programming algorithms such as the Viterbi algorithm to
perform inference. While a beam search is usually only performed at test or
inference time, recent work has used ideas from imitation learning (see Section
3.4.8) to allow beam search to be performed at training time [151].

3.4.6 Reranking

In the last section, I briefly described how the structured perceptron modi-
fies the regular perceptron to solve structured learning problems by reranking
candidate solutions. Reranking is a general approach to solving structured
prediction problems that uses a variety of di↵erent approaches in addition to
the structured perceptron [43]. The rationale behind this reranking approach
is that often we have an approach for solving a problem but are unable to use
the full set of features we would like to use, or are unable to directly optimize
the loss function we want. Reranking allows a simple model to be used to
produce a “top-n” list of candidate solutions from the complex output space.
A separate model can then be used to rerank this “top-n” list. Since the size
of this list is fixed, a much richer set of features can be used over the input and
output spaces that would otherwise render the problem intractable. Further-
more, the reranking process can often be optimized using a loss function closer
to the desired one [43]. As a result, reranking has been applied to a variety of
NLP problems, including parsing [37, 22], machine translation [252, 24], and
semantic role labeling [222]. More recently, these techniques have been applied
to neural network parsing models. In 2017, Fried et al [72] applied generative
reranking techniques to neural network parsing models, and in 2018 Zhang et
al [256] developed neural ranking models for dependency parsing.

3.4.7 Large Margin Methods

A number of structured learning algorithms have adapted large margin meth-
ods to the domain of structured prediction. Large margin, or maximum margin
methods learn a separating hyperplane between two target classes that max-
imizes the margin of separation of the two classes. The perceptron algorithm
discussed earlier is a form of online margin classifier and has been adapted to
the large margin case, as described in [71].

In [224], Tsochantaridis developed the SVMSTRUCT formalism to adapt
the support vector machine algorithm to the task of structured prediction by
developing a plane cutting algorithm that iteratively adds in constraints to
the optimization problem on an “as needed” basis [43]. Similarly, Taskar et
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al. [219] developed the maximum margin markov network (M3N) to adapt
the CRF model to maximize the margin of separation between the classes.
The key di↵erence in these two approaches is that the M3N scales the size of
the margin by the loss function, whereas the SVMSTRUCT approach scales the
margin by the size of the training error [43]. In a comparison by Nguyen and
Guo [153], the SVMSTRUCT showed superior generalization performance to the
CRF algorithm for some sequence labeling problems.

3.4.8 Imitation Learning

Imitation learning is a supervised learning approach for solving sequential de-
cision making problems using reinforcement learning. Reinforcement learning
is a form of machine learning where an agent learns to optimize its utility
given its environment. The agent has a set of actions by which it can interact
with the environment and alter its state. By performing actions and receiving
feedback in the form of rewards and punishments, over time the agent learns a
policy which determines the optimal set of actions to make from each possible
state in order to maximize its utility function. When reinforcement learning
is used in a supervised learning setting, it is referred to as ‘imitation learning’.

Most approaches to structured prediction treat learning and search (in-
ference) as separate parts of the algorithm, normally utilizing di↵erent methods
for each. For example, the incremental perceptron of Collins [37] uses a per-
ceptron for learning and beam search for inference, while the CRF algorithm
[126] uses a dynamic programming algorithm called the Viterbi algorithm for
inference. One interesting alternative idea is to embrace search and treat
structured prediction entirely as a search problem - the learning component
then learns to search rather than to predict by re-framing the problem as a
reinforcement learning problem [46].

The first algorithm to take this approach was the SEARN algorithm (for
’search-learn’) [43]. SEARN decomposes the structured prediction problem
into the problem of making a sequence of cost-sensitive classification decisions
which result in the construction of the structured output. SEARN works
by maintaining a current policy, and training a classifier using this policy to
generate new training data, which are then used to learn a new policy. The
SEARN algorithm starts with an initial optimal policy which is constructed
such that the set of actions taken result in optimal performance on the training
data. However, as training proceeds, it slowly deviates from this optimal policy
to the learned policy. This mitigates the issues discussed in section 3.4.1 where
structured learning algorithms make errors when labeling new data points
because they were not trained on their own previous noisy decisions. When
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constructing a classifier for each training iteration, SEARN trains a separate
cost-sensitive classifier for each decision to be made. One advantage of the
SEARN algorithm is that any cost-sensitive classification algorithm can be
used to construct the classifier. Furthermore, it can also optimize any arbitrary
loss function as the classification decisions are cost-sensitive, and the cost is
determined by the chosen loss function.

The performance of SEARN was compared to the structured percep-
tron, CRF, SVMSTRUCT, and M3N models on several structured learning tasks,
including handwriting recognition, Spanish named entity recognition, syntactic
chunking and a joint chunking and tagging task [43]. Di↵erent SEARN models
were trained using a perceptron, logistic regression and an SVM trained with a
linear and a quadratic kernel. The authors found that the SEARN algorithm
had the highest accuracy on all but the syntactic chunking task, where the
CRF model proved to be the most accurate. The SVM algorithm had the low-
est classification error of all the base-classifiers used by the SEARN algorithm
on every task except the syntactic chunking task. SEARN has also been shown
to be e↵ective at other NLP tasks, including entity detection and tracking, and
document summarization [43, 44]. Recent advancements in imitation learning
involve learning better search policies by a process of introspection, allowing
a model to evaluate its own search strategies in order to improve them [211].
In addition, some authors have applied ideas from imitation learning to allow
models to perform a beam-search during training time, not just test time [151],
extending the learning to search paradigm with a beam search.

One criticism of imitation learning approaches is that because the algo-
rithm’s prediction a↵ects its future inputs, this violates the assumption that
the individual training examples are drawn independently, and are identically
distributed (IID) [187]. This IID assumption is made by most statistical ma-
chine learning approaches. However, this is also true of any structured predic-
tion approach that conditions its future predictions on its past actions, such
as the CRF and MEMM algorithms. Furthermore, SEARN can leverage any
classification algorithm, and is not restricted to only algorithms for which the
IID assumption holds.

3.5 Deep Learning for Natural Language Pro-
cessing

Deep learning is the study of so-called ‘deep’ methods of building machine
learning models. Dealing primarily but not exclusively with the recent ad-
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vances in training deeper neural network models with many hidden layers,
this subfield of machine learning studies the construction and application of
machine learning models that are capable, through exploiting multiple process-
ing layers, of learning multiple levels of feature representation and abstraction
[130]. Deep learning has proven most successful at solving problems that use
unstructured data, such as in computer vision, speech recognition and NLP.
In this section, I will focus on the recent advances in deep learning models
for NLP tasks, where deep models have been developed that achieve state-of-
the-art accuracy on a number of core tasks, including sentiment analysis [206],
speech recognition [42], and information retrieval [202]. Deep neural networks
present a very flexible and powerful set of machine learning techniques that
can be adapted to solve a wide variety of more complex problems, including
structured learning problems, by adapting the learning algorithms and net-
work topology to fit the problem. As a consequence, deep neural network
models have also achieved state-of-the-art results in various NLP structured
prediction tasks, including language modeling [147], natural language parsing
[207], and machine translation [74, 218]. In this section I will describe the
main types of deep learning algorithm that can be used to solve complex NLP
structured learning problems, such as the some of research problems discussed
in this thesis. However, I will start by discussing how neural word embeddings
have become an integral part of most deep learning NLP models, and how
these embeddings are derived using neural language models.

3.5.1 Neural Word Embeddings

Representing words using discrete representations is insu�cient for many nat-
ural language processing tasks because it fails to capture the semantic and
syntactic similarities between words [131]. Due to large vocabulary sizes and
the Zipfian nature of word frequency distributions, where a large proportion
of words appear very infrequently, models built using discrete representations
tend to scale poorly and do not generalize well to new data points. Conse-
quently, a number of vector-space models of semantics have been proposed
over the years based on the distributional hypothesis proposed by Harris in
1954 [92], which states that the meaning of a word is determined by the vari-
ous contexts in which it occurs. These models represent each word as a sparse
high-dimensional vector, where each element represents a measure of the as-
sociation of the word with some context, such as a document, a sentence or
a sliding window of words [228]. NLP applications built using these types of
distributed representation tend to generalize better than discrete representa-
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tions. This is because similar words tend to appear in similar contexts and so
have similar representations under this model.

More recently, it has become popular to use neural network models to
learn dense vector representations of words, an idea that dates back to the
work of Rumelhart et al. in 1986 [190]. The first word embeddings were de-
veloped through a series of papers published in the early 2000’s describing
‘Neural Probabilistic Language Models’. In their seminal 2003 paper, Bengio
et al learned a distributed vector representation of words, called an embed-
ding, by training a neural-network language model to predict which words
came next in a sentence [5]. This approach was shown to out-perform previ-
ous language models based on n-gram probability models. Then in later work
in 2011 by Collobert and Weston [38, 39], neural word embeddings derived
from pre-trained language models were shown to perform well across a vari-
ety of di↵erent tasks including part-of-speech tagging, chunking, named-entity
recognition, and semantic-role-labelling. One useful property of embedding
models is that the pre-trained embeddings can be fine-tuned for specific tasks
by incorporating them as part of a deep neural network model, and updating
the word vectors using back-propagation. When embeddings are used in this
way, this demonstrates a form of transfer learning; semantics about a word’s
use are transferred via its embedding vector to aid in performing these separate
but related tasks.

The main drawback with these early embedding models was scaling the
algorithm to large corpora containing very large vocabularies. To address this
issue, Mikolov et al. [147] developed the word2vec algorithm, which uses a hi-
erarchical softmax output layer combined with a simpler skip-gram language
model to create a more e�cient model that could scale to large corpora, while
still attaining state-of-the-art performance in language modelling tasks. Fur-
thermore, they showed that the embeddings learned by this method perform
well on word analogy tasks, demonstrating that the learned representations are
capable of representing a wide range of di↵erent relationships between words.
In more recent work, a number of authors have trained deep-language mod-
els [52, 171, 249] capable of learning contextualized word embeddings - word
embeddings that take into account the context in which a word is currently
being used. Incorporating these language models into deep neural networks
that are then trained to perform other tasks, such as sentiment analysis, ques-
tion answering and coreference resolution, has produced gains in accuracy in
these tasks, in many cases advancing the current state-of-the-art performance
in these tasks [171].

Neural word embeddings have become the standard way of representing
words in most deep neural network models. In recent years, a number of
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di↵erent types of neural network have been developed which have advanced
the state-of-the-art in a number of di↵erent problem domains.

3.5.2 Beyond Bag of Words Models

One of the challenges in building machine learning models to solve NLP prob-
lems is the varying length of the inputs. Most machine learning algorithms
expect a fixed-sized input representation for the rows in a dataset, yet phrases,
sentences and documents all have varying lengths. The traditional solution
to this problem is to use a ‘bag of words’ representation, where each word
or phrase in a document is represented by a separate feature in the dataset
which indicates its presence or absence in the document. This representation
has been successfully applied to a wide range of di↵erent NLP problems, such
as document classification and information retrieval. However, the order of the
words and the relationships between them are often very important for deter-
mining the meaning of a sentence, for instance the sentences ‘the dog chased
the cat’ and ‘the cat chased the dog’ have very di↵erent meanings but the same
bag of words representation. While this approach provides a fixed-length rep-
resentation of a section of text, it ignores important relationships between the
words that are present, such as syntactic and grammatical relationships. Con-
sequently, there are NLP tasks where understanding the relationships between
the words in some text is crucial for solving the problem at hand, for example
when extracting causal relations from text, and in sentiment analysis. In the
following sections, I will cover three types of deep neural network model that
are capable of learning long-distance relationships between words in a piece of
text: recursive neural networks, recurrent neural networks, and convolutional
neural networks.

3.5.3 Recursive Neural Networks

Sentiment analysis is the problem of determining the general attitude of the
writer with respect to the topic they are writing about, for instance it is used to
determine if online product reviews on e-commerce sites are positive, negative
or neutral. To address the limitations of the bag of words model, Socher et al.
[206] developed the Recursive Auto-Encoder (RAE). The RAE is a recursive
neural network that learns a compact, fixed-length vector representation of a
piece of text by learning to parse it recursively. It uses word vectors, word
embeddings pre-trained on a language modelling task, to represent words, and
parses a sentence into a single vector by recursively combining pairs of adjacent
vectors into a single vector. The algorithm has a dual objective function, which
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minimizes the classification error on the training dataset while simultaneously
learning a compact representation of a sentence using an unsupervised learning
algorithm called an auto-encoder. Socher et al. showed that their model out-
performed a baseline bag of words sentiment classifier, as well as the state-of-
the-art-sentiment analysis algorithm at the time [206]. The architecture of the
RAE is illustrated in Figure 3.1 below:

Figure 3.1: Recursive Autoencoder. Image from Socher et al 2011, “Figure
1”, page 151 of ‘Proceedings of the 2011 Conference on Empirical Methods in
Natural Language Processing’ [206]

A number of other recursive neural network models have since been
developed for sentiment analysis, for example [209, 166], further improving
upon the accuracy of the RAE. Recursive neural networks have also been
adapted to solve complex structured learning tasks such as natural language
parsing [208], and question answering [108]. In each of these approaches,
sentences are parsed into a tree structure, and the model learns to compress
this tree structure into a constant length vector, which is then used to build a
supervised classification model.

3.5.4 Recurrent Neural Networks

Recurrent neural networks (RNNs) were developed for supervised learning
problems involving sequential prediction, such as time-series prediction, part-
of-speech tagging and language modelling. In a recurrent neural network, the
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connections between the layers form a directed cycle that creates an internal
state within the network that allows it to learn to detect patterns in sequential
data. So called ‘simple recurrent networks’, originally developed by Jordan in
1986 [110] and further developed by Elman in 1990 [63], contain context units
that are connected to the hidden layer. When the hidden layer neurons fire,
they activate the context units which act to echo back each of the hidden
neurons’ activation states on the next step in the input sequence. This allows
the network to maintain a form of short-term memory, producing a non-linear
dynamical system that can learn complex temporal patterns. RNN models
have been used to produce state-of-the-art language models [146, 248], and
have been successfully applied to a variety of sequence labelling tasks [78, 86],
including word tagging problems [172, 237].

One of the di�culties with RNN’s is that they are hard to train because
they su↵er from the vanishing gradient problem. This is where the errors
diminish as they are back-propagated through the entire input sequence [150].
One solution to this problem is to use a Long Short-Term Memory model
(LSTM) [100]. This is a more complex form of RNN which contains a number
of gated units that determine which inputs are significant enough to remember,
and when to clear its internal state. This model has been shown to be very
e↵ective at learning long distance relationships over sequences, for instance
it achieved the best known results in unsegmented connected handwriting
recognition [87], and has been used as part of a former state-of-the-art speech
recognition system [85]. More recently, the Gated Recurrent Unit (GRU) was
proposed by Cho et al. in 2014 [28]. The GRU is a variant of the LSTM RNN
but without the separate memory cells, which form one of the 3 types of gated
unit in an LSTM. GRU’s have been shown to have comparable performances
to LSTM’s on a number of tasks [30], including sequence labelling, while being
more computationally e�cient. An illustration of a RNN applied to a sequence
labelling task is shown in Figure 3.2 below:
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Figure 3.2: Illustration of an RNN applied to a word labeling problem. The
recurrent cell in this example is a Gated-Recurrent Unit (GRU)

One limitation of RNN’s is that they cannot incorporate information
from future inputs when making a sequential prediction. For instance, in a
part-of-speech tagging problem, information from words to the right as well as
to the left of the current word can influence its part-of-speech. To address this
problem, Schuster et al [197] created the bidirectional RNN, which connects
two hidden layers of opposite directions to the same output layer. One hidden
layer is processed in the normal forward direction, while the second hidden
layer is processed via a backward pass through the input sequence. The authors
showed that this bidirectional structure improved classification performance
on a number of tasks, including phoneme detection. Bidirectional RNNs have
been successfully applied to many di↵erent tasks, such as dependency parsing
and sequence labeling [152, 223].

3.5.5 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a form of feed-forward neural net-
works that are designed to mimic the structure of the animal visual system.
In animals, the retina consists of cells that are sensitive to small sub-regions
of the retina, and are tiled across the whole visual field [104]. CNNs mimic
this behavior by using small groups of artificial neurons to learn locally re-
ceptive feature detectors that are tiled across the image so that they overlap.
These feature detectors can learn to detect low-level local features in images,
allowing them to perform tasks such as edge detection. The process of tiling
or ‘convolving’ these feature detectors across the image allows the network
to exhibit a form of ‘translational invariance’ where it can detect the same
features in an image regardless of where they occur [150]. These ‘convolu-
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tional’ layers are are usually fed into ‘subsampling’ layers that aggregate the
local features detected by the layer below by computing an average or a max
operation over the outputs, providing a small amount of shift invariance. A
typical CNN has several alternating convolutional and pooling layers, one on
top of the other, which allows the network to learn hierarchies of features,
with the upper layers having larger receptive fields than the layers below. In
2010, Krizhevsky and Hinton used a CNN to achieve the lowest classification
error on the CIFAR-10 image recognition dataset [122]. The architecture of
this network is illustrated below, in Figure 3.3. Since then, CNNs have come
to dominate the field of computer vision, achieving state-of-the-art results in
multiple image recognition and classification tasks on a number of di↵erent
datasets, including ImageNet [97].

Figure 3.3: Convolutional Deep Belief Network architecture. Image from
Krizhevsky and Hinton 2010, “Figure 4: The architecture of our convolutional
net”, page 5 [122]

However, although CNNs were originally designed to solve problems in
the field of computer vision, they have more recently been successfully applied
to other types of unstructured data, including text. In a pair of landmark
papers from Collobert and Weston [38, 39] the pair showed how neural word
embeddings trained on a language modelling task could be used to represent
words as features in a ‘time-delay neural network’, a form of deep convolutional
network. The convolutional layer formed a 1-dimensional convolution over the
sequence of word vectors, the result of which was fed into a sub-sampling
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layer that computed a max operation over the entire sequence. Finally, the
outputs from this layer were fed into a sequence of densely connected layers.
This network was shown to achieve strong performance on a number of di↵er-
ent tasks including part-of-speech tagging, chunking, named-entity recognition
and semantic-role-labelling. More recently, Kalchbrenner et al. [115] built on
this approach and developed a dynamic convolutional neural network for clas-
sifying sentences. This network used a novel dynamic k-Max pooling operation
to sub-sample the varying length input sequences, and achieved competive re-
sults on a number of sentiment analysis tasks, and a question classification
task.

One of the challenges with training deep NLP models using word em-
beddings is training a model that can process the large vocabulary sizes of
most real-life datasets. For each unique word present in the training data,
the model needs to store and compute a word embedding. This can result in
very large models with billions of parameters that require large amounts of
memory, take a long time to train, and are more likely to over-fit the training
data. To address this issue, Zhang and LeCun [255] built a temporal convo-
lutional network using characters instead of word embeddings for the input
features. The authors used a one-of-m encoding scheme to compute m length
vectors for each character. They then truncated each document to a fixed
character length l, and concatenated the l character vectors together to form
an m ⇥ l matrix. These matrices were then fed into a convolutional tempo-
ral network that performed a one-dimensional convolution over the sequence
of character vectors. By using characters as features, the model ignored any
explicit knowledge of words, phrases or sentences. Nevertheless, it was able
to achieve impressive performance on three NLP tasks: sentiment analysis,
ontology classification, and text classification.
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Chapter 4

A Word Tagging Model for
Essay Concepts

Research Question 1 asks:

“Which of the following model types is the most e↵ective ma-
chine learning model to automatically label words with their asso-
ciated essay concepts from a pre-defined causal model?”

A Window-Based Word Tagging Model

B Conditional Random Field

C Hidden Markov Model

D Structured Perceptron

E Recurrent Neural Network

To address this question, the problem was treated as a multi-label word
tagging problem: given a sequence of words, predict zero, one or more tags
(concept codes) for each word. This is illustrated in Figure 4.1 below, which
shows an example coral bleaching essay where the words have been labeled
with their associated concept codes. The concept codes in the figure refer to
the codes defined in the coral bleaching causal model illustrated in Figure 2.1.
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Figure 4.1: Labeling words with concept codes. Each box represents a sep-
arate concept, with the code denoted by the green circle.

In this chapter, I will discuss how classification performance on this task
was measured and evaluated, what features were used to solve this problem
and how the final set of features were chosen and evaluated, and I will compare
the e�cacy of the five di↵erent model types above at solving this problem.

4.1 Evaluation Metrics

The choice of evaluation metric is critical to solving any machine learning
problem. The goal of a machine learning algorithm is to minimize the error on
the training data according to the preferred evaluation metric, so the choice
of metric influences the types of machine learning models that can be applied
to solve a particular problem.

In a classification problem, the relative distribution of classes observed
in the training and test data should be taken into account when selecting an
evaluation metric. In our set of scientific explanatory essays, most of the labels
in the dataset are quite rare, with the most common label (concept code 50)
being assigned to 8.86% of words in the coral bleaching dataset, and assigned
to 6.36% of words in the skin cancer dataset. Other concept codes occur even
less frequently. See Tables 2.7 and 2.8 in chapter 2 for the percentages of words
assigned to each concept code in the two datasets. Accuracy is considered a
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poor evaluation metric when the classes are imbalanced because a classifier
can achieve a high level of accuracy by always predicting the most common
class, without learning anything from the data. Metrics such as precision,
recall, and the F1 measure are therefore more commonly applied to datasets
with imbalanced classes. These metrics are calculated using the number of
correctly identified examples of the target class, the ‘true positives’ (tp), the
number of correctly identified examples not belonging to that class, the ‘true
negatives’ (tn), the number of examples wrongly attributed to that class, the
‘false positives’ (fp) and the number of examples belonging to that class that
were falsely labeled, the ‘false negatives’ (fn). When evaluating multi-class
or multi-label classification problems using these metrics, the classification
problem is framed as multiple binary classification problems, one per unique
class label.

4.1.1 Precision, Recall and the F1 score

Precision measures the proportion of data points that were predicted as be-
longing to a particular class that were correct. It is defined as [140]:

precision =
tp

tp+ fp
(4.1)

Recall measures the ‘false alarm rate’, also known as the ‘type I error
rate’. Recall measures the proportion of the positive examples from the entire
dataset that the algorithm correctly predicted for a particular class, and is
defined as [140]:

recall =
tp

tp+ fn
(4.2)

While precision only measures the accuracy of the labels that were
predicted to belong to a particular class, recall measures the coverage of the
algorithm - how accurately does it cover the entire dataset, without focusing
only on the data points the model is most confident at predicting? Modifying
an algorithm to improve recall often has a negative impact on precision, and
vice versa. In certain problem areas where we care more about either precision
or recall, for instance when training a cost-sensitive classifier, that metric
would be preferred over the other. However, if we care equally about reducing
false positives and false negatives, then we want a classifier that optimizes both
precision and recall. The F-score metric is typically preferred in this scenario,
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and is calculated as the harmonic mean of precision and recall. The general
formula for the F-score is described in equation 4.3 below [140]:

F� = (1 + �
2)

precision · recall
(�2 · precision) + recall

(4.3)

The � coe�cient in the F� calculation controls how much emphasis is
placed on recall over precision in the metric. The F1 score, which has a � value
of 1, is commonly used as it puts equal emphasis on recall and precision, and
is the variant I will use throughout this thesis. Recall, precision and F1 score
all range from 0 to 1.0, with higher values indicating a more accurate model.
An F1 score of 1.0 means all of the data points were classified correctly.

Precision, recall and the F1 score are commonly used for evaluating
ranking systems, such as information retrieval and recommender systems. In
this context, it is common to compute precision or recall at a cuto↵ point k.
For instance, ‘precision at k’ measures the precision of the first k documents.
For a large number of these ranking problems, the ground truth labels are
not known for every data point due to the size of the dataset; it is therefore
more practical to evaluate the performance of these systems by evaluating
the quality of the highest ranked documents returned. These metrics are also
commonly used in text classification tasks where there is no result ranking, and
a prediction is made for each data point in the entire dataset. This can roughly
be thought of as using a cuto↵ of 1, although the ranking and classification
tasks are quite distinct. It is the classification usage of precision, recall and
F1 score that I am referring to in this thesis.

4.1.2 AUC

An alternative to F1 score for evaluating binary classification performance is
the AUC metric (Area Under the Curve). This measures a single point on the
‘Receiver Operating Characteristic’ (ROC) curve [210], and is defined as:

AUC =
1

2
· ( tp

tp+ fn
+

tn

tn+ fp
) (4.4)

ROC curves show how the number of positively classified examples
varies with the number of negatively classified examples, and AUC is an aver-
age of the true positive rate (recall) and the true negative rate. However, ROC
curves can present an overly optimistic view of classification performance when
there is a large skew in the class distribution because it treats both positive
and negative examples equally [47].
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4.1.3 Micro and Macro Averaging

The goal of solving Research Question 1 is to produce the most accurate model
for labeling words with their associated concept codes. I measure the perfor-
mance of each approach at predicting each individual concept code by calcu-
lating the F1 score for each code over all of the words in the validation dataset
using 5-fold cross-validation. To compare the overall e�cacy of di↵erent ap-
proaches at the tagging problem, an average F1 score is computed over all of the
di↵erent classes. There are two main approaches for averaging F1 scores over
multiple classes - the ‘macro-average method’ and the ‘micro-average method’
[210].

The macro-F1 score is calculated from the macro-averaged precision
and recall. For l labels, the macro-average precision and recall are calculated
by computing the mean precision and recall over all labels:

precisionM =
1

l
·

lX

i=1

precisioni (4.5)

recallM =
1

l
·

lX

i=1

recalli (4.6)

The macro-average F1 score is calculated as the harmonic mean of the
macro-average precision and recall [210]:

F1M =
2 · (precisionM ⇥ recallM)

(precisionM + recallM)
(4.7)

The micro-F1 score is computed by totaling all of the true positives,
false negatives and false positives across all class labels, and using those totals
to first compute micro-average precision and recall:

precisionµ =

lP
i=1

tpi

lP
i=1

tpi +
lP

i=1
fpi

(4.8)
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recallµ =

lP
i=1

tpi

lP
i=1

tpi +
lP

i=1
fni

(4.9)

The micro-F1 score is then computed from harmonic mean of the micro-
average precision and recall [210]:

F1µ =
2 · (precisionµ ⇥ recallµ)

(precisionµ + recallµ)
(4.10)

While macro-averaging treats all classes equally, micro-averaging favors
larger classes, weighting each class’ contribution to the average based on its
relative frequency in the dataset. This is therefore the evaluation metric chosen
for this research because it provides a more accurate view of the performance
of the algorithm on the task as a whole. In scenarios where you want all
classes to be treated equally in the average, the macro-F1 would be a more
appropriate metric.

4.1.4 Optimizing the Micro-F1 Metric

Like a number of other classification metrics arising from the field of infor-
mation retrieval [17], the F1 metric is not continuous, not di↵erentiable and
thus is not appropriate for gradient-based training [165]. Direct optimization
is therefore di�cult because it does not decompose over all examples [61].
Nevertheless, F1 score is commonly used as an evaluation metric in class im-
balanced problems for the reasons discussed in the previous section. Instead,
machine learning models are typically trained to maximize classification accu-
racy in the belief that doing so will also optimize the F1 score [61]. Because
micro-F1 score extends the F1 score to measure an algorithm’s combined clas-
sification performance across multiple labels, these same limitations extend to
the micro-F1 score also.

4.2 Experimental Design

When evaluating the performance of any machine learning approach, it is crit-
ical to ensure that the final solution has been evaluated on some separate held
out dataset, usually called the test set [150, 148]. This allows us to measure
the accuracy of the model at making predictions on previously unseen data
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points. To ensure the validity of this approach, there can not be interactions
between the data within the test set and the construction of the final machine
learning model, ensuring that no decisions influencing the final model were
made based on this dataset. This includes any hyper-parameter tuning or
feature selection approaches.

The essays in the dataset were split into 80% training data and 20%
test data, as recommended in [150]. As discussed in Section 2.4, there is a large
class imbalance in this dataset across both the concept codes and the causal
relations, and so it is important to ensure that the training and test datasets
have similar distributions of labels. The standard approach for partitioning
datasets with a large class imbalance is to use Stratified Random Sampling,
which is a sampling approach that attempts to ensure the same distribution
of labeled data is present in each data partition [201].

To address this problem in the two datasets studied in this thesis, a
form of Stratified Random Sampling called Proportionate Allocation [101] was
performed to ensure that the distribution and relative proportion of labels in
the dataset were roughly even between the training and tests datasets. Given
the end goal of this research was to detect causal relations within the essays,
the splits were chosen across essays so as to minimize the Kullbach-Liebler
(KL) Divergence [124] between the distribution of causal relations across the
words within the essays in each split. The split was performed at the essay
instead of the sentence or word level, so that the same test data could be
used for all 4 research questions, which are defined at the word, sentence and
essay level (depending on the research question). Because a word can be part
of multiple causal relations, and the dataset needed to be split across essays
and not words, the splits were chosen using a random search rather than
more analytical methods. 50,000 di↵erent partitions were chosen at random
over the essays, and the partition with the lowest KL-Divergence between
the training and test dataset was selected as the final partition. Because the
KL divergence is undefined for probabilities of 0, causal relations occurring in
less than 2 essays were not included in this test, and any splits where one or
more of the remaining causal relations had zero examples were rejected. The
combined KL-Divergence for all of the causal relations was computed as the
sum of the KL-Divergence computed per relation. The split with the minimum
total Kl-Divergence was then selected as the final dataset partition.

For discrete probability distributions P and Q, the KL-Divergence be-
tween P and Q is defined in Equation 4.11 below:

DKL(PkQ) = �
X

x2X

P (x) log(
Q(x)

P (x)
) (4.11)
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The training dataset was used to perform both feature selection and
hyper-parameter tuning using 5-fold cross validation (CV). When performing
CV, the accuracy of the model is listed on both the training folds and the
separate held out folds, which are reported as the training data (CV) and
validation data (CV) respectively, to clarify that these were derived using
cross-validation. Figure 4.2 below illustrates the data-partitioning strategy.

Figure 4.2: The Di↵erent Dataset Partitions. For Each Fold, the Validation
Data (CV) is Shown in Light Blue. The Remaining Data within each Fold was
Used for the Training Data (CV) for that Fold.

The CV folds were created by partitioning the data on the essays, and
not at the word or sentence level, thus preserving entire essays within each
CV fold. This prevents the algorithm learning style and grammar cues for an
individual author from sentences in the training data and making use of that
information to classify sentences in the validation or test data, which would
potentially lead to unreliable validation and test data metrics.

Following feature selection and hyper-parameter tuning, the perfor-
mance of the di↵erent models was then evaluated by their performance on
the separate test dataset (the 20% partition) following training each model
on the entire training dataset, this time without cross-validation. However,
the model that performed best in cross-validation on the training data is the
model that was chosen to be used in solving subsequent research problems to
ensure there is no feedback between the final model and the test dataset. If
instead the optimal model was selected based on its test set performance and
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this model was used to construct other machine learning models, that could
result in overly optimistic test set error metrics.

The relative sizes of the training and test datasets are described in
Table 4.1 below. ‘Vocab’ indicates the number of unique words.

Table 4.1: Dataset Partition Sizes

Coral Bleaching Skin Cancer

Split Essays Sents. Words Vocab Essays Sents. Words Vocab
Train 901 8,280 136,957 4,279 870 8,573 145,486 4,201
Test 226 1,918 30,699 2,088 218 2,097 35,413 2,046
Both 1,127 10,198 167,656 4,770 1,088 10,670 180,899 4,702

4.3 Statistical Testing

When comparing the performance of di↵erent machine learning algorithms and
models, using comparative techniques such as k-fold cross validation alone can
provide misleading results because it is hard to determine if the di↵erences
in performances are real or due to chance. As such, some researchers utilize
statistical techniques to estimate the likelihood that di↵erences in the perfor-
mance of multiple models are due to chance or not. In statistical testing, a
null hypothesis is formulated stating that the observed di↵erences between two
populations are due to chance. A p-value, produced by some statistical test,
provides an estimate of the probability of observing results at least as extreme
as those observed, assuming the null hypothesis is correct [240]. Commonly a
p-value of 0.05 is used as the threshold for ‘significance’ (called the ↵ value).
p-values lower than 0.05 are thus assumed to be ‘significant’, implying the
observed results were very unlikely to have been observed due to chance, thus
rejecting the null hypothesis [193].

There are however a number of issues with applying traditional statisti-
cal tests to compare machine learning models because they were not designed
with computational methods in mind [193]. It is often impossible to verify
that the assumptions of these tests hold, and it is always possible to show
that there is a significant di↵erence between two treatments provided enough
data is used [109]. Due to the number of problems with applying statistical
testing to this area, some authors [58, 50] have even argued we should drop
the process of statistical testing entirely. However, rather than abandoning
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the process, it is important to determine when a statistical test is warranted,
and if so, the appropriate technique or techniques to apply for a particular
experiment [109].

Statistical tests come in two forms, parametric and non-parametric.
Parametric tests make strong assumptions about the distribution of the under-
lying data, while non-parametric tests make weaker assumptions and are thus
less powerful (less capable of rejecting the null hypothesis) [109]. The most
commonly applied parametric statistical test is the Student’s t-test, which tests
whether two samples are drawn from the same population using di↵erences in
the observed means and standard deviation. When comparing classification
performance on some task, one approach is to run a t-test on the classification
metrics from both classifiers, computed using k-fold cross-validation, where k
is su�ciently large, such as 10 or 30 folds [193, 109]. However, this is widely
viewed as a poor choice of statistical test for comparing model performance
as most of its assumptions are violated. In particular, the t-test assumes both
samples are drawn independently from the same population. Re-sampling from
the training data using cross-validation violates this assumption, leading to a
high probability of Type I error i.e., a high likelihood that the null hypothesis
will be incorrectly rejected [193, 109, 176, 53]. The t-test also assumes that
the samples come from a normally distributed population, and have the same
variance, which is not always true when measuring classification performance
using cross-validation [109].

In spite of their weaker statistical power, non-parametric techniques
are usually preferred [75] over parametric methods when comparing machine
learning models because they make fewer assumptions about the underlying
data. Consequently, many authors recommend McNemar’s test for comparing
the performance of two classifiers [193, 109, 176, 53, 41] as it has a lower
probability of Type I error (as it makes fewer assumptions). McNemar’s test
is a non-parametric equivalent of a t-test for nominal data [144], and can be
used to compare the predictions of two di↵erent classifiers on the same test
dataset. Given the predictions of two classifiers, classifier A and B, and the
ground truth labels, a 2x2 contingency table is computed, which looks at the
number of instances of the following:

• Both classifiers were correct

• Both classifiers were incorrect

• A was correct and B was incorrect

• B was correct and A was incorrect
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A �
2 test is then calculated based on this contingency table to compare

how many times each classifier was correct when compared to the other [109].
This allows us to estimate the probability that A wins over B at least as
many times as observed in the experiment [193]. However, McNemar’s test
is a pairwise test — it is designed for comparing two populations, or in this
case the predictions from 2 classifiers. If more than 2 classifiers are compared,
a generalization of McNemar’s test called Cochran’s Q test [32] can be used
to compare more than two sets of nominal data. Several authors propose
using Cochran’s Q test to evaluate ipiple classifiers to determine if there is a
significant di↵erence in their predictions [176, 125, 134].

To compare the performance of multiple machine-learning classifiers for
the di↵erent Research Questions in this thesis, the following null hypothesis
was formulated:

All classifiers are equally accurate at the classification task.

I applied Cochran’s Q test to test the null hypothesis, using the pre-
dictions from each algorithm across all labels in the dataset. A significance
threshold of 0.05 was used for every test. For the experiments where the null
hypothesis was successfully rejected, I also wanted to determine if any classifier
was significantly better than the other classifiers. Following the recommenda-
tion in [176], I used McNemar’s test to compare the performance of each pair
of classifiers, under the same null hypothesis (for the pair). For McNemar’s
test, the Binomial distribution was used in place of the �2 distribution to com-
pute the exact p-value. However, when performing multiple comparisons in a
statistical test, there is a higher chance of a Type I error due to the multiplicity
e↵ect [193]. This means that if a statistical test is run x times, there are x

chances of observing ‘significance’. This is well understood in the statistical
community, and is typically addressed via a Bonferroni correction [176]. The
Bonferroni correction divides the required significance value, the ↵ value, by
the number of comparisons. For example, if the ↵ value is 0.05 and 5 tests
are performed, then a p-value of 0.05/5 = 0.01 or lower is required for signif-
icance. To reduce the number of pairwise comparisons, I only compared the
performance of the most accurate classifier (across both datasets) with that
of the other classifiers, rather than performing all pairwise comparisons. This
allowed me to determine if any of the classifiers are significantly better than
the best performing classifier (according to the micro-F1 measure). Further-
more I used a Bonferroni correction to adjust the ↵ value, dividing it by the
number of pairwise comparisons to ensure an accurate estimate of significance.
To compute the test statistics and p-values, the mlxtend python library was
used [176].
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4.4 Pre-Processing

Prior to performing feature selection, some initial pre-processing was per-
formed on the dataset. Words occurring in only one sentence were replaced
with a special INFREQUENT token. The distribution of word frequencies in
a corpus of text tend to follow a Zipfian distribution [139] meaning that most
unique words occur only once or a small number of times. Thus by remov-
ing such infrequent words, this dramatically reduces the size of the feature
space over which the model has to learn, reducing the the risk of the model
overfitting the dataset, and helps it to generalize better to new data points.
While these rare words could be removed entirely, this can negatively impact
word tagging accuracy by changing the relative positions of the words in the
sentence. Additionally, all numbers in the text were replaced with a sequence
of 0’s of the same length as the original number (for example 1980 becomes
0000, while 52 becomes 00) as described in [137]. This allows the model to
better generalize over numbers by collapsing numbers with the same numbers
of digits into the same token.

Words were also converted to lower case, and punctuation characters
and stop words were not removed as they aid classification accuracy in word
labeling tasks such as part-of-speech tagging. Punctuation characters were
treated as separate tokens when tokenizing sentences, and the start and ends
of each sentence were padded with special start and stop tokens to ensure all
word windows were of the same length and to allow the model to detect when
a word was near the start or end of a sentence. In addition, I used a spelling
corrector based on [160] to correct typographic errors, and noisy sentences
with three or fewer words were removed from the dataset.

4.5 Feature Extraction and Selection

The word tagging problem involves utilizing two principle types of information
from the sentence when tagging a word, in addition to the word itself - 1) the
words surrounding the target word providing context, 2) the tags or labels as-
signed to the surrounding words. Each of the algorithms evaluated for solving
this problem di↵er in how they make use of information from the word labels,
so the goal of feature selection was to determine the set of features extracted
from the surrounding words that were the most useful at predicting the target
word’s tag. This set of features could then inform the choice of features used
to train each of the di↵erent models that are capable of handling arbitrary
features. Feature selection is an important technique for machine learning
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problems with large numbers of features, such as NLP problems which tend
to have high dimensionality. High dimensional datasets present a challenge
to machine learning algorithms due to the so-called curse of dimensionality,
a problem where machine-learning algorithms struggle to generalize well on
datasets with a large number of dimensions. This term was originally coined
by Bellman in 1957 [4] to describe the di�culty in achieving statistically sig-
nificant results from high-dimensional datasets due to the sparse distribution
of data in high-dimensions. High dimensional data makes it challenging for
machine learning algorithms to determine which features are relevant and pre-
dictive. By performing feature selection, we can select the optimum set of
features that maximize the model’s classification accuracy on out-of-sample
data, and lower the classification error.

A wrapper method of feature selection was used to determine the op-
timal feature set. This is where the same model is trained on various subsets
of features to assess their utility [91]. In order to evaluate a large number
of di↵erent feature sets, it is important to use an approach that is computa-
tionally e�cient. The window-based classifier model (see section 3.4.2.3) was
selected for this task because it is computationally e�cient when implemented
using a logistic regression classifier. This model also is not a structured learn-
ing algorithm and cannot make use of the previously predicted concept codes
or those assigned in the training data. Because of this fact, it can be used
to evaluate the quality of the features extracted solely from the surrounding
words, and not their labels. Using a logistic regression classifier trained using
the binary relevance problem transformation method has also been shown to
work well for multi-label classification problems [106, 135]. The binary rele-
vance transformation method is also more computationally e�cient than other
transformation methods such as label powerset and classifier chains. Further-
more, as is typical of NLP problems this dataset is considered ‘sparse’ because
it contains a larger number of rare features. A logistic regression classifier can
be trained e�ciently on this data because it can make use of the sparsity of
the data.

4.5.1 Features Evaluated

In this thesis I use the term ‘feature set’ to describe a set of features extracted
using the same approach and the same algorithm. For instance, POS tags
would be considered one feature set, and trigram features a di↵erent feature
set. For this problem, I treat feature selection as the problem of determining
the optimal combination of feature sets. Due to the large number of individual
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features extracted from each dataset, determining the optimal combination of
individual features would be too computationally intensive to be practical.

Di↵erent feature sets were extracted from the words present within the
context window and then used to train a logistic regression model to evaluate
the performance of each feature set in isolation and in combination with other
feature sets. The di↵erent feature sets included unigrams, bigrams, trigrams,
stemmed unigrams and stemmed bigrams and trigrams, part-of-speech (POS)
tags, dependency relations and finally Brown clustering labels. The NLTK
software package [6] was used to compute POS tags for each word, while the
SpaCy python natural language parsing package [103] was used to compute
dependency relations and Brown cluster labels. Brown clustering is a hard
hierarchical agglomerative clustering algorithm that groups words into clusters
based on the contexts in which they appear [16].

Dependency parsing is a form of natural language parsing where binary
relationships between words are detected and constructed into a dependency
parse tree. The dependency relations were extracted by a dependency parser
from the SpaCy python package. SpaCy uses the CLEAR Style set of depen-
dency labels [29], which contains 52 di↵erent dependency relations, including
the ROOT relation. To use the dependency relations as features, each unique
dependency pair from the parse tree was extracted and used as a binary feature
in the model only if that binary relation involved the word to be tagged. Each
dependency relation feature encoded the word pair within the relation, the
type of dependency relation and the role of each word within that dependency.
For example, in the sentence “rising global temperatures caused coral bleach-
ing”, the word ‘bleaching ’ has the relation ‘adjectival modifier ’ with its head
word ‘coral ’. This would then be encoded as a feature as bleaching-amod-
coral, where amod represents ‘adjectival modifier ’. If instead, ‘bleaching ’
was the head word, and the relation was the same, then a di↵erent feature
would be created and represented as coral-amod-bleaching.

For each of the ngram feature types and the POS tags, two di↵erent fea-
ture sets were computed - the first using a bag-of-word (BOW) style encoding
that ignored the ngram’s position within the window, and a second ‘positional’
variant that combined the ngram with its ordinal window position. This ‘po-
sitional’ variant ensured that the same ngram produced a di↵erent unique
feature for each possible window position it was observed in. To achieve this,
the ordinal position of each ngram within the word window was appended to
the ngram to create a positional feature. For example, if the window size was 5,
and the window contained the following unigrams ‘coral bleaching was caused
by’, 5 positional unigram features would be generated: coral-1, bleaching-
2, was-3, caused-4 and by-5. A lot of features only appeared once in the
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dataset, and therefore did not help the model to generalize to new datapoints.
To address this, a minimum feature frequency threshold of 5 was applied, re-
moving any features that appeared in fewer than 5 word windows for each
experiment.

4.5.2 Forward Selection

Once the data was pre-processed, the final combination of feature sets was
determined by finding the optimal combination of feature sets for each size
of word window using a technique called forward selection. In forward selec-
tion, the model is initially trained once using each unique set of features to be
evaluated, and the single set of features are chosen that produced the high-
est classification accuracy on the training dataset. A greedy search is then
conducted, incrementally adding in the next set of features that produced the
biggest increase in accuracy until either no further improvement is achieved
[150], or the maximum number of desired features have been added. Forward
selection was performed once for each odd-sized word window, ranging from 1
to 15 words. Only odd-sized word windows were chosen to ensure there were
the same number of words on either side of the target word to be tagged.
For this experiment, a maximum limit of 6 di↵erent combined feature sets was
chosen to ensure the feature selection process remained tractable. The optimal
set of features was then selected by computing the micro-F1 score using 5-fold
cross validation. For each round of feature selection, if none of the remaining
feature sets added in that round improved the micro-F1 score on the validation
folds, or if the maximum of 6 feature sets had been evaluated, then feature
selection was halted.

4.5.3 Feature Selection Results

The optimal size of word window was found to be 9 words (4 words each side
of the target word) for both datasets, achieving a micro-F1 score of 0.825 for
the coral bleaching dataset, and 0.801 for the skin cancer dataset. Above this
window size, the micro-F1 score started to decline on the validation dataset
while still increasing on the training data, indicating the model was starting to
over-fit. This is illustrated by figures 4.3 and 4.4 below, which show the maxi-
mum micro-F1 score across all feature sets for that window size. The training
and validation micro-F1 scores were computed using 5-fold cross-validation on
the training dataset, averaging the scores across all of the folds.
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Figure 4.4: Maximum Micro-F1 score By Window Size For Skin Cancer

Figure 4.3: Maximum Micro-F1 score By Window Size For Coral Bleaching

The number of features in each feature set for the optimal word window
size of 9 are listed in Table 4.2. In general, the greater the ngram size, the larger
the number of features, as can be seen with the BOW ngrams. However, for
the positional variants, the rarity of the individual trigrams when combined
with their window positions meant that many of those features were below
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the minimum frequency threshold of 5, resulting in fewer positional trigrams
features than positional bigrams.

Table 4.2: Average Number of Features in Each Feature Set Across All
Cross-Validation Runs (Window Size - 9 Words).

Feature Set Coral Bleaching Skin Cancer

BOW Unigrams 1,617.8 1,560.6
BOW Bigrams 20,957.4 19,481.4
BOW Trigrams 46,318.2 43,600.4
Positional Unigrams 8,305.0 7,878.8
Positional Bigrams 23,740.4 23,424.8
Positional Trigrams 18,619.8 20,119.2
Positional Stemmed Unigrams 6,486.6 6,363.4
Positional Stemmed Bigrams 23,263.6 23,344.4
Positional Stemmed Trigrams 18,941.6 20,337.0
BOW POS 40.6 41.6
Positional POS 321.8 323.0
Dependency Parsed Relations 4,848.0 4,711.2
Brown Cluster Labels 512.8 493.2

Total 173,973.6 171,679.0

The relative importance of each set of features can be evaluated by
looking at the model’s performance when trained on each set of features in
isolation. Table 4.3 ranks the individual feature sets by micro-F1 score.
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Table 4.3: Each Feature Set Ranked by Micro-F1 Score When Used in Isola-
tion (Window Size - 9 Words).

Coral Bleaching Skin Cancer

Feature Set F1 Feature Set F1

1 Positional Stemmed Unigrams 0.813 Positional Stemmed Unigrams 0.791
2 Positional Unigrams 0.806 Positional Unigrams 0.788
3 Positional Stemmed Bigrams 0.770 Positional Stemmed Bigrams 0.762
4 Positional Bigrams 0.753 Positional Bigrams 0.754
5 Positional Stemmed Trigrams 0.702 Positional Stemmed Trigrams 0.697
6 Positional Trigrams 0.678 Positional Trigrams 0.684
7 BOW Bigrams 0.611 BOW Bigrams 0.602
8 BOW Unigrams 0.600 BOW Trigrams 0.577
9 BOW Trigrams 0.574 Dependency Parsed Relations 0.572
10 Dependency Parsed Relations 0.558 BOW Unigrams 0.567
11 Brown Cluster Labels 0.360 Positional POS 0.356
12 Positional POS 0.219 Brown Cluster Labels 0.324
13 BOW POS 0.060 BOW POS 0.102

The top 6 out of 13 feature sets for both datasets are positional variants
of unigrams and ngrams, indicating that word position within the word window
is very important for predicting the target word’s tag, while the POS tags
and Brown Cluster labels were amongst the least predictive feature sets when
used in isolation. The stemmed unigram and bigrams also out-perform the
unstemmed variants in both datasets. If we look at the micro-precision and
micro-recall scores for the stemmed and the unstemmed positional unigram
and bigram feature sets, we see that the gains in micro-F1 score come from
improvements in the micro-recall, with a minor change in micro-precision (see
Tables 4.4 and 4.5 below). This suggests that the process of stemming allows
the algorithm to generalize better by collapsing di↵erent words with the same
stemmed form into the same tokens.
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Table 4.4: Impact of Stemming on Classification Accuracy on the Coral
Bleaching Validation Dataset

Micro-F1 Micro-Recall Micro-Precision

Positional Unigrams 0.806 0.734 0.893
Positional Stemmed Unigrams 0.813 0.747 0.891
Percentage Improvement 0.9 1.8 -0.2

Positional Bigrams 0.753 0.643 0.908
Positional Stemmed Bigrams 0.770 0.666 0.911
Percentage Improvement 2.3 3.6 0.3

Table 4.5: Impact of Stemming on Classification Accuracy on the Skin Cancer
Validation Dataset

Micro-F1 Micro-Recall Micro-Precision

Positional Unigrams 0.788 0.733 0.853
Positional Stemmed Unigrams 0.791 0.740 0.850
Percentage Improvement 0.4 0.1 -0.4

Positional Bigrams 0.754 0.667 0.868
Positional Stemmed Bigrams 0.762 0.679 0.868
Percentage Improvement 1.1 1.8 0.0

However the purpose of using model-based feature selection is to eval-
uate the accuracy of the model when used with combinations of feature sets.
While some feature sets may not be very useful for building a classifier on
their own, they may improve the performance of the model more noticeably
when used in combination with other feature sets. Table 4.6 shows how the
micro-F1 score increases as new feature sets are added by forward-selection.
Each row shows the new feature set that was added in that iteration, and the
resulting micro F1 score. The second most predictive feature sets are positional
stemmed bigrams for both datasets. When the feature sets were evaluated in
isolation, the positional unigrams were the second most predictive feature set,
as seen in Table 4.3. The stemmed and un-stemmed positional unigrams are
highly correlated, and so once the stemmed unigrams are added to the model,
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the un-stemmed version adds little new discriminative information, and so the
bigrams are chosen instead by forward selection.

Table 4.6: Micro F1 Score as Additional Feature Sets Are Added by Forward
Selection (Window Size - 9 Words). Pos. = Positional, Dep. = Dependency

Coral Bleaching Skin Cancer

# Feats. Added Feature Set F1 Added Feature Set F1

1 Pos. Stemmed Unigrams 0.8127 Pos. Stemmed Unigrams 0.7911
2 Pos. Stemmed Bigrams 0.8191 Pos. Stemmed Bigrams 0.7991
3 BOW Unigrams 0.8227 Brown Cluster Labels 0.8009
4 Brown Cluster Labels 0.8236 BOW Unigrams 0.8011
5 Pos. Stemmed Trigrams 0.8242 Dep. Parsed Relations 0.8009
6 Dep. Parsed Relations 0.8247 Pos. Unigrams 0.8003

To reduce computational complexity, the maximum combination of fea-
ture sets evaluated was 6. For the coral bleaching essays, the model’s validation
accuracy continued to increase by smaller amounts as more feature sets were
added, but in the skin cancer dataset the algorithm started to overfit once more
than 4 feature sets were added, and no trigram feature sets were selected. This
can be seen in figure 4.5, which shows how the maximum F1 score changes as
more feature sets are added. The Brown cluster labels were selected in both
datasets despite producing very low micro-F1 scores when used in isolation.
This would indicate that these feature sets di↵ered su�ciently from the other
feature sets to add some predictive power. However the improvements in F1

scores in each dataset after the initial positional stemmed unigram feature
sets were added was minimal, suggesting that the relative positions of the in-
dividual words within the context of the target word was most important in
determining its associated concept code or codes.
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Figure 4.5: Maximum Micro-F1 Score by Number of Feature Sets (Window
Size - 9 Words)

Table 4.7 below shows the reduction in the total number of features as
a result of feature selection.

Table 4.7: The Reduction in Number of Features for the Window-Based
Tagging Model as a Result of Feature Selection. Window Size = 9 Words

Dataset # All Features # Optimal Features % Reduction

Coral Bleaching 173,974 55,670 68%
Skin Cancer 171,679 44,352 74%

It should be noted that only 3 of the 5 model types evaluated used this
set of features. The Window-Based Word Tagging Model, the CRF model and
the Structured Perceptron all make use of a word window around the target
word to be tagged, and are able to utilize this set of pre-determined features.
However, the Hidden Markov Model is a probabilistic graphical model and
is not designed to use arbitrary features computed over the word sequence.
Furthermore, the Recurrent Neural Network is able to derive its own features
over the entire word sequence it is trained on, and is not restricted to making
use of a word window in order to take into account the target word’s context.
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Di↵erent features were therefore used for the Recurrent Neural Network model,
as discussed in section 4.7.5.

4.6 Problem Transformation Methods

In both sets of essays, multiple concept codes can be associated with individ-
ual words. This is an example of a multi-label classification problem (MLC),
as outlined in section 3.3. For the word labeling task, problem transformation
methods were used to address the MLC problem because they allow existing
machine learning models to be adapted to solve the MLC problem. Binary
relevance (BR) is a simple problem transformation method that is compu-
tationally e�cient and has been shown by multiple authors to be e↵ective at
solving multi-label classification problems (for example [106], [135]). The main
limitation of BR is that the method is unable to take advantage of dependen-
cies between labels [136], so its performance was compared to to that of the
label powerset method (LP), which does not su↵er from this limitation. The
principle di↵erence between these two approaches is that for BR, a separate
classifier is trained for each concept code to be predicted, while in the LP ap-
proach, a separate classifier is trained for each unique combination of tags that
were observed in the training data. At prediction time for the LP approach,
each word is assigned the set of tags taken as the union of all predicted tag sets
for that word. For more details on these two di↵erent problem transformation
techniques, please refer to section 3.3.1.

To determine which problem transformation method was the most ef-
fective at creating a word tagging model, the performance of both the BR and
LP approaches were evaluated using the optimal set of features and window-
sizes determined by the feature selection process. However, as described in
section 2.4, very few words in each dataset have multiple tags, so a problem
transformation method is not going to have a large impact on the accuracy
of the model. To evaluate the relative e↵ectiveness of problem transformation
methods on this problem, a third method was used, which I will call ‘most
common tag’. In the most common tag approach, the training data was mod-
ified such that all words assigned multiple tags were assigned only the most
common tag, based on tag frequencies computed from the training dataset.
The trained model was then evaluated on the 20% test set partition described
earlier (see section 4.2), which retained any instances of multiple tags. The
results are shown in Table 4.8 below:
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Table 4.8: Problem Transformation Method Accuracy (Micro F1 score)

Method Coral Bleaching F1 Skin Cancer F1

Most Common Tag 0.8317 0.8087
Label Powerset 0.8316 0.8087
Binary Relevance 0.8247 0.8011

The most common tag approach slightly out-performed the LP method
on the coral bleaching dataset, and achieved the same micro-F1 score on the
skin cancer dataset. It appears that their were too few occurrences of each
label powerset with multiple labels for the model to make use of dependencies
between di↵erent labels to improve the classification accuracy. Because the
most common tag approach is a simpler approach that does not require a
modification to the underlying machine learning algorithm, this method was
chosen to train the five di↵erent machine learning models.

4.7 Model Evaluation

Five di↵erent machine learning algorithms were evaluated on the word tagging
problem to determine the most accurate algorithm for this task:

• Window-Based Word Tagging Model

• Conditional Random Field

• Hidden Markov Model

• Structured Perceptron

• Recurrent Neural Network

The choice of feature sets used in each model was informed by the
results of the feature selection process, and each model was trained using
the most common tag method described in section 4.6. The micro-F1 score
of each model was computed using 5-fold cross validation, and computed on
both the training and tests folds for comparison. Hyper-parameter tuning
was conducted on each model and the hyper-parameter settings were chosen
which maximized the micro-F1 score on the test folds. Each model was then
re-trained on the entire training dataset using the optimal settings to evaluate
its performance on the separate test dataset.
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4.7.1 Window-Based Word Tagging Model

The window based word tagging model uses a sliding window of words around
the target word to train a machine learning classification algorithm to classify
each word based on its context, as described in section 3.4.2.3. A window size
of 9 words was used to train the window-based classifier using the optimal
feature set determined by the feature selection exercise described in section
4.5, and the most common tag approach, detailed in section 4.6. The logistic
regression classifier implementation from the LibLinear package [65] was used
as the classification algorithm.

When training a machine learning model on a classification or regres-
sion problem, most algorithms provide one or more hyper-parameters designed
to control the complexity of the resulting model. This concept is referred to
as ‘regularization’ and is used to help prevent overfitting by encouraging the
discovery of simpler models over more complex ones. The assumption here
is that simpler models are more likely to better explain the data, based on
the principles of Occam’s razor. Three di↵erent methods of regularization are
available for the logistic regression algorithm - L1, L2 and dual mode, which
combines both constraints (see [65] for further details). Each of these meth-
ods constrains the size of the coe�cients learned by the model to reduce the
variance in the model. For a model withm coe�cient values, wi, L1 regulariza-
tion penalizes the sum of the absolute values of the coe�cients (see Equation
4.12), while L2 regularization penalizes the sum of the squared coe�cients (see
Equation 4.13) [7]:
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In Equations 4.12 and 4.13, the constant term � is a hyper-parameter
controlling the degree of regularization. In the LibLinear package, the degree
of regularization is controlled by the C parameter which is described as the
‘inverse of regularization strength’, i.e. C = 1/� [167], and thus has a similar
purpose to the C parameter used to regularize Support Vector Machines. Low
C values lead to stronger regularization by encouraging smaller coe�cient
values. A grid search was performed to determine the optimum regularization
method and corresponding C value. C values of 0.1, 0.5, 1, 10, and 100 were
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evaluated, and dual mode with a C value of 0.5 produced the best micro-F1

score on the validation data in cross validation on both datasets. The micro
F1 scores attained on the training, validation and test datasets using these
settings are presented in in Tables 4.9 and 4.10.

Table 4.9: Window-Based Tagging Model Classification Accuracy on the
Coral Bleaching Dataset

Data Partition Micro-F1 Micro-Recall Micro-Precision

Training Data (CV) 0.940 0.918 0.963
Validation Data (CV) 0.832 0.781 0.889
Test Data 0.842 0.802 0.885

Table 4.10: Window-Based Tagging Model Classification Accuracy on the
Skin Cancer Dataset

Data Partition Micro-F1 Micro-Recall Micro-Precision

Training Data (CV) 0.901 0.878 0.924
Validation Data (CV) 0.810 0.773 0.850
Test Data 0.814 0.779 0.853

In both datasets, the micro-F1 scores are higher on the test dataset than
the validation dataset. This reflects the fact that the entire training dataset
was used to train the model that was evaluated on the test dataset, whereas
only 80% of the training data was used to train the models in each fold during
5-fold cross validation. The micro-precision scores are higher than the micro-
recall scores for each dataset and each partition. One of the biggest challenges
in solving any NLP machine learning problem is handling out-of-vocabulary
words (OOV) - words seen in the test or validation data that were not present
in the training data. In the coral bleaching dataset, on average 2.1% of the
words in the validation data and 3.9% of the words in the test dataset were
not found in the training data set, while in the skin cancer dataset 1.9% of the
validation data and 4.6% of the test data set words were OOV. This is therefore
one possible explanation for the higher precision scores. This problem can be
addressed in part by stemming, which collapses multiple morphological forms
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of a word to the same stem, but stemming will not recognize words that have
the same or similar meanings but di↵erent stems.

The window-based tagging model attains a higher micro-F1 score on the
coral bleaching dataset than the skin cancer dataset. Tables 2.2 and 2.3 lists a
number of key statistics describing the two di↵erent datasets. On average, the
skin cancer essays were longer, contained longer sentences and more unique
words, and thus represent a more complex set of documents for classification,
which may explain this di↵erence in classification performance.

4.7.2 Conditional Random Field

The Conditional Random Field (CRF) algorithm is a linear chain probabilistic
graphical model which expresses the relationships between random variables
using a graph structure that forms a simple linear chain. Unlike the window-
based tagging model, the CRF algorithm is able to learn from both the current
observations and the tags assigned to the previous words in the sentence.
For more details about the CRF algorithm, please see section 3.4.2.1. The
CRF algorithm was trained using the same feature sets as the window-based
tagger, using a 9 word window and the optimal feature set from the feature
selection exercise. The most common tag method was used to address the MLC
problem. The CRF algorithm implementation from the CRFSuite package
[162] was used, which is a first-order Markov CRF, and therefore looks only at
one previous word’s tag when making predictions. The CRF algorithm uses
the Viterbi algorithm [235] as the ‘decoder’, to determine the most probable
tagging sequence given a sequence of observations. The algorithm is trained
with gradient descent using the L-BFGS method.

The CRF model was regularized using L2 regularization, and the fol-
lowing values were evaluated for the C parameter - 0.1, 0.5, 1, 10, and 100. A C
coe�cient value of 0.1 achieved the highest micro-F1 score on the coral bleach-
ing validation data, and a value of 0.9 on the skin cancer dataset. For each C
value, the algorithm’s performance was also evaluated with the feature possible
transitions setting ‘on’ and ‘o↵’. When set to ‘on’, this generates additional
negative transition features that do not occur in the training data to associate
all possible label pairs. Setting this to ‘on’ slightly improved the micro-F1

score on the skin cancer dataset, but decreased this metric very slightly on the
coral bleaching dataset. This indicates that the CRF model tended to over-fit
the additional features generated by this setting on the coral bleaching but not
the skin cancer dataset. The micro-average F1 score, precision and recall of
this model on the di↵erent data partitions are listed in Tables 4.11 and 4.12.
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Table 4.11: CRF Classification Accuracy on the Coral Bleaching Dataset

Data Partition Micro-F1 Micro-Recall Micro-Precision

Training Data (CV) 0.994 0.994 0.994
Validation Data (CV) 0.824 0.772 0.883
Test Data 0.835 0.797 0.878

Table 4.12: CRF Classification Accuracy on the Skin Cancer Dataset

Data Partition Micro-F1 Micro-Recall Micro-Precision

Training Data (CV) 0.971 0.966 0.977
Validation Data (CV) 0.799 0.758 0.846
Test Data 0.804 0.759 0.855

In comparison to the window-based tagging model, for both datasets
the CRF model achieves a higher micro-F1 score on the training data, and a
lower score on both the validation and test datasets. This suggests the model
was more prone to overfitting the data, and was not able to use the previous
word tags to improve classification performance. As with the window-based
tagging model, precision was higher than recall for each dataset, and the model
again performed slightly better on the test dataset than the validation dataset.

4.7.3 Hidden Markov Model

The Hidden Markov Model (HMM) is also a linear chain probabilistic graphi-
cal model which predicts the joint probability of observing each tag with the
current word. The HMM is a probabilistic graphical model which creates a
generative rather than a discriminative model of the data. Generative mod-
els attempt to directly model the data generation process itself, rather than
predicting the most probable class given a set of arbitrary features. Causal
inference is then performed by interrogating the generative model. Because
the HMM is a generative and not a discriminative model, it is only able to
make use of information available to the graphical model, and cannot make
use of arbitrary features of the data. It is therefore unable to make use of
information about words that occurred earlier or later in the sentence [54],
and can only use the current word, in addition to the previous tag, to make a
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prediction. Consequently, the HMM model was unable to use the same feature
sets as the previous two models, and instead was evaluated using unstemmed
and stemmed words as the observations. In both datasets, the HMM achieved
a higher micro-F1 score when using the stemmed words.

Maximum Entropy Markov Models (MEMM’s) extend the HMM to
make use of additional features over the inputs. However, MEMMs su↵er from
the label-bias problem (see section 3.4.2.1) and are typically out-performed by
the CRF algorithm [54, 129]. For more information about HMMs, please refer
to section 3.4.2.1.

The HMM implementation found in the NLTK [6] software package
was used for this task. This implementation also uses the Viterbi algorithm
[235] to determine the most probable tagging sequence given a sequence of ob-
servations. The principle hyper-parameter in an HMM model are the number
of hidden states in the model [150], and the method of smoothing the prob-
abilities to better handle low frequency or previously unseen words. Because
the hidden states in the HMM for this task correspond to the concept codes,
the number of states is fixed and cannot be optimized. In addition, because
infrequently occurring words and previously unseen words were replaced with
the special INFREQUENT token, as described in section 4.4, then smoothing
was unnecessary.

The performance of the HMM model using the stemmed words across
the di↵erent data partitions and data sets is listed below in Tables 4.13 and
4.14.

Table 4.13: HMM Classification Accuracy on the Coral Bleaching Dataset

Data Partition Micro-F1 Micro-Recall Micro-Precision

Training Data (CV) 0.799 0.850 0.754
Validation Data (CV) 0.758 0.789 0.728
Test Data 0.747 0.799 0.702
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Table 4.14: HMM Classification Accuracy on the Skin Cancer Dataset

Data Partition Micro-F1 Micro-Recall Micro-Precision

Training Data (CV) 0.696 0.769 0.645
Validation Data (CV) 0.674 0.733 0.625
Test Data 0.675 0.731 0.628

The HMM under-performed the other models on both datasets as it
was not able to make use of the other contextual information from the word
window. Unlike the previous two models, the HMM achieved higher recall
than precision for each dataset and each partition. Because the model was
only using stemmed words as the features from the sentence and could not
make use of rarer, more specific features (such as the positional unigrams and
ngrams) this likely resulted in the HMM making broader generalizations over
the training data. This would lower the false negative rate but increase the
false positive rate, therefore improving recall at the cost of precision. The
di↵erence in the training and test accuracies for the HMM was also much less
than the other model types, indicating this model was less prone to overfitting,
likely as a result of the simpler set of features it was able to learn from.

4.7.4 Structured Perceptron

A key problem in building structured prediction models that rely on their
previous predictions is deciding how to choose the previous labels used to
train the system (see section 3.4.1). One approach is to use the ‘ground truth’
- the actual labels assigned to the training data to condition future tagging
decisions on, which is how the HMM and CRF models are trained. However, it
is usually better to train a model using its own noisier predictions, because this
is how it will make predictions on new datapoints that it hasn’t seen before
[45]. To do so requires an online machine learning algorithm that can learn
iteratively, such as the structured perceptron.

The structured perceptron is a modification of Rosenblatt’s Perceptron
algorithm for use in structured prediction problems [35]. In contrast to the
CRF and HMM models, a greedy decoding algorithm was used to train the
structured perceptron. Whereas the Viterbi algorithm uses dynamic program-
ming to search for the most probable sequence of tags for a sentence, a greedy
algorithm simply chooses the most probable tag to assign to each word in the
sentence. The Viterbi algorithm is more likely, but not guaranteed, to find a
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more optimal solution as a deeper search is conducted. However, the compu-
tational complexity of the Viterbi algorithm can result in very long training
times for an online algorithm with so many features and a large number of
di↵erent tags, making it impractical for this problem. For more information
on the structured perceptron, please refer to sub-section 3.4.5.

The greedy averaged perceptron implementation from the SpaCy soft-
ware package [103] was used with modifications to support the optimal fea-
ture set from section 4.5. The averaged perceptron is a modification of the
perceptron where the model’s weights are replaced with their average values,
computed over the course of training the model [35]. Averaging the model’s
weights following training has been shown to improve the model’s accuracy
on the test dataset on a number of di↵erent tagging problems [35]. For each
dataset, the model was trained with and without weight averaging, and with
and without using the previous predicted label as an additional feature. To
help prevent overfitting, ‘early-stopping’ was used to ensure that training was
halted once the algorithm’s performance on a separate held-out dataset started
to decline [150]. To achieve this, during 5-fold cross-validation, each training
data fold created in cross-validation was further split into two partitions - 80%
was used to train the perceptron, and the remaining 20% of the fold’s data was
used to determine when to stop training the algorithm. The perceptron was
then trained iteratively until the performance on the held out dataset started
to decline, at which point the number of training iterations was noted. The
algorithm was then trained from scratch on the entire training data fold for
the number of iterations that resulted in the optimal classification accuracy
on the held out dataset in the initial run.

In both datasets, the algorithm had the highest micro F1 score when
weight averaging was applied, and the previous predicted label was included
in the features. The model’s accuracy across the 2 datasets and the di↵erent
data partitions are listed below in Tables 4.15 and 4.16.

Table 4.15: Structured Perceptron Classification Accuracy on the Coral
Bleaching Dataset

Data Partition Micro-F1 Micro-Recall Micro-Precision

Training Data (CV) 0.948 0.930 0.966
Validation Data (CV) 0.829 0.778 0.887
Test Data 0.837 0.794 0.884
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Table 4.16: Structured Perceptron Classification Accuracy on the Skin Can-
cer Dataset

Data Partition Micro-F1 Micro-Recall Micro-Precision

Training Data (CV) 0.913 0.892 0.935
Validation Data (CV) 0.809 0.767 0.845
Test Data 0.814 0.773 0.860

While the structured perceptron was less accurate than the window-
based tagging model on the coral bleaching dataset, it achieved the same
micro-F1 score on the skin cancer dataset, and it out-performed the CRF and
HMM models on both datasets.

4.7.5 Recurrent Neural Network

A bidirectional Long Short-Term Memory (LSTM) is a form of RNN that is
able to learn long-distance relationships from sequential data by maintaining
an internal state across multiple time steps, and by processing sequential data
in both a forward and backward direction, as described in section 3.5.4. Bidi-
rectional LSTM’s have been shown by a number of authors to attain at or
near state-of-the-art performance on a number of word tagging tasks, includ-
ing part-of-speech tagging [172, 237], chunking and named entity recognition
[237]. A more recent variant of the LSTM, called the Gated Recurrent Unit
(GRU) was proposed by Cho et al. in 2014 [28] and has been shown to have
comparable performance on sequence labeling tasks, while being more compu-
tationally e�cient [30]. Inspired by this work, a bidirectional GRU RNN was
trained on the word labeling task.

A bidirectional RNN can automatically utilize information from the
context of the word to be tagged due to the recurrent connections within
the hidden layer. Consequently, no explicit word-window was used to train
the recurrent neural network, and the RNN was fed a sentence at a time,
with its state reset between sentences. The RNN was trained using a word
embedding layer (see sub-section 3.5.1 for more information), which enables
the network to learn a vector representation for each word by transferring
knowledge from the language model used to train it. The use of pre-trained
word embeddings in place of discrete representations of words has been shown
to improve the performance of neural networks on a number of NLP tasks [38,
39]. 100-dimensional GloVe vectors were used for the pre-trained embeddings,
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and produced by the GloVe algorithm [168] trained on 1.6 billion tokens from
a 2014 copy of the English Wikipedia. These vectors can be downloaded from
[88]. Amongst the many di↵erent topics covered, Wikipedia contains scientific
content and as such should be relevant to the essay topics studied.

The general architecture of the RNN consisted of a word-embedding
layer, followed by one or two recurrent layers and finally a softmax layer that
computed a probability distribution over all possible tags for each individual
word to be tagged. Cross-entropy was used as the loss function, as is typical
for classification problems, and the pre-trained word embeddings were updated
by back-propagation as the network was trained (i.e. they were not fixed).
The Adam algorithm for stochastic optimization was used to perform gradient
descent because it has been shown to converge faster and result in lower classi-
fication errors on a number of di↵erent datasets [118]. To prevent overfitting,
10% of the training data was kept aside as a development dataset and was
used to perform early-stopping [150]. This thus acts as a form of regulariza-
tion, halting training once the network appears to overfit on the development
dataset. The performance of the network was evaluated on the development
dataset after every epoch (each pass through the training data) and training
was halted once 3 successive epochs were completed without any further im-
provement in the maximum micro-F1 score attained so far. The network’s
weights were then reset to the weights that achieved the best micro-F1 score
on the development data. Because the development dataset was taken from
the training dataset, the dataset partitions did not change and remained the
same as those used in the other experiments. The training data metrics were
calculated using the original training dataset, which included the development
data.

Dropout [215] has become a very popular form of regularization for
training deep neural networks, and involves randomly setting a proportion
(usually 50%) of the activations of each network layer to 0. However, applying
Dropout when training the RNN’s used in this task caused problems with
convergence in the initial experiments, and was not used in the final set of
experimental runs. I suspect this is due to the small size of the dataset and
the infrequency of the class labels. As some classes only appear with a small
number of words, randomly ignoring those words while training makes it hard
for the neural network to learn on these datasets.

To determine the best network configuration, 5-fold cross validation was
performed with a grid search to evaluate a number of di↵erent configurations.
The model was trained both with and without the pre-trained embeddings.
When the pre-trained embeddings weren’t used, the 100 dimensional word
embedding vectors were randomly initialized instead using a uniform distri-
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bution. A one-directional GRU RNN was also evaluated in addition to the
bidirectional model, and the model was trained with both one and two RNN
layers. Finally, three di↵erent sizes of RNN hidden layer were evaluated with
64, 128 and 256 neurons. Training the neural network with more hidden nodes
or more than 2 layers proved too computationally intensive given the available
resources. One of the most important hyper-parameters to tune when train-
ing a neural-network is the learning rate because this can have a significant
impact on how well the final model converges, and how likely it is to get stuck
in local minima. However, one of the main advantages of the Adam optimiza-
tion algorithm is that it dynamically adjusts the learning rate for each of the
network’s trainable parameters during training to optimize performance [118].
It is therefore unnecessary to tune the learning-rate when this optimization
algorithm is used.

The optimal configuration on the validation data set used pre-trained
word embeddings, 2 bidirectional GRU RNN layers with 256 hidden units.
The micro-average precision, recall and F1 scores of the RNN with the optimal
configuration on the di↵erent data partitions are listed in Tables 4.17 and 4.18
below.

Table 4.17: Recurrent Neural Network Classification Accuracy on the Coral
Bleaching Dataset

Data Partition Micro-F1 Micro-Recall Micro-Precision

Training Data (CV) 0.927 0.925 0.928
Validation Data (CV) 0.837 0.822 0.853
Test Data 0.842 0.830 0.855

Table 4.18: Recurrent Neural Network Classification Accuracy on the Skin
Cancer Dataset

Data Partition Micro-F1 Micro-Recall Micro-Precision

Training Data (CV) 0.918 0.925 0.911
Validation Data (CV) 0.821 0.821 0.822
Test Data 0.837 0.807 0.869

The bidirectional RNN attained the same micro-F1 score as the window-
based classifier on the coral bleaching dataset, and out-performed all of the
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other algorithms on the skin cancer dataset. Whereas the RNN achieved the
best recall, precision and micro-F1 score on the skin cancer dataset, the higher
micro-F1 score on the coral bleaching dataset was as a result of a higher recall,
because the precision was lower than that of the window-based classifier. The
pre-trained word embeddings allow the model to incorporate information from
a di↵erent and much larger corpus by learning a distributed representation for
the meaning of each word. This can be considered a form of transfer learning,
where information is transferred between the language model, used to train the
embeddings, and the RNN model utilizing those embeddings. If we compare
the model’s best performance both with and without the word embeddings,
we see that most of the improvement in the micro-F1 score comes from the
improvement in the micro-recall and not the micro-precision, as can be seen in
Tables 4.19 and 4.20. There is around a 3% improvement in recall on the test
datasets when the embeddings are used, but only around a 1% improvement in
precision. This suggests that word embeddings allow the model to generalize
better to cover more unique words by providing a distributed representation
of the meaning of a word, where similar words possess similar representations.

Table 4.19: Impact of Pre-Trained Word Embeddings on RNN Classification
Accuracy on the Coral Bleaching Validation Dataset

Micro-F1 Micro-Recall Micro-Precision

Without embeddings 0.818 0.795 0.844
With embeddings 0.837 0.822 0.853
Percentage Improvement 2.3 3.4 1.1

Table 4.20: Impact of Pre-Trained Word Embeddings on RNN Classification
Accuracy on the Skin Cancer Validation Dataset

Micro-F1 Micro-Recall Micro-Precision

Without embeddings 0.806 0.798 0.814
With embeddings 0.821 0.821 0.822
Percentage Improvement 1.9 2.9 1.0

Without using the pre-trained word-embeddings, the bidirectional RNN
would have only attained the 4th best micro-F1 score on the coral bleaching
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dataset and the 3rd best micro-F1 score on the skin cancer dataset, when
comparing the algorithm’s cross validation performance on the validation data
folds. The main advantage the RNN has on this dataset therefore appears
to be its ability to make use of pre-trained word-embeddings, and fine tune
them to the specific classification task. Deep neural networks typically require
large amounts of data to perform well on most tasks, which may explain the
relatively poor performance of this model on this task without the pre-trained
word embeddings.

The bidirectional RNN also performed much better than the regular
RNN on this task, as shown Tables 4.21 and 4.22. This suggests that the con-
text to the right of the word is also important in determining its concept code,
and had an even greater impact than the use of pre-trained word embeddings.

Table 4.21: Impact of Using a Bidirectional RNN on Classification Accuracy
on the Coral Bleaching Validation Dataset

Micro-F1 Micro-Recall Micro-Precision

Unidirectional 0.760 0.735 0.787
Bidirectional 0.837 0.822 0.853
Percentage Improvement 10.1 11.8 8.4

Table 4.22: Impact of Using a Bidirectional RNN on Classification Accuracy
on the Skin Cancer Validation Dataset

Micro-F1 Micro-Recall Micro-Precision

Unidirectional 0.762 0.747 0.778
Bidirectional 0.821 0.821 0.822
Percentage Improvement 7.7 9.9 5.7

4.8 Summary of Results and Discussion

The performance of the 5 di↵erent approaches on the datasets can be analyzed
in a number of di↵erent ways to throw light on the di↵erences in the individual
algorithms. In addition to comparing their performance using the micro-F1

score, I will also compare the algorithms’ performance using the macro-F1
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score, as well as showing how each model performs on each individual concept
code. This will illuminate how sensitive each model is to the relative frequency
of each code, and whether some codes are inherently more complex to learn
than others. Finally, I will run a set of statistical tests to see if there is a
statistically significant di↵erence in performance between the 5 models, and
then discuss how extensible these results are to other texts and other domains.

4.8.1 Micro-F1 Performance

The classification accuracy of each algorithm on the test data can be seen in
summary Tables 4.23 and 4.24 below.

Table 4.23: Test Data Accuracy by Algorithm on the Coral Bleaching
Dataset. All metrics listed are micro metrics.

Algorithm F1 Recall Precision Features

Window-Based Tagger 0.842 0.802 0.885 Word Window Feats.
CRF 0.835 0.797 0.878 Word Window Feats.
HMM 0.747 0.799 0.702 Stemmed Unigrams
Structured Perceptron 0.837 0.794 0.884 Word Window Feats.
Bidirectional RNN 0.842 0.830 0.855 Word Embeddings

Table 4.24: Test Data Accuracy by Algorithm on the Skin Cancer Dataset.
All metrics listed are micro metrics.

Algorithm F1 Recall Precision Features

Window-Based Tagger 0.814 0.779 0.853 Word Window Feats.
CRF 0.804 0.759 0.855 Word Window Feats.
HMM 0.675 0.731 0.628 Stemmed Unigrams
Structured Perceptron 0.814 0.773 0.860 Word Window Feats.
Bidirectional RNN 0.837 0.807 0.869 Word Embeddings

Overall, the bidirectional RNN and window-based tagging model both
achieved the optimal micro-F1 score on the coral bleaching dataset (when
rounded to 3 decimal places), while the RNN achieved the best micro-F1 score
out of all of the models on the skin cancer dataset, with a micro-F1 score
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2.8% higher than the perceptron and window-based tagger on that dataset.
The RNN model had the strongest overall performance across both dataset,
as expected. All models, with the exception of the structured perceptron,
achieved a higher micro-F1 score on the coral bleaching dataset, suggesting this
dataset was slightly easier to learn from. Similarly, all of the models except
the HMM model achieved higher precision than recall on both datasets. This
suggests one of the challenges with this problem is making predictions on rare
words and words not seen in the training data.

The strong performance of the window-based tagging model on both
datasets compared to the CRF, HMM and structured perceptron models sug-
gests that the surrounding words, and not their concept codes, are the most
important factor in predicting a word’s concept code. This is because the
window-based tagging model did not make use of previously predicted con-
cept codes, which the other models were able to do. Furthermore, the HMM
model was the only model not able to use information about the surrounding
words, and achieved the lowest classification accuracy out of all of the di↵erent
models. However, the window-based tagging model was used to perform the
feature selection, and so may have gained some advantage over the other three
models that used the same set of features chosen by that process. This may
also explain it’s superior performance when compared to those other three
models. The superior performance of the bidirectional RNN over the regular
RNN also suggests that the words present on the right side of the target word
are important in predicting the word’s concept code, not just the words to the
left of the target word.

The results of the feature selection exercise also indicated that the rel-
ative position of the surrounding words in the word window was also very
important, as the positional ngrams out-performed the bag-of-word ngrams
by a significant amount (see Table 4.3 and Table 4.6). The main advantage
of using a bidirectional RNN for this task is that it can use the context of the
entire sentence in order to predict the word tags, while also taking into ac-
count the relative order of those words. The window-based tagging approach,
however, can only use words found within the word window and is unable to
make use of words found elsewhere in the sentence. This capability, combined
with the ability to make use of the pre-trained word embeddings could explain
the superior performance of the bidirectional RNN at this task. The bidi-
rectional RNN comfortably out-performed the other approaches on the skin
cancer dataset, indicating that these aspects of the algorithm were particularly
useful on that dataset.

In the feature selection exercise the stemmed ngrams out-performed
the unstemmed ngrams due to improvements in recall. Similarly, using pre-
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trained word embeddings in the bidirectional RNN improved the micro-F1

score primarily by improving the recall of the model. By improving the recall,
these features allowed the model to generalize better to cover more positive
examples of each code. Also, the poor performance of the part-of-speech tags
and dependency parsed relations as features indicates that the meaning of the
words in the sentence mattered much more than the grammatical structure of
the sentence when predicting the concept codes present.

When trying to solve a structured prediction problem, one important
question to ask is ‘Is it more e↵ective to use the ground-truth labels or the
algorithm’s own predictions to condition future predictions on?’. Both the
structured perceptron model and the CRF algorithm were trained using the
same set of features, and both algorithms are able to make use of the previous
word’s label when predicting the target word’s label. One important di↵er-
ence between these two algorithms was the way in which they were trained.
The structured perceptron was trained using its own predicted labels, whereas
as the CRF model was trained using the ground-truth labels from the train-
ing data. The structured perceptron out-performed the CRF model on both
datasets, which suggests that training an algorithm on its own predictions is
a more e↵ective approach for this type of problem.

Each of the five algorithms achieved higher micro-F1 scores on the coral
bleaching dataset. Both datasets have quite di↵erent characteristics, as de-
scribed in sections 2.4. There are fewer concept codes in the skin cancer
dataset, 9 compared to 13 codes, the total word count for the entire dataset
is smaller for the skin cancer corpus, but the skin cancer essays are longer
and use more unique words per essay. The skin cancer essays also have more
concept codes per essay, on average, than the coral bleaching essays, while a
greater percentage of words and sentences are assigned concept codes in the
coral bleaching dataset. The longer essays, the greater variation in word us-
age, and the lower density of concept codes could explain why higher micro-F1

scores were attained on the coral bleaching dataset.
The goal of solving Research Question 1 was to build an accurate word

tagging model to detect the concepts that could then be used to construct an
accurate causal model of each essay. The micro-F1 metric was chosen as it takes
into account the relative frequencies of each concept code when computing an
F1 score over all of the concept codes; the more common codes have a larger
impact on the micro-F1 score than the less frequent codes. This is necessary to
optimize the accuracy of the final causal model construction. However, if we
are more interested in analyzing the performance of the di↵erent algorithms
at solving the tagging problem, it is important to understand how well the
di↵erent approaches perform on rarer classes. The macro-F1 score computes
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an unweighted average over all classes, and is better suited to answering this
problem by treating each class equally.

4.8.2 Macro F1 Performance

Tables 4.25 and 4.26 below shows the macro-F1 score of each algorithm on the
test.

Table 4.25: Macro Test Data Metrics by Algorithm on the Coral Bleaching
Dataset

Algorithm Macro-F1 Macro-Recall Macro-Precision

Window-Based Tagger 0.740 0.689 0.800
CRF 0.725 0.676 0.781
HMM 0.657 0.725 0.602
Structured Perceptron 0.737 0.691 0.789
Bidirectional RNN 0.769 0.756 0.783

Table 4.26: Macro Test Data Metrics by Algorithm on the Skin Cancer
Dataset

Algorithm Macro-F1 Macro-Recall Macro-Precision

Window-Based Tagger 0.761 0.693 0.843
CRF 0.756 0.685 0.843
HMM 0.644 0.678 0.613
Structured Perceptron 0.757 0.690 0.840
Bidirectional RNN 0.779 0.711 0.862

Based on the macro-F1 score, the RNN model is the most accurate
model on both datasets, which is in agreement with the the micro-F1 metric
results. The window-based tagging model again had the highest precision on
the coral bleaching data, but the recall was much lower than the RNN resulting
in a lower macro-F1 score overall. For both the micro and macro-F1 metrics,
when combining results from both datasets, the RNN is the most accurate
model, followed by the window-based tagger and the structured perceptron,
with the CRF and the HMM models having the weakest performance on the
word labeling task.
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4.8.3 Performance By Individual Concept Code

Tables 4.27 and 4.28 show the individual F1 scores for each algorithm across
all concept codes for each dataset. Appendix E provides a more detailed
breakdown of the accuracy metrics by code for each of the 5 algorithms across
both datasets.

Table 4.27: Test Data F1 Score by Algorithm by Code on the Coral Bleaching
Dataset

Code Percentage

of-Words

Window-Based

Tagger

CRF HMM Structured

Perceptron

Bidirectional

RNN

1 3.32% 0.826 0.836 0.784 0.839 0.819
2 0.85% 0.740 0.762 0.441 0.783 0.712
3 5.36% 0.827 0.820 0.733 0.808 0.827

4 1.89% 0.832 0.793 0.708 0.827 0.845

5 1.45% 0.449 0.319 0.152 0.446 0.587

5b 1.45% 0.030 0.000 0.073 0.031 0.308

6 0.88% 0.836 0.834 0.821 0.836 0.833
7 3.03% 0.838 0.826 0.731 0.820 0.840

11 0.63% 0.899 0.927 0.869 0.893 0.909
12 0.51% 0.863 0.863 0.698 0.882 0.939

13 1.34% 0.734 0.729 0.702 0.717 0.753

14 1.47% 0.748 0.700 0.715 0.731 0.687
50 8.86% 0.904 0.900 0.871 0.901 0.908
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Table 4.28: Test Data F1 Score by Algorithm by Code on the Skin Cancer
Dataset

Code Percentage

of-Words

Window-Based

Tagger

CRF HMM Structured

Perceptron

Bidirectional

RNN

1 3.38% 0.826 0.801 0.712 0.813 0.853

2 3.33% 0.852 0.835 0.745 0.846 0.853

3 2.30% 0.835 0.792 0.725 0.828 0.836

4 1.86% 0.733 0.731 0.529 0.730 0.750

5 2.82% 0.852 0.851 0.802 0.854 0.862

6 2.88% 0.679 0.706 0.580 0.673 0.751

11 0.33% 0.621 0.660 0.607 0.604 0.667

12 0.52% 0.529 0.529 0.403 0.557 0.472
50 6.36% 0.836 0.831 0.641 0.845 0.870

The RNN more consistently out-performs the other models on the skin
cancer dataset compared with the coral bleaching dataset, attaining the high-
est F1 score for every concept code except code 12. In contrast, it only has the
highest F1 score on 7 out of 13 concept codes in the coral bleaching dataset.
If we examine the highest F1 scores for each concept code, we see a clear
correlation between F1 score and code frequency in the skin cancer dataset,
but this is much less pronounced in the coral bleaching dataset. The Pearson
correlation coe�cient measures the linear correlation between two variables,
or populations, resulting in a number between 1.0 and -1.0, values close to 1.0
have a strong positive correlation, values close to -1.0 have a strong negative
correlation and values close to 0.0 are uncorrelated [191]. If we examine the
correlation between F1 score and concept code frequency, the skin cancer codes
have a strong positive correlation of 0.77 while the coral bleaching codes have
a weak positive correlation of only 0.22.

While is it not clear exactly why the RNN’s performance was much
more dominant on the skin cancer corpus, it appears that this dataset was
more consistent across labels. In general, the more data points a machine
learning algorithm has access to, the better it will generalize to new data
points. The lower correlation between code frequency and F1 score across
all algorithms on the coral bleaching corpus implies much greater variability
between concept codes, and some infrequent codes were much easier to classify
than some of the more frequent codes. This could explain the higher macro-F1

scores on the skin cancer dataset, which implies more consistency in labeling
accuracy across di↵erent labels.
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Recurrent neural networks have been shown to excel at some NLP
transfer learning tasks, provided the di↵erent tasks are semantically related
[251, 150]. The results described in section 4.6 indicated that treating the
tagging problem as a multi-class classification problem, rather than a set of
distinct binary classification problems was the better approach. Training the
RNN to label all concept codes rather than each code individually allowed
it to transfer knowledge learned from labeling one code to other codes. The
RNN is the only algorithm evaluated that is able to share parameters from
the model between di↵erent codes. In contrast, the other algorithms perform
multi-class classification by training multiple binary classifiers, and selecting
the class with the highest probability. It is possible that this transfer learning
capability makes the RNN more e↵ective on the skin cancer dataset, where
there were fewer concept codes, and more consistency between the codes and
the relative di�culty in labeling them.

4.8.4 Statistical Analysis

Although the results show that some algorithms appear to perform better than
others at this task, an important question to ask is whether the di↵erences in
relative performance are statistically significant, i.e. could they have occurred
simply due to chance? Following the approach outlined earlier this chapter
in Section 4.3, I performed Cochran’s Q Test [32] to test the null hypothesis,
which states that there is no di↵erence in the accuracy of each of the 5 al-
gorithms studied. When the p-values are very small (e.g. below 0.001), it is
customary to simply report the value as p < 0.001, and omit the remaining
significant digits [69] as the result is obviously significant when the values are
that small. For the Coral Bleaching dataset, a �

2 value of 2002.8 was attained,
while for the Skin Cancer dataset, a �

2 value of 3915.2 was calculated. In each
case, the p-value was 0.0, rejecting the null hypothesis which assumed there
was no di↵erence between classifiers. Since the null hypothesis was rejected,
McNemar’s test [144] was performed, comparing the performance of the Bidi-
rectional RNN to the other four models, to determine if there was a significant
di↵erence between its accuracy on each dataset and that of the other mod-
els. Treating each dataset as independent, four comparisons where performed,
meaning the significance threshold for each individual pairwise test is adjusted
to 0.0125 (0.05/4) using the Bonferroni correction. The results of McNemar’s
test are shown below in Tables 4.29 and 4.30:
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Table 4.29: Comparing the Performance of the Di↵erent Algorithms on the
Coral Bleaching Dataset with the RNN Model Using McNemar’s Test

Algorithm F1 p-value vs RNN

Window-Based Tagger 0.842 0.039
CRF 0.835 0.362
HMM 0.747 < 0.001
Structured Perceptron 0.837 0.093
Bidirectional RNN 0.842 -

Table 4.30: Comparing the Performance of the Di↵erent Algorithms on the
Skin Cancer Dataset with the RNN Model Using McNemar’s Test

Algorithm F1 p-value vs RNN

Window-Based Tagger 0.814 < 0.001
CRF 0.804 < 0.001
HMM 0.675 0
Structured Perceptron 0.814 < 0.001
Bidirectional RNN 0.837 -

The results show that on the Coral Bleaching dataset, there was a sta-
tistically significant di↵erence between the RNN model and the HMM model,
but not between the RNN and other models. Thus on the Coral Bleaching
dataset, while the Cochran’s Q test indicated that there was a significant dif-
ference between the performance of all of the models, the RNN model was
not significantly better than the other models. However in the Skin Cancer
dataset, the di↵erences between the RNN model and the other models was
below the corrected ↵ value of 0.0125, indicating the RNN model was the su-
perior model on that dataset. Overall this makes sense, as the gap between
the RNN model’s micro-F1 score and the other models was much greater on
the Skin Cancer dataset.

The Structured Perceptron, CRF model and Window-Based classifier
all utilized the same set of features computed from a window of words sur-
rounding the target word to be tagged. It is not surprising then that they
have very similar performance on the word labeling task in both datasets.
However, the RNN model was capable of deriving its own features from the
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text due to its recurrent nature, and its use of a pre-trained embedding layer.
The writing in the skin cancer essays was more complex; on average the sen-
tences were longer and had more unique words. It appears that RNN model
with the GloVe embeddings was better able to handle this complexity than
the other techniques, and extract additional information that was useful for
that dataset. On the coral bleaching dataset, however, its predictions were
not significantly di↵erent than the other strong models, and it likely learned
analogous features over the input text. Due to the di↵erences in the results
across di↵erent datasets, to determine which model is superior at this task
requires repeating this test on a number of other analogous datasets.

4.8.5 Extensibility to Other Texts and Domains

An important question for any NLP research problem is how extensible the
results are to other texts and to other domains. While the same models per-
form at a high level of accuracy across the two datasets tested, there are some
di↵erences in the performance of the models across the two datasets, which
has implications for how well these results extend to other domains. The ac-
curacy of the RNN model is correlated to the frequency of each code, although
that correlation is much higher on the skin cancer dataset, where the writing
was more complex. This implies that the RNN model would generalize well
to other scientific essays with a similar level of writing complexity, provided
a similar number of data points were provided, and the writing was no more
complex.

It may however be possible to achieve similar performance on a much
smaller dataset. In Hastings et al [96], the authors used the same set of coral
bleaching essays to train the window-based tagger, and were able to attain a
micro-F1 score of 0.77 using only 20% of the essays when selected using active
learning. Active learning is a technique where a model is initially trained on a
classification task, and is then used to select the best data points to label next
to improve the model’s performance on that task [199]. This implies that the
window-based classifier could perform well on a smaller dataset, especially if
active learning were used to select the data-points to label.

As we will see in the following chapter, the larger the number of labels,
the harder it is to perform well on a multi-class classification task. Thus if
these techniques were applied to another set of scientific essays, or another
domain entirely where there were a lot more unique concepts to learn, the
performance may be much worse. The quality of the writing, the grammar and
the spelling was quite poor in these essays, so assuming the same pre-processing
was applied, it is fair to assume that these models could also perform well
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in other domains with similar quality writing. Furthermore, if these models
were trained in domains with better quality writing and spelling, it is likely
that fewer data points would be needed to attain similar levels of accuracy
because the text would have less variation. Key to the performance of the
RNN model was the availability of the pre-trained word embeddings, trained
on a semantically related text. For the RNN model to perform at a similar
level on a di↵erent domain, it is fair to assume that it would also require word
embeddings trained on a semantically related dataset (to that domain).

Overall, I can only speculate as to how well these techniques will gen-
eralize to other texts as this is very much an empirical question. Evaluating
these techniques on a broader range of domains and types of problem, not just
learning scientific concepts from student essay writing, would provide a better
understanding of the overall utility of these models at performing this task, as
well as in determining how well these approaches generalize beyond the texts
studied in this work.

4.9 Conclusions

Deep neural networks have been shown to excel at some NLP transfer learn-
ing tasks, provided the di↵erent tasks are semantically related [251, 150] This
usually involves using a pre-trained model (normally a language model) to
initialize the lower layers of a deep neural network, such as a word embedding
layer. The neural network is then trained to perform a di↵erent NLP classifica-
tion task. In this chapter, I demonstrated how important the pre-trained word
embeddings were for the performance of the bidirectional RNN model. With-
out the embeddings, the RNN would not have achieved the highest micro-F1

score on either dataset. Deep neural networks typically require large datasets
to perform well on NLP tasks, however the two datasets studied here consist
of only around 10,000 sentences and less than 200,000 words. Most deep learn-
ing NLP models are trained on datasets that are many orders of magnitude
larger. One of the most popular datasets, the Penn Treebank, contains 4.5
million words and is commonly used to train POS tagging and Named-Entity
Resolution models [141]. However, by using embeddings trained on a large
semantically related dataset (1.6 billion words from Wikipedia), a deep RNN
was able to generalize e↵ectively on a small dataset. This has broader implica-
tions for other word labelling tasks, where the dataset is small but embeddings
exist that have been trained on a dataset with semantically similar content.

In addition, the bidirectional nature of the RNN model was also key to
its higher classification accuracy. The other word tagging models were able to
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learn from either the context to the left of the word to be labelled, a window
surrounding the target word, or both (CRF and perceptron). However, the
bidirectional RNN model was the only method capable of learning from all
of the words to right as well as the left of each target word. Training a
one-directional RNN on the same task produced lower classification accuracy,
performing worse than all of the other models except the HMM model on both
datasets. These results imply that for word labelling problems in general, the
entire context of the word within the sentence is important for accurately
predicting some labels, not just the surrounding context, or preceding words.

In the next chapter, I will discuss the di↵erent approaches to detecting
causal relations between the concept codes identified by the models described
in this chapter.
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Chapter 5

Causal Relation Extraction

Research Question 2 asks:

“What is the most e↵ective approach for determining causal
links between concepts from the algorithms below?”

A Extending the optimal tagging model from Research Question
1 to detect causal relations

B Creating a Stacked Model using the predictions from the op-
timal word tagging model from Research Question 1

C Transition-Based Parsing Model

D Recurrent Neural Network

To address Research Question 2, this was treated as a multi-label clas-
sification problem - given a sentence, predict which causal relation or relations
are present. To help illustrate the nature of this problem, please refer to Figure
5.1 below which extends Figure 4.1 from the previous chapter. This illustrates
how causal relations, shown as blue arcs, are formed between the pre-identified
concepts within the essay.
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Figure 5.1: Extracting causal relations between concepts. Each box rep-
resents a separate concept, with the code denoted by the green circle. The
cause-e↵ect relations are indicated by the blue arrows, each arrow going from
causer to e↵ect code.

In part A of Research Question 2, the best word tagging model from
Research Question 1 was adapted to tag causal relations. This allows us to
determine how e↵ective the same technique is at extracting causal relations,
where the tags span a much longer sequence of words. Causal relations can
span the length of a whole sentence, and are often influenced by the presence
of the other codes and causal relations that occur within the same sentence
because they may form part of a larger causal chain. To attempt to utilize
this information, for part B, a stacking model was built using the predictions
from the best word tagging model. ‘Stacking’ or ‘Stacked Generalization’ is a
model ensembling technique where the predictions from a set of base-classifiers
are used as training data to train a second set of meta-classifiers to solve a
prediction task [246]. By providing a stacked model with information about
which concept codes are in a sentence, and their predicted probabilities, it
should be able to more e↵ectively determine which concepts form a causal
relation.

The main drawback to these two initial approaches is that they treat
each unique causal relation as a separate label to be predicted and may perform
poorly on causal relations that contain few examples in the training data. A
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di↵erent approach that attempts to solve this problem is to treat the problem
as a binary classification problem - given a pair of predicted concept codes,
does there exist a causal relation between them? One analogous problem
from the domain of NLP is dependency parsing, a type of natural language
parsing that detects a set of binary grammatical relations between words in
a sentence. For part C, a transition-based dependency parsing model will
be trained to parse causal relations instead of binary dependency relations.
A transition-based dependency parser makes a sequence of parsing decisions,
reading words from an input stream and combines them iteratively to form a
dependency parse-tree. However for this problem, the relations exist between
concepts and not words, and not all concepts connect together to form a tree
structure. Subsequently a novel dependency parsing algorithm was developed
using a custom transition system and features designed specifically for this
task. At the heart of any parsing problem is a complex search problem that
determines which is the most likely parse tree given the many di↵erent ways a
sentence can be parsed. The SEARN algorithm has been shown to outperform
a number of structured learning algorithms on a number of complex NLP tasks
[43, 44]. SEARN treats a stuctured learning problem as a sequence of search
decisions, training a separate machine learning model to make each decision,
and was be used to train this parsing model. Core to solving any supervised
learning problem is optimizing the predictions based on the chosen evaluation
metric. The flexibility of the SEARN algorithm is that it is able to optimize
any evaluation metric, even if it is not di↵erentiable. I will show how a custom
cost function can be used to improve the parser’s accuracy by optimizing the
micro-F1 metric.

In order to determine whether a sentence contains a causal relation,
it is important to understand not just what concept codes are present in a
sentence, but the context in which they are used, and the relationships between
the words in the sentence. RNN’s are e↵ective at learning these types of long
distance relationships between the words in a sentence because they maintain
an internal state through their recurrent connections as they process the words
sequentially. In addition, bidirectional RNN’s are able to make use of the
context on either side of a word because they process a sentence in both
directions. Bidirectional RNN’s have recently achieved state-of-the-art results
in a number of NLP tasks, including language modeling [146, 248] and sequence
labeling [78, 86], [172, 237], and is the final model that was used in part D to
detect causal relations. All of these techniques are described in more detail
in Chapter 3, and section 1.3.2 discusses the motivations for this choice of
algorithms in more detail.
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In this chapter, I will discuss how classification performance on this
task was measured and evaluated, and how each algorithm was adapted to
solve this problem, and I will then compare the e�cacy of each of the selected
algorithms at this task.

5.1 Evaluation Metrics

The same evaluation metrics described in section 4.1 were used to evaluate the
classification accuracy of the di↵erent approaches to this problem, namely the
micro-precision, micro-recall and micro-F1 score metrics. However, causal rela-
tions span multiple words in a sentence and cannot be associated with a single
word. Consequently, classification accuracy was calculated at the sentence
and not the word level for this task, resulting in this becoming a multi-label
classification (MLC) problem because multiple causal relations can potentially
be assigned to each sentence. For each approach, the model’s accuracy at de-
tecting the individual causal relations in the sentence was evaluated, where
a causal relation links exactly two concept codes from the causal model. For
example, the concept Storms / Rainfall from the coral bleaching causal
model can cause an Increase in Fresh Water (see Figure 2.1).

For the purpose of calculating the evaluation metrics, each unique
causal relation observed in the entire dataset was treated as a separate la-
bel to be predicted, and the micro-average metrics were computed over all of
those labels. Some causal relations were very rare and were only present in
either the test dataset or the training dataset but not both (often these had
only one or two occurrences, and were present only in one or two essays). To
ensure that the training and test metrics were comparable and shared the same
labels, the models were trained and evaluated using all of the labels that exist
in the entire dataset, not just the labels that exist in the training dataset only.

Not all causal relations annotated in the dataset consisted of valid infer-
ences present in the causal model. However, these inferences are still important
for representing the causal arguments presented by the students in their essays,
and are also important inputs to any tutoring system built using this research,
and so are considered valid labels for this task. For example, the following
two causal relations would be treated as di↵erent target causal relations, even
though the second relation is an invalid inference:

• ‘Increase in Water Temperatures’ →‘Decrease in Photosyn-

thesis’
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• ‘Decrease in Photosynthesis’ →‘Increase in Water Temper-

atures’

The first inference is valid - that increasing water temperatures causes
a drop in photosynthesis, and this can be inferred from the source text, and
forms part of the causal model. However, in some essays the authors reverse
the causality and make the second claim - that a decrease in photosynthesis
causes an increase in water temperature. This is an invalid inference based
on the source text, but is still included in the annotations, and serves as an
additional separate causal inference for the model to learn to label.

It should also be noted that I only consider causal relations that exist
between two concept codes from the causal model. Any other causal inferences
that are present in the student essays are not considered part of this task, and
were not annotated in the dataset.

5.2 Experimental Design

Because some of the approaches evaluated in this chapter use predictions ob-
tained from the RNN word tagging model from Chapter 4, the same training
and validation datasets were used to evaluate the performance of the algo-
rithms on this task and in the previous research question. Please refer to
Section 4.2 and Figure 4.2 for more details about how the di↵erent data par-
titions were defined.

5.3 Pre-Processing

The same pre-processing was carried out on the dataset for each approach,
as described in Section 4.4. For both the stacked model and the transition
based-parser, the training and test datasets were also augmented with the
concept codes predicted by the bidirectional RNNmodel used to solve Research
Question 1. Predictions from the RNN model were used because that model
had the highest micro-F1 scores on the validation data for both datasets. To
obtain the predicted concept codes for the training dataset, the predictions
were obtained by running 5 fold cross validation and taking the predictions
from the held out fold on each run. For the test dataset, the predictions were
obtained using a model that was first trained on the entire training dataset.
In both cases, this ensured that the tagging model’s predictions always came
from data unseen by the model making the predictions, and thus represent the
algorithm’s performance on new data points.

108



5.4 Model Evaluation

As described in Section 5.1, for each di↵erent approach the micro-F1 score
was computed over all causal relations at the sentence level using 5-fold cross
validation. For Research Question 1, the same set of features was used for
3 of the 5 di↵erent models because those 3 models all made use of lexical
information computed over a word-window surrounding the word to be tagged.
However, each of the models used to address Research Question 2 in this
chapter use very di↵erent approaches to solving the problem, and consequently
di↵erent approaches were used for each model. Once feature selection was
complete, hyper-parameter tuning was performed on each model as before. In
each step, the optimal set of features and the optimal hyper-parameters were
chosen based on the highest observed micro-F1 score on the validation dataset.
These features and hyper-parameter settings were then used to re-train each
model on the training data and evaluate its performance on the test dataset.

5.4.1 RNN Word Tagging Model

The first candidate approach to causal relation extraction is to use the op-
timal word tagging model from Research Question 1, the bidirectional RNN
model, to solve the causal relation extraction task. To achieve this, the causal
relation extraction problem is modelled as a word tagging problem, where ev-
ery word that constitutes part of the causal relation, or is tagged with one
of the two concept codes that make up the relation, is then labelled with the
causal relation tag. Because I am measuring the classification accuracy at the
sentence level and not at the word level, the model’s predictions had to be
rolled up to the sentence level. The predicted sentence level causal relations
formed the union of all of the causal relations predicted for one or more words
in the sentence. Because the algorithm chosen for part D of this problem is
also a Recurrent Neural Network, evaluating an RNN’s performance on this
task addresses both part A and part D of Research Question 2.

To train the model, each causal relation was defined as a separate tag,
and the algorithm was trained to predict the tag assigned to each word. Causal
relations span much longer sequences of words than concept codes, and so
a lot more words have multiple overlapping causal relations (see Tables 2.4
and 2.9 in Section 2.4). Unlike most traditional machine learning models,
neural-networks are capable of predicting multiple output labels in multi-label
classification problems. Rather than using a softmax layer to predict a prob-
ability distribution over di↵erent classes, a neural network can be trained to
predict a binary vector representing a one-hot encoding of the di↵erent labels
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present. Using all the di↵erent network configurations described in Section
5.4.1.1, di↵erent RNN models were trained to predict a binary output vector
per word using the binary cross-entropy cost function. However, none of the
RNNs converged on the training data; each model predicted there were no
causal relation tags for any word. Because there were so many target labels -
86 for the coral bleaching data and 49 for the skin cancer dataset, it appears
that the labels are too sparse and infrequent to learn an e↵ective multi-label
classifier with a neural network using this approach.

Instead of predicting a binary vector, the most common causal relation
was assigned to a word if the word was labelled with multiple relations, mirror-
ing the design of the RNN word tagging model from the previous chapter (see
Section 4.6). Words with no causal relations were assigned a special ‘EMPTY’
tag. The same RNN model architecture was used as described in Section 4.7.5,
namely a word-embedding layer using 100-dimensional pre-trained GloVe vec-
tors [168], a 2 layer bidirectional RNN (using a Gated Recurrent Unit) and
a softmax layer. Cross-entropy was used as the loss function and the Adam
optimizer [118] was used to train the deep neural-network. Early stopping
using a hold out set was used to prevent overfitting [150].

5.4.1.1 Hyper-Parameter Tuning

One of the key advantages of using a deep-neural network model is that no
feature selection is needed; the model is sophisticated enough to learn its own
set of representations over the data. In place of feature selection, the perfor-
mance of a neural-network is very dependent on its network configuration, and
this formed the focus of the hyper-parameter tuning as before. In the previous
chapter, I showed that the performance of a RNN at tagging concept codes for
this domain was dependent on the recurrent network being bidirectional, and
using pre-trained rather than randomly initialized word embeddings. Without
either of these aspects of the model, the RNN under performed most of the
other model types, so they appear to be critical for its performance on word
labelling tasks on these 2 datasets. For this task I assumed these 2 features
were also critical for attaining good classification accuracy, and only the size
of the RNN was optimized using grid search. Bidirectional RNN’s comprised
of one or two layers of GRU’s were evaluated using 3 di↵erent sizes of hidden
layer - 64, 128 and 256 neurons. Because the Adam optimizer was used to
train the network (see Section 4.7.5), it was unnecessary to tune the learning
rate.

The validation data micro-F1 scores on both datasets across di↵erent
hyper-parameter settings are listed in Tables 5.1 and 5.2 below. These ta-
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bles show the causal relation Micro-F1 scores across di↵erent hyper-parameter
values for the RNN model. In each table, the rows are sorted by Micro-F1

score, and Num. Parameters represents the total number of connections, or
trainable parameters, in each neural network.

Table 5.1: RNN causal relation Micro-F1 scores on the Coral Bleaching val-
idation data across di↵erent hyper-parameter values.

Micro F1 Num. Layers Hidden Layer Size Num. Parameters

0.680 2 256 1,526,799
0.673 2 128 552,571
0.650 1 256 738,811
0.636 1 128 355,195
0.635 1 64 237,115
0.634 2 64 286,651

Table 5.2: RNN causal relation Micro-F1 scores on the Skin Cancer validation
data across di↵erent hyper-parameter values.

Micro F1 Num. Layers Hidden Layer Size Num. Parameters

0.769 2 256 1,511,870
0.756 2 128 542,398
0.754 1 256 723,902
0.752 2 64 278,846
0.742 1 128 345,022
0.730 1 64 229,310

The results show that in general, the greater the number of trainable
parameters (connections) the higher the micro-F1 score. The Pearson cor-
relation can be used to quantify the strength of a linear correlation [191],
and ranges from -1 for a strong negative linear correlation to +1 for a strong
positive linear correlation, with values close to 0 meaning no correlation. The
Pearson correlation between the micro-F1 score and the number of connections
in the network is 0.817 on the coral bleaching dataset, and 0.824 on the skin
cancer dataset, indicating a strong positive correlation between these numbers
in both cases. The number of connections represents the overall capacity and
complexity of the neural network; larger networks can learn more complex
functions over the training data, which appears to help with this task. For
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both datasets, the highest micro-F1 score was achieved with a 2-layer RNN
with 256 hidden units. This is the same configuration that achieved the high-
est micro-F1 score on the word labeling task for Research Question 1, and also
represents the network configuration with the highest number of connections.

5.4.1.2 Results

The classification accuracy of the RNN model using the optimal network con-
figuration on the training, validation and test datasets are summarized in
Tables 5.3 and 5.4 below.

Table 5.3: Bidirectional RNN Causal Relation Classification Accuracy on
the Coral Bleaching Dataset

Data Partition Micro-F1 Micro-Recall Micro-Precision

Training Data (CV) 0.869 0.871 0.866
Validation Data (CV) 0.680 0.695 0.665
Test Data 0.676 0.656 0.698

Table 5.4: Bidirectional RNN Causal Relation Classification Accuracy on
the Skin Cancer Dataset

Data Partition Micro-F1 Micro-Recall Micro-Precision

Training Data (CV) 0.872 0.855 0.889
Validation Data (CV) 0.769 0.761 0.777
Test Data 0.792 0.798 0.786

The RNN model was much more accurate on the skin cancer data than
the coral-bleaching data at this task (17% higher micro-F1 score). On the pre-
vious research question, the RNN as well as all the other models were slightly
more accurate on the coral-bleaching dataset, indicating that the causal rela-
tion labeling task was easier on the skin cancer data.

The performance of the model on the skin cancer dataset was higher
for the test data than the validation data, which matches our observations on
the previous research question. Again, this suggests the larger training dataset
helped the model to generalize better on the skin cancer data. However, the
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model performed slightly worse on the test data for the coral bleaching dataset
indicating that the model over-fit the data slightly.

One limitation with this approach is that the model is trained to only
predict the most common causal relation tag for a word where multiple causal
relations are present. Unlike the concept codes where very few words con-
tained multiple codes for either dataset, 2.9% of words in the coral bleaching
data and 4.3% of words in the skin cancer data were assigned more than one
causal relation. This represents 13.8% of words with causal relations in the
coral bleaching data and 13.5% of words with causal relations in the skin can-
cer data. An examination of the accuracy of the model (at the sentence level)
at predicting causal relations that overlap with other relations on at least one
word shows that the model is much less accurate at predicting overlapping
causal relations (see Table 5.5 below). To compute the prediction accuracy
on overlapping relations, the model’s predictions were filtered to examine the
prediction accuracy for just the overlapping relations compared to the non-
overlapping relations. This calculation measures the micro-recall metric be-
cause the data was filtered based on the actual labels. If the data was instead
filtered by the model’s predictions, this would compute the micro-precision
metric instead. However, the micro-precision would not be useful measure of
overlap classification performance, because it would show how well the model
predicts that causal relations overlap, and not how well the model actually
performs on overlapping relations.

Table 5.5: RNN Micro-Recall on Overlapping vs Non-Overlapping Causal
Relations

Dataset Overlapping
Relations

Non-Overlapping
Relations

Coral Bleaching 0.563 0.754
Skin Cancer 0.691 0.831

However, it could be that these relations are particularly hard to pre-
dict given the number of overlapping words. Comparing the performance on
this model on overlapping causal relations with the other models will better
illustrate if this is a major limitation of this approach.
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5.4.2 Stacked Model

Stacking is a model ensembling technique where predictions from one or more
base models are used as features to train a separate meta-classifier on a super-
vised learning task. Empirically, stacking has been shown to be particularly
e↵ective for solving multi-label classification problems [145] by using the pre-
dictions from multiple binary classifiers to more accurately predict the final
set of labels. For this specific problem, a separate binary classifier was trained
for each unique causal relation, and their predictions were used as features to
train a separate meta-classifier. For more information on stacking as a machine
learning technique, see Section 3.3.1.5.

In order to train a stacked model, I needed to use predictions on data
that were not part of the base-classifier’s training data because most classifiers
attain much higher classification accuracy on the training data than on unseen
data points. Overfitting can occur if training the stacked classifier on training
data predictions as they don’t reflect the noise present in predictions on unseen
data points. The stacked model was therefore trained on the predictions on the
validation data obtained by performing 5-fold cross validation on the training
data with the base classifiers. These predictions then formed the training
dataset for the stacked model. In order to evaluate the model’s performance on
the test dataset, the meta-classifier was first trained on this training dataset of
cross validation predictions. Then a second set of base-classifiers were trained
on the entire training dataset without cross validation, and their predictions
on the test data were used as inputs to the stacked model. A logistic regression
classifier was chosen as the meta-classifier because it is robust to overfitting
and can learn from arbitrary features computed over the inputs. The best
performing word tagging model was used as the base-classifier, which was the
RNN for both datasets.

5.4.2.1 Feature Selection

To make sentence level causal relation predictions using predictions from the
word tagging model, features were extracted using the word level predictions
from the entire sentence. The use of confidence estimates from the base-
classifiers as features has been shown to improve the accuracy of the stacked
model’s predictions on a number of tasks [221, 198]. Consequently, the mini-
mum, maximum and average probability estimates for each concept code were
included in the evaluated feature sets. In addition, a set of binary features
were computed indicating whether each concept code was predicted at least
once (with a probability of at least 0.5) and a separate set of binary features
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were created for each pair of codes that were predicted to be present some-
where in the sentence. Because the number of possible features for this model
was relatively small, a grid-search was performed over every combination of
feature sets to determine the optimal set on the validation data using 5-fold
cross validation. The optimal feature set for the coral bleaching dataset were
the combination of binary concept code features and the binary code pair fea-
tures, while for the skin cancer dataset the maximum and average predicted
probabilities and the binary code pair features achieved the best performance.

The reduction in the number of features used by the stacked model as
a result of feature selection are shown in Table 5.6 below.

Table 5.6: The Reduction in Number of Features for the Stacked Model as
a Result of Feature Selection

Dataset # All Features # Optimal Features % Reduction

Coral Bleaching 147 105 28.6 %
Skin Cancer 85 65 23.5 %

5.4.2.2 Hyper-Parameter Tuning

Once the optimal feature sets were determined, the stacked model’s hyper-
parameters were then optimized using these feature sets. A grid search was
again performed to determine the optimum regularization method and corre-
sponding C value for the logistic regression model. C values of 0.1, 0.5, 1, 10,
and 100 were evaluated, and an L1 penalty with a C value of 1.0 produced
the best micro-F1 score on the coral bleaching dataset, while dual mode (L1
and L2 regularization) with a C value of 1.0 produced the best micro-F1 score
on the skin cancer dataset.

5.4.2.3 Results

The performance of the stacked model on all dataset partitions and both data
sets using the optimal feature sets and hyper-parameters can be seen in Tables
5.7 and 5.8 below:
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Table 5.7: Stacked Model Causal Relation Classification Accuracy on the
Coral Bleaching Dataset

Data Partition Micro-F1 Micro-Recall Micro-Precision

Training Data (CV) 0.741 0.711 0.774
Validation Data (CV) 0.695 0.656 0.738
Test Data 0.704 0.674 0.736

Table 5.8: Stacked Model Causal Relation Classification Accuracy on the
Skin Cancer Dataset

Data Partition Micro-F1 Micro-Recall Micro-Precision

Training Data (CV) 0.801 0.757 0.850
Validation Data (CV) 0.763 0.711 0.823
Test Data 0.765 0.719 0.816

Compared to the RNN model, the stacked model achieves a higher
overall micro-F1 score, with a higher micro-precision but a lower micro-recall
on the coral bleaching data, on both the test and validation datasets. How-
ever, on the skin cancer dataset, the stacked model performs worse than the
RNN model in both the validation and test data, with a lower micro-F1 score,
micro-precision and micro-recall on the validation data, and a slightly higher
recall but lower micro-F1 score and micro precision on the test data. On both
datasets, the model again achieves a slightly higher micro-F1 score on the test
data because it was trained on a larger dataset.

5.4.3 Shift-Reduce Dependency Parser

The final model evaluated for this task adapts a shift-reduce dependency parser
approach to detect causal relations in the essay sentences. Dependency parsing
is a form of natural language parsing that identifies the binary grammatical
relations between words in a sentence (see Section 3.4.3). A transition based
shift-reduce dependency parser is a greedy approach to dependency parsing
that approximates a globally optimum solution by making a series of locally
optimal choices, guided by a discriminative classifier trained on some golden
dataset of parsed sentences [158], resulting in the construction of a dependency
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parse tree. A dependency parse tree consists of a set of binary dependency
relations, where each word in a sentence has exactly one directed asymmetric
dependency relation with one other word in the sentence, forming a tree struc-
ture. Figure 5.2 below shows one example dependency parse structure learned
by the causal relation parser from one sentence in the coral bleaching dataset:

Figure 5.2: Example coral bleaching dependency parse structure. Each box
represent a concept, with the code denoted by the green circle. The cause-
e↵ect relations are indicated by the blue arrows, each arrow going from causer
to e↵ect code

How the parser constructs this parse structure will be explained briefly
in this chapter, and in more detail in Appendix G. A shift-reduce parser is a
type of conditional-history based parsing model which makes sequential pars-
ing decisions conditioned in part on its parse decisions earlier in the parse.
Conditional-history parsers, data-driven natural language parsing and depen-
dency grammars are discussed in more detail in Section 3.4.3.

5.4.3.1 Shift-Reduce Transition-Based Dependency Parsing

A shift-reduce parser is an e�cient approach to table-driven bottom-up parsing
that is used to parse formal languages such as programming languages, in
addition to its use in natural language parsing. Parsers operate on an input
stream of tokens, transforming them into a parse tree. In the case of natural-
language parsers, the input stream usually consists of a sequence of words
forming a sentence. Shift-reduce parsers construct the parse tree incrementally,
bottom-up and left to right without backtracking, by making a combination of
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shift and reduce steps, while manipulating a stack. The stack represents the
current state of the parser at any step in the current parse, and can hold one
or more partially complete parse trees that are eventually combined into one
final parse tree. The shift step advances the input stream by one token, and
creates a new single-node parse tree out of the shifted token and pushes it onto
the top of the stack. A reduce step then applies some grammar rule to some
of the parse trees in the stack, joining them together into a single tree with a
new root node. To parse a sentence, the parser applies shift and reduce steps
as needed until all of the input sequence has been consumed and all partial
parse trees on the stack have been combined into a single parse tree.

Natural language dependency parsers are typically transition-based parsers.
This means that they are defined in terms of a transition system - an abstract
state machine that consists of a set of rules governing how the system transi-
tions from one state to another. A number of di↵erent transition systems have
been developed to adapt shift-reduce parsing to the task of natural-language
dependency parsing, including Nivre’s arc standard and arc-eager systems
[154, 155]. Unlike traditional dependency parsers which operate on the se-
quence of words in a sentence, the causal relation parser instead operates on
the concept codes predicted by the RNN word tagging model. The parser uses
a modified version of Nivre’s arc-eager transition system to allow it to ignore
orphan concept codes that don’t form part of any causal relation. Please refer
to Appendix G for more details on the transition system.

One of the challenges in training a parsing model using machine learning
is enabling the system to learn to recover from its own errors, and make the
optimal parsing decision even when it is in a state not observed in the training
data. In 2012 Goldberg and Nivre presented the idea of a dynamic oracle
[84], which is capable of determining the optimal parse decision provided any
parser configuration, including those that deviate from the golden parse tree
(the optimal parse tree from the training data). If the parser deviates from the
golden parse during training, the oracle examines all possible parses that can
be reached from the current parser state, and determines the parsing decision
which produces the fewest errors in the final parse tree.

An approach called imitation learning was used to enable the parser to
learn from the training data. Imitation learning adapts reinforcement learning
to solve supervised learning problems. Training a parser involves learning to
make a sequence of classification decisions before a final prediction is made.
Usually the loss associated with a particular decision is not known, only the
loss associated with the final prediction. It is not clear which of these decisions
contributed most to the success or failure of the final prediction, resulting in a
credit-assignment problem. This is the exact problem reinforcement learning

118



algorithms attempt to solve. The SEARN algorithm is an imitation learning
algorithm that solves structured prediction problems by decomposing each
problem into a sequence of cost-sensitive classification decisions, and then
trains a set of cost-sensitive classifiers to handle each of these decisions [43].
A key advantage of this approach is that any arbitrary loss function can be
optimized using the SEARN algorithm by adapting the cost-function based on
the desired loss function. Subsequently, a custom loss function was designed
that optimizes the micro-F1 score during training. Appendix G describes the
shift-reduce parser algorithm in more detail, and explains how the SEARN
algorithm was used to train the parser on the training data to optimize the
micro-F1 score. For specific details on the custom cost function, please refer
to Appendix G Section G.5.

Because the causal relation parser is a modified dependency parser, the
features used to train the machine learning models need to be appropriate for
training a parsing model. In the next section, I will discuss the di↵erent types
of features used in training this model.

5.4.3.2 Features Evaluated

The features evaluated for the dependency parser were based on those used by
Zhang and Nivre [258] to train a dependency parser. Zhang and Nivre used a
combination of local and non-local features, and achieved the state-of-the-art
attachment score on the Penn Treebank at the time of publication [258]. As
discussed in the previous sections, instead of parsing individual words, the
parser operates on concept codes, each of which can span a sequence of several
words. The concept codes are predicted by the recurrent neural network word
tagging model, discussed in the previous chapter in Section 4.7.5. The parser
configuration can be represented by the triple hS, I, Ai, where S is the stack, I
is the list of remaining input tokens, and A is the current set of arc relations for
the dependency tree. The di↵erent feature templates can be seen in Tables 5.9
and 5.10, which attempts to capture all of the salient information about the
current parse state necessary for making the next parsing decision, and groups
them into feature sets such as Single Concept Codes, Valency and Unigrams.

I will use a slightly di↵erent notation here to clarify which tokens come
from the stack and which come from the input stream, their relative locations
within each, and also to illustrate that these tokens are concept codes and not
words, as in the previous example. I denote the top of stack token S0 and the
front items of the input stream with I0, I1 and I2, individual words associated
with a concept code are denoted as w while the codes or tags are denoted with
a t. Often multiple words are associated with each concept code, in which case
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each word forms a separate feature. It is common when training dependency
parsers to use features describing the left and right modifiers of S0 and the
left modifiers of I0 in combination with the POS tag and the words in the
sentence. To translate that to the causal relation parser, in place of modifiers
I use any codes that form a parsed causal relation in A with S0 or I0. Any
codes that act as a causer in any causal relation with S0 are prefixed S0hc and
those forming an e↵ect relation are prefixed S0he. Similarly, any concept codes
that comprise S0h that appeared to the left of S0 in the sentence are denoted
S0lc for causer codes and S0le for e↵ect codes, and those appearing on the right
are denoted S0rc and S0re. These types of features are based on the baseline
features used by Zhang and Nivre in [258] and are listed in Table 5.9 as Single
Concept Codes, Two Concept Codes, Three Concept Codes.

Additionally, one other set of baseline features was added that is unique
to this piece of work. This set encodes the set of words that appear in the
sentence between the S0 and I0 codes. If both of these codes are adjacent
(with no words in between), a special empty set symbol was used to encode
this state. The words in between these codes are denoted b, and are combined
with the concept codes for S0 and I0 to form the three templates called Between
Words. This set of features was included to allow the model to learn words
and phrases that link two concepts that can imply causality, such as “because
of” or “causes”.

Table 5.9: Baseline Dependency Parser Features

Single Concept Codes

S0wt;S0w;S0t; I0wt; I0w; I0t; I1wt; I1w; I1t; I2wt; I2w; I2t;

Two Concept Codes

S0wtI0wt;S0wtI0w;S0wI0wt;S0wtI0t;S0tI0wt;S0wI0w;
S0tI0t; I0tI1t;

Three Concept Codes

I0tI1tI2t;S0tI0tI1t;S0hctS0tI0t;S0hetS0tI0t;S0tS0lctI0t;
S0tS0letI0t;S0tS0rctI0t;S0tS0retI0t;S0tI0tI0lct;S0tI0tI0let;

Between Words

S0tb; I0tb;S0tI0tb;
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The next set of features templates refer to higher order information
about the causal relation graph, and are listed in Table 5.10. The first high-
order feature set encodes the cause or e↵ect relations of S0 and I0, for example
S0hcw, which encodes any causer codes forming relations with S0 in combina-
tion with the words tagged with S0t. These include an additional feature, lbl,
which encodes the full causal relation label belonging to these relations (in-
cluding the direction of causality and both codes involved). Next, the Distance
features relate to the number of words between the S0 concept code and the
I0 code, and are denoted with a d. For example the template S0wd comprises
the words tagged with the S0t tag and the value of d (including when d = 0).
Distance features were used in the easy-first parser of Goldberg and Elhadad
in 2010 [83], and then in 2011 by Zhang and Nivre [258]. Zhang and Nivre
also describe a set of valency features that count the number of left and right
modifiers of a dependency head. I adapt that idea to count the number of
cause and e↵ect tags that form parsed relations in A that include S0 or I0 and
are to the left and right of S0 or I0 in the sentence. Left valency features are
denoted vlc for cause and vle for e↵ect, and right valency features are denoted
vrc and vre respectively.

Higher order context features encoding dependencies of dependencies
have been used in a number of di↵erent graph-based parsers to improve ac-
curacy [20, 121, 258]. Adapting the templates from Zhang and Nivre [258], I
denote S0h2c as the causer of the causer of S0, S0h2e as the e↵ect of the e↵ect of
S0, thus encoding sequences of parsed causal relations. Similarly, I0l2c denotes
the left causers of any causal codes forming any left causal relation with I0.
These higher order context features are called Third-Order features in Table
5.10. Additionally, also based on those templates used in [258], I include the
set of unique causal relation labels that include S0 and I0 and combine these
with the word and concept code of S0 and I0 to make feature templates. These
are again denoted with lbl, but include a su�x to denote the subset of rela-
tions, e.g. S0wtlblrc combines the words and tag of S0 with the full causal
relation labels of any causal relations that include S0 where the other code is
a causer and is on the right of S0. These are labeled Label Set in Table 5.10.

Some sentences consist of multiple causal relations, which may be linked
together to form a causal chain, or may enumerate the multiple causes or mul-
tiple e↵ects of a single concept code. To attempt to capture this information, I
also include a new set of feature templates called Size Features that are unique
to this piece of work. These templates encode the number of concept codes in
the Stack S, in the input stream I, and the number of parsed relations in A.
For every concept code forming a relation in A, I also encode the number of
times that a code appears in A acting as a causer, denoted Act (including that
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code’s tag t) and as an e↵ect, denoted Aet. This last feature template helps
to indicate when there are multiple causes or e↵ects forming a relation with a
single concept code (usually a code 50).

Table 5.10: Higher Order Dependency Parser Features

Unigrams

S0hcw;S0hew;S0hct;S0het;S0lbl;S0lcw;S0lew;S0lct;S0let;
S0lclbl;S0lelbl;S0rcw;S0rew;S0rct;S0ret;S0rclbl;S0relbl; I0lcw;
I0lew; I0lct; I0let; I0lclbl; I0lelbl;

Distance

S0wd;S0td; I0wd; I0td;S0wI0wd;S0tI0td;

Valency

S0wvrc;S0wvre;S0tvrc;S0tvre;S0wvlc;S0wvle;S0tvlc;S0tvle;
I0wvlc; I0wvle; I0tvlc; I0tvle;

Third-Order

S0h2cw;S0h2ew;S0h2ct;S0h2et;S0hclbl;S0helbl;S0l2cw;S0l2ew;
S0l2ct;S0l2et;S0l2clbl;S0l2elbl;S0r2cw;S0r2ew;S0r2ct;S0r2et;
S0r2clbl;S0r2elbl; I0l2cw; I0l2ew; I0l2ct; I0l2et; I0l2clbl; I0l2elbl;
S0tS0lctS0l2ct;S0tS0letS0l2et;S0tS0rctS0r2ct;S0tS0retS0r2et;
S0tS0hctS0h2ct;S0tS0hetS0h2et; I0tI0lctI0l2ct; I0tI0letI0l2et;

Label Set

S0wtlblrc;S0wtlblre;S0wtlbllc;S0wtlblle; I0wtlbllc; I0wtlblle;

Size Features

|S|; |I|; |A|; |Act|; |Aet|;

5.4.3.3 Feature Selection

Due to the large number of features, forward selection was used once more to
select the best combination of feature sets. A maximum of 6 di↵erent combined
feature sets were evaluated to ensure the feature selection process remained
tractable, and Logistic Regression was used as the model as before. For each
dataset, the forward selection process was run twice, once using stemmed
words for the word features and a second time without stemming, using 5-
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fold cross validation to determine the best F1 score on the validation data.
Default values were used for all of the hyper-parameter values for the Logistic
Regression models. The SEARN algorithm itself has 2 key parameters, the
� parameter which controls the degree of interpolation between the last 2
trained SEARN models, and the number of iterations, or maximum epochs, it
is trained over. A value of 0.2 was used for the � parameter of SEARN, and the
algorithm was trained for a maximum of 10 epochs, as recommended in [45].
For both datasets, the best F1 score on the validation data was obtained using
stemmed words. Tables 5.11 and 5.12 below compare the accuracy metrics for
the best feature sets with and without stemmed words.

Table 5.11: Parsing Model Accuracy for the Best Feature Sets with and
Without Stemming for the Coral Bleaching Dataset

# Feature Sets F1 Score Recall Precision

Unstemmed 3 0.7140 0.6613 0.7757
Stemmed 6 0.7161 0.6640 0.7777

Table 5.12: Parsing Model Accuracy for the Best Feature Sets with and
Without Stemming for the Skin Cancer Dataset

# Feature Sets F1 Score Recall Precision

Unstemmed 4 0.7608 0.7055 0.8256
Stemmed 4 0.7634 0.7059 0.8312

For both datasets, the recall is slightly better with the stemmed words.
This matches what I saw in the previous chapter; stemming collapses multiple
variants of a word into the same form thus allowing the model to generalize
better, leading to higher recall. Similarly, for the coral bleaching dataset only,
using stemming also allowed the model to make use of more types of feature
sets without overfitting the dataset because the optimal number of feature
sets was higher. However, the impact of stemming on the overall micro-F1

score was minimal as only some of the di↵erent feature sets used words from
the sentence. For the rest of this section, I will focus on the results for the
stemmed features only.

In Section 4.5.3 I compared the relative importance of each feature set
when used in isolation. However, for this task, the model required at least
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one set of the baseline features in order to learn to parse each sentence (see
Table 5.9 for a list of the baseline feature sets). The higher order features
alone did not encode enough about the parser state for the model to learn
anything useful, instead they provided value as additional features when used
in conjunction with the baseline features. Consequently, Table 5.13 compares
only the relative performance of each of the baseline feature sets when used in
isolation.

Table 5.13: Each Baseline Feature Set Ranked by Micro-F1 Score When Used
in Isolation (using Stemmed Features).

Coral Bleaching Skin Cancer

Feature Set F1 Feature Set F1

1 Single Concept Codes 0.697 Three Concept Codes 0.741
2 Three Concept Codes 0.692 Single Concept Codes 0.738
3 Two Concept Codes 0.688 Two Concept Codes 0.737
4 Between Words 0.648 Between Words 0.730

From Table 5.13, we can see that for both feature sets, the Between
Words features were the least useful features, as they focus on the words in
between the codes that are being considered, but not on information about
the codes themselves that make up the possible causal relation. In the coral
bleaching dataset, the features formed from one concept code were more useful
than those learned from three codes, while in the skin cancer dataset the
opposite is true. It appears the greater specificity of the features created from
3 codes was more useful in the skin cancer dataset than in the coral bleaching
dataset. Also, the From Three Concept Codes features encoded information
from prior parsed causal relations (e.g. S0hctS0tI0t), while the Single Concept
Codes features only use the words and tags associated with S0 and I0. In Table
2.9 in Chapter 2, we saw that 12.5% of sentences in the skin cancer dataset
have multiple causal relations, while only 6.63% of coral bleaching sentences
have multiple relations, and overall a greater proportion of sentences have
causal relations in the skin cancer data. It is therefore quite likely that this
information is more useful in the skin cancer model because it is much more
likely that other relations have been parsed earlier in the sentence.

The true value of many of the feature sets is how much they improve
the accuracy when combined with other feature sets. Figure 5.3 shows changes
in the maximum micro-F1 score on the validation data as more feature sets
were added:
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Figure 5.3: Maximum Micro-F1 Score by Number of Feature Sets (Stemmed
Features)

For the coral bleaching essays, the model’s validation accuracy con-
tinued to increase by smaller amounts as more feature sets were added, but
in the skin cancer dataset the algorithm started to overfit once more than 4
feature sets were added. This mirrors the results discussed in Chapter 4 (see
Table 4.6) for the previous research question, where the skin cancer model also
started to overfit after more than 4 sets of features were added. Once the first
4 feature sets were added, adding Third Order and Valency features reduced
the F1 score on the skin cancer dataset. This indicates that the skin cancer
dataset is more prone to overfitting, especially with large numbers of feature
sets. Table 5.14 shows the order in which feature sets were added by forward
selection:

125



Table 5.14: Micro F1 Score as Additional Feature Sets Are Added by Forward
Selection (Stemmed Features).

Coral Bleaching Skin Cancer

# Feats. Added Feature Set F1 Added Feature Set F1

1 Single Concept Codes 0.6974 Three Concept Codes 0.7413
2 Between Words 0.7145 Between Words 0.7520
3 Label Set 0.7146 Size Features 0.7625
4 Three Concept Codes 0.7149 Single Concept Codes 0.7634
5 Third Order 0.7153 Third Order 0.7627
6 Unigrams 0.7162 Valency 0.7613

In both datasets, Two Concept Codes were the only baseline feature
sets not included in the optimal feature set. This set of features combined
information present in other feature sets, and likely did not add su�cient new
information to allow the model to generalize well. In contrast, the Between
Words feature set were the second feature set added in each dataset, following
the addition of the top baseline feature set. This implies that the words
between the concept codes were useful in determining whether there was a
causal relation or not, and provided the most useful new information. Label
Set and Unigrams were only included in the features selected for the coral
bleaching dataset, while Size Features and Valency were only included in the
selected skin cancer dataset’s features. Because there are more sentences with
causal relations and more causal relations per sentence in the skin cancer
data, as discussed earlier, both of these features may be more useful to the
skin cancer model because they count the numbers of certain types of parsed
causal relation. The Distance and Valency features were not included in either
optimal feature set and presumably did not generalize well to new data points.

Forward selection substantially reduced the number of features required
to train the parsing model. Table 5.15 below shows the reduction in the total
number of features in the parser as a result of forward selection.
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Table 5.15: The Reduction in Number of Features for the Shift-Reduce De-
pendency Parser as a Result of Feature Selection

Dataset # All Features # Optimal Features % Reduction

Coral Bleaching 1,698.8 33.0 98.1%
Skin Cancer 798.8 88.6 88.9%

Once the optimal features were determined using forward selection, the
model’s hyper-parameters were tuned to optimize accuracy on the validation
dataset.

5.4.3.4 Hyper-Parameter Tuning

Because a Logistic Regression model was used as the base classifier, a grid
search was performed over the same set of hyper-parameters as in previous
experiments - C values of 0.1, 0.5, 1, 10, and 100 were evaluated using L1, L2
and dual mode regularization methods. Two additional hyper-parameters were
also tuned that are specific to the implementation of the SEARN algorithm,
the � parameter which controls how the model interpolates between the last
two trained SEARN models and max epochs, which represents the maximum
number of training iterations used to train the SEARN model. Values of �
of 0.1, 0.2, 0.3, 0.4, 0.5, 0.75 and 1.0 were evaluated, along with max epoch
values of 1, 2, 3, 5, 10, 15 and 20. It should be noted that for the feature
selection process, the recommended default values for these parameters were
used, namely a C value of 1.0, dual mode regularization with a � value of 0.2
and a max epochs of 10.

For the coral bleaching dataset, a C value of 0.5, using the dual mode
of regularization with a � value of 0.5 had the highest micro-F1 score on the
validation dataset with a maximum of 2 epochs. For the skin cancer dataset,
a C value of 0.5 using the L1 regularization method with a � value of 0.3 and
training for a maximum of 3 epochs were the optimal hyper-parameters. For
the first iteration, the SEARN model relies entirely on the oracle’s labels to
make subsequent predictions. Then, with each new iteration, the model relies
more and more on its own past predictions. Having optimal max epochs val-
ues of 2 and 3 implies that for higher values the model’s predictions become
too noisy, negatively impacting prediction accuracy. However, after 2 or 3
iterations, the model is starting to make use of its own previous predictions,
and so this would appear to be a better approach than relying on the oracle’s
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predictions alone (at iteration 1). With optimal � values being 0.3 and 0.5,
interpolating between the previous 2 models when choosing the prior predic-
tions to use works better than picking the predictions from one of these models
alone.

5.4.3.5 Results

The performance of the shift-reduce parser model on all dataset partitions and
both datasets using the optimal feature sets and hyper-parameters can be seen
in Tables 5.16 and 5.17 below:

Table 5.16: Shift Reduce Parser Causal Relation Classification Accuracy on
the Coral Bleaching Dataset

Data Partition Micro-F1 Micro-Recall Micro-Precision

Training Data (CV) 0.865 0.766 0.992
Validation Data (CV) 0.722 0.727 0.718
Test Data 0.728 0.766 0.693

Table 5.17: Shift Reduce Parser Causal Relation Classification Accuracy on
the Skin Cancer Dataset

Data Partition Micro-F1 Micro-Recall Micro-Precision

Training Data (CV) 0.879 0.790 0.992
Validation Data (CV) 0.768 0.721 0.822
Test Data 0.790 0.760 0.823

As with the other models, the shift-reduce parser has a higher score on
the test data than the validation data, due to the larger training set. This also
indicates that despite all the feature selection and hyper-parameter tuning, the
model did not overfit the training or validation datasets. In the next section,
I will discuss how the shift-reduce parsing model compares to the other two
approaches.
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5.5 Summary of Results and Discussion

To better understand how well these di↵erent techniques perform at extracting
causal relations from the two di↵erent datasets, I will compare their perfor-
mance using not only their Micro-F1 performance, but also their Macro-F1

performance, which is more sensitive to the accuracy of the models at predict-
ing rarer relations. Furthermore, I will analyze how the accuracy at predicting
causal relations varies based on the relative frequency of each relation, how
the models perform on valid versus invalid casual relations (causal relations
not in the model or where the causal direction is incorrect), and I will perform
a statistical analysis to validate whether there is a statistically significant dif-
ference between the performance of the di↵erent models. Finally, I will discuss
how well these techniques might generalize to other domains or other texts.

5.5.1 Micro-F1 Performance

The micro-F1 score, precision and recall of each of the 3 algorithms at detecting
causal relations are listed in Tables 5.18 and 5.19 below:

Table 5.18: Test Data Accuracy by Algorithm on the Coral Bleaching
Dataset. All metrics are micro metrics. Probs = Probabilities.

Algorithm F1 Recall Precision Features

Bidirectional RNN 0.676 0.656 0.698 Word Embeddings
Stacked Model 0.704 0.674 0.736 Word Tagging Probs.
Shift-Reduce Parser 0.728 0.766 0.693 Templated Parsing Feats.

Table 5.19: Test Data Accuracy by Algorithm on the Skin Cancer Dataset.
All metrics are micro metrics. Probs = Probabilities

Algorithm F1 Recall Precision Features

Bidirectional RNN 0.792 0.798 0.786 Word Embeddings
Stacked Model 0.765 0.719 0.816 Word Tagging Probs.
Shift-Reduce Parser 0.790 0.760 0.823 Templated Parsing Feats.
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On the test data partitions, the shift-reduce parser model had the high-
est micro-F1 score on the coral bleaching dataset, out-performing the stacked
model by 3.41%, while the RNN word tagging model slightly out-performed
the parser by 0.25% on the skin cancer dataset. This mirrors what I found
earlier for each model on both validation sets. On average, the shift-reduce
parser had the strongest performance across both test sets as expected, with
an average micro-F1 score of 0.759 compared with 0.734 for the RNN word
tagging model and 0.735 for the stacked model.

The shift-reduce parser has two main advantages over the other two
models for this task. Firstly, it does not predict each relation as a separate
label, instead it learns when two concept codes can be parsed into a causal
relation. This allows it to generalize over all causal relations without having
to treat each causal relation separately and learn separate features for each.
This may explain the much higher recall metric value for the parser model
on the coral bleaching dataset when compared to the other models. Also the
coral bleaching dataset has a lot more unique causal relations (86 compared to
49), so being able to generalize over all of these relations is much more useful
than for the skin cancer dataset, where the RNN has a higher micro-F1 score.
There are 4 causal relations that occurred only in the coral bleaching test set
and 2 that occurred only in the skin cancer test set. Of these, the parser model
was able to correctly identify 1 of the coral bleaching codes without having
seen any previous examples. While this clearly did not make a noticeable
di↵erence to the overall micro-F1 scores, this illustrates the capacity of this
model to learn to detect causal relations between arbitrary concept codes.

The second advantage the parsing model has over the other 2 models is
that it optimizes the micro-F1 score. In general, F1 score is non di↵erentiable
and cannot be directly optimized using gradient based approaches (see Section
4.1.4). As the micro-F1 score extends the F1 measure to multiple classes,
it does not decompose over all examples, making direct optimization even
more di�cult. Instead, the parsing decisions are weighted using a custom cost
function that assigns instance weights proportional to the estimated cost of
an incorrect parsing decision on the overall micro-F1 score. These instance
weights are then used when training a set of cost-sensitive classifiers to make
each individual parsing decision. Please refer to Appendix G in Section G.5
for more details. We can see the e↵ect this cost function has on the model’s
performance by comparing the micro-F1 score of the model trained with the
cost function described in Equation G.1 compared to a cost function that
returns the same value for all parsing decisions, which I will call the uniform
cost function. Because the model’s hyper parameters were optimized for the
custom cost function, the default hyper-parameter values were used to compare
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the cost functions (using a C value of 1.0, L2 regularization without dual mode,
a � value of 0.2 and 10 max epochs). The optimal feature sets were used in
this comparison as these are assumed to be the same for both cost functions.
Table 5.20 shows the micro-F1 scores on the test data for both datasets with
the micro-F1 cost function and with the uniform cost function.

Table 5.20: Micro F1 Score on the Test Data with Di↵erent Cost Functions

Cost Function Coral Bleaching Micro-F1 Skin Cancer Micro-F1

Micro F1 Cost 0.726 0.788
Uniform Cost 0.694 0.786

The cost function makes a big di↵erence on the coral bleaching dataset,
but very little di↵erence on the skin cancer dataset where it makes the model
only slightly more accurate. Without the uniform cost function, the Stacked
Model would have out-performed the parser on the coral bleaching dataset.

In addition to these two advantages, that the parser model has an
additional advantage over the RNN model only, which is that it can predict
overlapping causal relations, which the RNN model studied in this chapter
does not do. Comparing the micro-recall of each model at predicting causal
relations in sentences containing one or more overlapping codes (see Tables
5.21 and 5.22 below), shows that the parser model significantly out-performs
the other two models on the coral bleaching dataset on the sentences with
overlapping codes, and actually performs slightly worse than the RNN tagging
model on sentences without overlapping codes. However, on the skin cancer
dataset, the RNN tagging model does better on both types of sentence, so this
aspect of the model does not seem to help on this dataset. For all three models
on both datasets, the micro-recall is lower on the overlapping causal relations,
indicating that these are harder to predict than non-overlapping relations. In
each case, it seems the di↵erent advantages of the parsing model make a large
di↵erence on the coral bleaching dataset, but not on the skin cancer dataset.
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Table 5.21: Micro-Recall on Sentences with Overlapping vs Non-Overlapping
Causal Relations on the Coral Bleaching Test Dataset

Dataset Overlapping
Relations

Non-Overlapping
Relations

RNN Word Tagging Model 0.563 0.754
Stacked Model 0.581 0.709
Shift-Reduce Parser 0.679 0.752

Table 5.22: Micro-Recall on Sentences with Overlapping vs Non-Overlapping
Causal Relations on the Skin Cancer Test Dataset

Dataset Overlapping
Relations

Non-Overlapping
Relations

RNN Word Tagging Model 0.691 0.831
Stacked Model 0.655 0.753
Shift-Reduce Parser 0.674 0.753

5.5.2 Macro F1 Performance

To see how well the di↵erent models performed on the rarer causal relations,
we can compare the macro-average metrics of the 3 models, which can be seen
in Tables 5.23 and 5.24 below. The same model in each dataset with the
optimal micro-F1 score also has the optimal macro-F1 score, but the macro-
average scores are much lower. There are many more unique causal relations
than concept codes because each causal relation is a combination of 2 concept
codes, and as a result each causal relation occurs less frequently than the codes
that it consists of. Because a lot of these relations are very rare, averaging
across all relations causes the macro-averages to be dominated by the rarer
codes. The machine learning models tend to perform worse on relations with
few data points as they have fewer examples to learn from, so the rare codes
reduce the macro-average scores, making them considerably lower than the
micro-average scores. However, the micro-F1 score was chosen as the main
accuracy metric as it reflects the relative frequency of the relations in the
entire dataset, and so better reflects the overall performance of the model on
the task as a whole.
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Table 5.23: Macro Test Data Metrics by Algorithm on the Coral Bleaching
Dataset

Algorithm Macro-F1 Macro-Recall Macro-Precision

RNN Word Tagging Model 0.211 0.199 0.226
Stacked Model 0.189 0.189 0.189
Shift-Reduce Parser 0.306 0.338 0.280

Table 5.24: Macro Test Data Metrics by Algorithm on the Skin Cancer
Dataset

Algorithm Macro-F1 Macro-Recall Macro-Precision

RNN Word Tagging Model 0.342 0.343 0.342
Stacked Model 0.271 0.250 0.296
Shift-Reduce Parser 0.302 0.286 0.320

On the word tagging task, each model performed slightly better on the
coral bleaching dataset than the skin cancer dataset. On the causal relation
extraction task however, each model performed significantly better on the skin
cancer dataset. This is particularly surprising because 2 of the 3 models eval-
uated relied on predictions from the word tagging models. There are several
possible reasons for these di↵erences in performance. Firstly, there are fewer
observed unique causal relations in the skin cancer dataset, 49 di↵erent rela-
tions compared to 86 in the coral bleaching dataset. However, there are also
more words with causal relations (29.71% compared to 21.06%) and more sen-
tences with causal relations (42.02% compared to 27.28%) in the skin cancer
dataset. If we compute the average number of examples of each causal relation
in each dataset, we find that on average there are 6.99 examples per unique
causal relation in the coral bleaching training dataset compared to 20.30 ex-
amples per unique causal relation in the skin cancer training dataset (see Table
2.9). With almost three times as many examples to learn from on average for
each causal relation, it was much easier for the models to learn from the skin
cancer data. Also, the length of the causal relations are slightly shorter in the
skin cancer dataset, with on average 10.00 words per causal relation as opposed
to 11.17, and learning shorter dependencies is usually easier as discussed in
Chapter 3. However, the sentences in the skin cancer dataset are longer and
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contain more unique words on average, and there are more overlapping causal
relations and so the skin cancer essays are more complex in some ways. It
appears that the greater number of examples per causal relation more than
compensates for any additional complexities in the writing.

5.5.3 Performance By Causal Relation Frequency

To better understand the relationship between causal relation frequency and
classification accuracy, Figures 5.4 and 5.5 plot the number of examples for
each relation against the F1 score from the di↵erent models. Please refer to
Appendix F for the relative frequencies of each causal relation, and Appendix
F for the causal relation F1 scores by model.

Figure 5.4: Micro F1 Score By Frequency For the 3 Causal Relation Extrac-
tion Algorithms on the Coral Bleaching Data
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Figure 5.5: Micro F1 Score By Frequency For the 3 Causal Relation Extrac-
tion Algorithms on the Skin Cancer Data

From Figures 5.4 and 5.5, there appears to be a correlation between
the frequency of each causal relation and the model’s classification accuracy.
Once again (see Section 4.8.3), the Pearson correlation coe�cient can be used
to measure the strength of the linear correlation between two sets of variables
[191]. If we examine the correlation between F1 score and causal relation fre-
quency, the skin cancer codes have a strong positive correlation of 0.76 while
the coral bleaching codes also have a relatively strong positive correlation of
0.60. However from the two figures above, the relationship between F1 score
and the number of examples appears to be logarithmic in the number of exam-
ples because the F1 score tapers o↵ as more examples are present. Computing
the Pearson correlation between the F1 score and the natural logarithm of the
number of examples gives even stronger correlations of 0.92 and 0.82 for the
skin cancer and coral bleaching datasets respectively, indicating that this is
more of a logarithmic relationship. As observed in Section 4.8.3 in the pre-
vious chapter, there is a strong correlation between each model’s accuracy
and the frequency of each code. The more examples of a causal relation each
model has, the more accurate its predictions will tend to be, as discussed in
the previous section.
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5.5.4 Performance By Causal Relation Type

Another way to compare the di↵erences in the performance of the di↵erent
techniques at the causal relation extraction task is to see how their accuracy
di↵ers at predicting di↵erent categories of causal relation. Four di↵erent cat-
egories of causal relation were defined as follows:

• Valid Relations - Relations that contain a cause and e↵ect that are
connected in the reference causal model with the correct direction of
causality e.g. 3 ! 4. For N concept codes, there are N2 possible causal
relations, but only a subset of these are valid with respect to the reference
causal model.

• Invalid Relations - Relations that either contain a cause and e↵ect that
are not connected in the reference causal model, or where the direction
of causality is incorrect e.g. 4 ! 3

• Direct to 50 - Relations that contain a causal concept (with a code
less than 50) that connects directly to the final causal outcome, concept
code 50 e.g. 4 ! 50

• Adjacent Codes - Relations where the cause and e↵ect codes are ad-
jacent in the causal model, and the direction of causality is correct e.g.
1 ! 2

The sets of Valid Relations and Invalid Relations are mutually exclu-
sive, and jointly constitute the entire set of relations. Direct to 50 and Adjacent
Codes are also subsets of the Valid Relations, and contain some overlapping
relations that are in both sets. A priori, I would expect the models to per-
form better on the Valid Relations because they represent valid inferences and
should be more consistently represented in the dataset than the Invalid Re-
lations. They should also occur more frequently than the Invalid Relations
because they are in the reference causal model and thus represent relations
that can be inferred from the source text. Also, the model would be expected
to perform better on the Adjacent Codes because the source texts include
statements directly linking those concepts. Although the Invalid Relations
represent invalid inferences not found in the source text, it is important to be
able to classify these accurately to provide feedback for an intelligent tutoring
system, or as input for an essay grading system.

Tables 5.25 and 5.26 below show how the di↵erences in the performance
of the 3 di↵erent algorithms vary by relation type across each dataset. In
addition, each table also contains three sets of text statistics which characterize
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some of the di↵erences between the 4 relation types. Average Number of
Sentences represents the number of sentences each relation type appears in;
Average Word Span describes the average number of words per relation of that
type, and finally Average Word Document Freq. indicates how rare the words
forming those relations are. This was computed by calculating the document
frequency, i.e. the number of documents each word occurs in, and averaging
this over all of the words in each relation type.

Table 5.25: A Comparison of the Micro F1 Scores of the 3 Algorithms Across
the Causal Relation Categories on the Coral Bleaching Data. Some Simple
Text Statistics are Included for Each Category. Freq. = Frequency

Valid
Relations

Invalid
Relations

Direct
to 50

Adjacent
Relations

Bidirectional RNN Micro-F1 0.689 0.148 0.686 0.779
Stacked Classifier Micro-F1 0.717 0.242 0.725 0.797
Shift-Reduce Parser Micro-F1 0.747 0.361 0.75 0.799

Average Sentences Per Relation 69.1 4.1 152.8 112.7
Average Word Span 11.3 11.1 11.0 11.5
Average Word Document Freq. 544 499 593 526

Table 5.26: A Comparison of the Micro F1 Scores of the 3 Algorithms Across
the Causal Relation Categories on the Skin Cancer Data. Some Simple Text
Statistics are Included for Each Category. Freq. = Frequency

Valid
Relations

Invalid
Relations

Direct
to 50

Adjacent
Relations

Bidirectional RNN Micro-F1 0.805 0.640 0.808 0.836
Stacked Classifier Micro-F1 0.775 0.600 0.769 0.806
Shift-Reduce Parser Micro-F1 0.798 0.671 0.799 0.844

Average Sentences Per Relation 245.7 17.0 391.6 310.6
Average Word Span 10.4 7.0 10.5 9.9
Average Word Document Freq. 603.2 462.5 637.5 547.6
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Of the four di↵erent relation types, the Invalid Relations were the hard-
est to classify with the lowest micro-F1 score in the two datasets, and were
much harder to classify than the Valid Relations. The Invalid Relations have
far fewer examples for each causal relation, and are also expressed using rarer
words because the Average Word Document Freq. is the lowest of the 4 cat-
egories in both datasets. In the skin cancer dataset, these relations are also
expressed using the fewest words, with a word span of only 7 words on average
compared to around 10 words for the other relation types. The Adjacent Re-
lations are the easiest category to classify in both datasets, with each model
achieving its highest micro-F1 score on that category. However, the Direct to
50 category is the most common category, indicating that performance isn’t
just correlated with the frequency of the relations. The Adjacent Relations
represent the inferences expected from the reference causal model, whereas in
the Direct to 50 relations, the student is skipping many intervening causal
inferences and linking a cause directly to the final causal outcome - ‘Coral
Bleaching’ or ‘Skin Cancer’. This problem, resulting from a ‘lack of coher-
ence’, is a typical problem found in some scientific causal explanations [105].
The word embeddings used in the word tagging model were initially trained
on Wikipedia, and it could be that the Adjacent Relations contain sections of
text that are closest in terms of context and meaning to the Wikipedia text,
allowing the word tagging model to perform better at detecting these pairs of
concepts.

Comparing the performance of the three di↵erent models, the Shift-
Reduce Parser has the highest classification accuracy on the hardest category
to classify, the Invalid Relations. As discussed earlier (see Section 5.5.1, Ta-
bles 5.21 and 5.22), this model also had the highest classification accuracy on
the overlapping relations, which were much harder to classify than the non-
overlapping relations, therefore this model seems to out-perform the other
models on the harder types of causal relation. While the parsing model had
the highest performance across all 4 categories in the coral bleaching dataset,
the RNN model had a higher micro-F1 score on the Valid Relations and Direct
to 50 categories in the skin cancer dataset. These two categories had the high-
est Average Word Document Freq. and thus used the most common words,
and the skin cancer dataset also had more examples per causal relation on
average than the coral bleaching dataset. Deep learning models typically re-
quire a large amount of labels to generalize e↵ectively to new data points, thus
the higher word frequency and larger number of labelled examples enabled the
RNN model to perform better on these two categories.
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5.5.5 Statistical Analysis

While overall the parsing model had the highest micro-F1 score across both
datasets, it is important to determine whether the di↵erences in performance of
the di↵erent models is statistically significant. Following the approach outlined
in Chapter 4, in Section 4.3, Cochran’s Q test was applied to the predictions of
the three di↵erent models. For the Coral Bleaching dataset, a �

2 value of 23.1
was attained, which has a p-value of < 0.001, which is significant, indicating
that there was a significant di↵erence in the accuracy of all 3 models on that
dataset. Using McNemar’s test to compare the performance of the Shift-
Reduce Parser with the other two models produces the results show in Table
5.27 below:

Table 5.27: Comparing the Performance of the Di↵erent Algorithms on the
Coral Bleaching Dataset with the Shift-Reduce Parser Using McNemar’s Test

Algorithm F1 p-value vs SR Parser

Bidirectional RNN 0.676 < 0.001
Stacked Classifier 0.704 0.693
Shift-Reduce Parser 0.728 -

In this case, the ↵ value for the McNemar test is 0.05/2 = 0.025, using
the Bonferroni correction. While the p-value of the RNN is below this, the
Stacked Classifier has a much higher p-value, indicating that the Shift Reduce
Parser is not significantly better than the Stacked Classifier, but is better than
the RNN model.

For the Skin Cancer dataset, a �
2 value of 2.6 was calculated for

Cochran’s Q test, which has a p-value of 0.270. Thus, the null hypothesis
could not be rejected for the Skin Cancer dataset, implying that there is no
significant di↵erence in the performance of the three algorithms studied. Over-
all, while the accuracy of the three models was high on both datasets, it does
not appear that one model is significantly better than the other. While each
algorithm works uses a very di↵erent technique to learn causal relations, the
strong performance of the stacked classifier indicates that knowing what pairs
of concepts are present in a sentence is often su�cient to determine if a causal
relation exists in that sentence, at least when it comes to the Skin Cancer
dataset. It is possible that all 3 algorithms are primarily learning this fact,
and any additional features learned by each model individually add only in-
cremental value to each model’s prediction performance, insu�cient to make
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a significant di↵erence in the accuracy of the model’s predictions in the Skin
Cancer dataset. The added complexity of the parsing models seems useful
only for the Coral Bleaching dataset, where far more unique causal relations
are present.

5.5.6 Extensibility to Other Texts and Domains

Although these three models achieve a high level of classification accuracy
at detecting causal relations in these two datasets, it is important to ask
whether these techniques would work well on other related datasets or even
di↵erent domains entirely. As discussed earlier in this chapter, one of the main
challenges in extracting causal relations was the large number of unique causal
relations in each dataset, and the relatively low number of examples of each
relation. The micro-F1 score was a lot lower in the coral bleaching dataset
than the skin cancer dataset because there were more labels to learn, and
each label subsequently had fewer examples on average. Once there are less
than around 25 examples for a label, the F1 score varies greatly by relation
(see Figures 5.4 and 5.5), and the accuracy tends to drop quite significantly.
For domains where there are fewer than 25 examples per label, or where the
complexity of the text was much higher than the text used in this research, I
would not expect these techniques to perform as well. Similarly, in texts with
a large number of causal relations (such as research papers), if those labels
overlap a lot within the text then these techniques would probably not be as
accurate because the performance on overlapping relations was much lower
than on non-overlapping relations (see Section 5.5.1, Tables 5.21 and 5.22). It
is hard to say which techniques would be most impacted, as di↵erent models
performed very di↵erently on the overlapping relations in the two datasets
studied.

The causal relation extraction models discussed in this chapter all re-
quire an accurate word tagging model to achieve a high level of accuracy. Thus
for these approaches to be e↵ective on text in other domains, the concept code
tagging model would also have to work well in those domains. Additionally,
there are many forms of argumentation that exist in essay writing that di↵er
from the binary cause and e↵ect relations studied in this work. For example
evidence-based arguments, such as those found in social studies essays, take
on a very di↵erent structure, typically starting with a claim that is then sup-
ported by one or more pieces of evidence [189]. These types of argument have
a more complex structure than the binary relations studied in this thesis, and
it is unlikely the techniques discussed in this chapter would be as e↵ective at
detecting these arguments. Furthermore, the models studied in this chapter
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are only capable of detecting causal relations that exist between concepts de-
fined in the reference causal model. They are not capable of detecting other
causal relations within the text. For these techniques to be extended into
other domains, causal models would have to be created in those domains, and
text annotated according to those models. Nevertheless, I do believe these
techniques could be used to detect causal relations and other types of binary
relations in other domains, provided su�cient examples exist for each unique
relation, and an accurate concept code tagging model could be constructed.

5.6 Conclusions

In this chapter, a novel algorithm for parsing causal relations was introduced
that adapts a shift-reduce dependency parser to determine causal relations
between concepts. It is hoped that this parsing model could easily be adapted
to detect relationships between concepts in other domains, aside from scientific
essays. Given a model which can identify the occurrences of concepts within
sentences, the shift-reduce parser model could be trained to detect di↵erent
types of relations between them, irrespective of the subject matter of the text
studied, and not limited to causal relations.

The experiments in this chapter suggest that for complex structured
learning problems in general (where the output is more complex than a single
label) designing an algorithm adapted to utilize the structure of the prob-
lem will out-perform more general approaches. The sample complexity of a
machine learning algorithm is the number of training examples it requires to
e↵ectively learn a target function from data [232, 231]. The parser learns to
solve a problem that has lower sample complexity than the problem the other
algorithms are learning to solve - determining whether a causal relation ex-
ists between two concept codes. There are many more pairs of concept codes
within sentences than there are examples of each individual causal relation.
The parser is thus able to better generalize to new examples.

Finally, the superior performance of the parsing model on the coral
bleaching dataset was dependent on the cost function used (see Table 5.20).
A novel cost function was introduced for directly optimizing the micro-F1

metric across a set of labels, the causal relations. It is well established that
for accuracy metrics derived from the field of information retrieval where the
metrics are not continuous and thus non di↵erentiable (such as F1 score),
techniques that directly optimize the metric generally out-perform techniques
that optimize for classification accuracy [61, 17] (see section 4.1.4). The results
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in this chapter further support those claims, and provide a new approach for
directly optimizing the micro-F1 score on parsing problems.

In the next chapter I will use pre-trained coreference resolution models
to pre-process the training data to replace coreferences with the entities they
refer to. I will then re-train the most accurate models from Chapter 4 and
from this chapter to determine if this improves the classification accuracy of
these approaches.
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Chapter 6

Coreference Resolution

Research Question 3 asks:

“Does the accuracy of the word-tagging and causal relation
extraction models improve when coreferents are resolved using ei-
ther of the following two state-of-the-art coreference resolution sys-
tems?”

A The Stanford Coreference Resolution System

B The Berkeley Coreference Resolution System

In computational linguistics and NLP, coreference resolution is the task
of determining all words or phrases in a body of text that refer to the same
entity or set of entities. For example, consider the following two sentences

“Jane bought a new car. She intends to use it to drive to work.”

In the second sentence, the pronoun she refers to Jane from the first
sentence and the pronoun it refers to Jane’s new car. They are said to corefer
to the same entity [113]. In order to understand the meaning of a sentence
it is critical for any NLP system to be able to determine which entities any
coreferences, such as pronouns, refer to. Anaphora is the most common type
of coreference and refers to expressions that refer to an entity occurring earlier
in the document, which is called the antecedent [113, 139]. While there are
other types of coreference, such as cataphora where the entity occurs later in
the document, anaphora is the only type of coreference labels that are in the
essay dataset, and so will be the focus of the work in this chapter.

Coreference resolution is an active area of research within the academic
NLP community, and a number of publicly available coreference resolution sys-
tems exist. At the time of writing, the two most accurate publicly available
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coreference resolution systems are the Stanford Coreference Resolution Parser,
and the Berkeley Entity Resolution System, which performs coreference reso-
lution in addition to a number of other entity resolution tasks. The Berkeley
coreference resolution system, described in [59], achieved an F1 score of 61.71
on the CoNLL shared task, which was state-of-the-art when the research was
published in 2014. Two years later in 2016, the Stanford neural coreference
resolution parser improved on the Berkeley model with an F1 score of 65.73
on the same dataset and task [31]. Both of these systems have been chosen for
this task because the models are publicly available (they can be downloaded
from [90] and [89]) and both have achieved high classification accuracies on a
number of important coreference resolution benchmarks.

A coreference resolution parser typically takes as input a text document,
and returns all the coreference chains the parser found within the document.
A coreference chain is a list of spans (a sequence of one or more words) or
‘mentions’ that the parser has determined refer to the same entity within that
document. Coreference resolution parsers do not typically distinguish between
anaphora and other types of coreference, and attempt to resolve all coreferents
in a document. To address this research question, both parsers will be used
to predict the coreference chains present in each essay. The coreference chains
will then be used to cross-reference the concept codes that were predicted
by the RNN word tagging model, described in Chapter 4, to determine the
concept codes assigned to each coreferent in a chain. In other words, when
a coreferent of an already coded concept is found, that concept’s code will
be used for the coreferent. The causal relation parser from Chapter 5 was
originally trained on predicted concept codes without resolving coreferents
and therefore needs to be re-trained on the new set of predicted concept codes
which includes resolved coreferents. This enables the parser to detect causal
relations involving coreferents.

Extending Figure 5.1 from the previous chapter, Figure 6.1 below illus-
trates the coreference resolution problem. In this figure, 2 additional causal
relations are added to Figure 5.1, the first between codes 3 and 4 and the
second between codes 5 and 7. Both of these relations involve coreferents that
refer to concepts mentioned in the previous sentence.
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Figure 6.1: Resolving coreferences involving concept codes. Each box rep-
resents a separate concept, with the code denoted by the green circle. The
cause-e↵ect relations are indicated by the blue arrows, each arrow going from
causer to e↵ect code. Causal relations resolved by coreference resolution have
red arrows, with the coreferences using bold red text.

6.1 Anaphora Annotations and Coreference Res-
olution

As part of the annotations process (see Chapter 2 for a more detailed descrip-
tion), words forming anaphoric references were also labelled with an ‘anaphora’
tag to denote that they formed part of an anaphoric reference, along with
the associated antecedent which was being referenced. Only anaphoric ref-
erences were labelled by the annotators, other types of coreference were not
labelled, and the annotators were instructed to focus only on anaphora that
referenced instances of concept codes. As a result, all anaphoric references in
both datasets have concept codes associated with their antecedents, and some
of these concept codes are also part of causal relations involving those coref-
erents. Section 2.5 in Chapter 2 describes the relative frequency of anaphoric
references, which in general occur rarely within the body of the text, but occur
much more frequently within concept codes and causal relations.
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Occurrences of concept codes and causal relations including anaphoric
references were omitted from the experiments described in Chapters 4 and 5 to
simplify the approaches to solving those problems. Incorporating a coreference
parser would have prevented an evaluation of the accuracy of each technique
at only detecting concept codes or causal relations because the accuracy would
also be a↵ected by the performance on the coreference resolution task.

6.2 Experimental Design

The two di↵erent coreference parsers discussed above do not di↵erentiate be-
tween anaphora and other types of coreference, and generate coreference chains
containing all detected occurrences of coreferences in a document. In order to
detect anaphoric references, a process was needed to filter the predicted coref-
erence chains to select just the anaphoric references. To solve this problem, a
separate word tagging model was trained to predict which words were anno-
tated as anaphora in each dataset, and the predictions from this model were
used to filter the coreference chains to only include mentions where one or
more words were tagged by this model. In addition to this method, a number
of di↵erent heuristics were evaluated for filtering the coreference chain to only
anaphoric references. This included filtering the words based on their part-of-
speech tags, and only including mentions from the chain that contained fewer
than a given number of words in length. The risk with this approach is that it
involves combining a number of di↵erent models and systems, none of which
have perfect accuracy, and thus the errors from these di↵erent approaches
may compound as they build on one another. Therefore a second, simpler
approach was also evaluated where the most recently predicted concept code
was selected as the antecedent for anaphors classified by the anaphora tagging
model.

Once the coreferences were obtained, the predictions from the optimal
word tagging model developed in Chapter 4 were used to assign concept codes
to the anaphoric references using the concept codes predicted for their an-
tecedents. The shift-reduce parser model from Chapter 5 was then retrained
with these additional predicted concept codes to extend the model to detect
causal relations that also included anaphoric references. As in the previous
two chapters, the same training and test dataset partitions were used in this
chapter. Please refer to Section 4.2 and Figure 4.2 for more details about how
the di↵erent data partitions were defined.
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6.3 Evaluation Metrics

To evaluate the accuracy of these techniques at only detecting anaphoric con-
cept codes or causal relations, the micro-F1 score, precision and recall were
computed for only the anaphoric concept codes and causal relations, in addi-
tion to computing it for all codes and relations.

6.4 Pre-Processing

The same initial data pre-processing was applied to the essay data as described
in the previous 2 chapters. Some additional pre-processing was required to
work with the 2 di↵erent coreference parsers. The Stanford parser uses its
own word tokenizer and sentence parser, and so the coreference output was
processed using a custom Python script to match it back to the original essays.
For the Berkeley parser, the data was prepared into the CoNLL skeleton format
[1], which allows us to pre-tokenize the words and sentences prior to passing
the tokens to the coreference resolution system.

6.5 Predicting Anaphors

The two coreference resolution systems used in this chapter resolve coreferents,
which need to then be filtered down to only include anaphoric references and
exclude other types of coreference. For this task, a machine learning model
was trained as a binary classifier to predict which words or phrases, such as
pronouns, were labelled as anaphors that refer to a concept code. This model
could then be used to filter the coreference chains to just anaphora tags, and
does not depend on the coreference resolution systems in any way. A 2-layer
bidirectional RNN word tagging model, using GloVe embeddings [88] was se-
lected for this task because it achieved the highest overall classification accu-
racy across both datasets for the word tagging task (see Chapter 4). The model
was trained as described in section 4.7.5, using early stopping to determine
the optimal number of epochs to use to train the model without overfitting.
The F1 score, precision and recall for this model on each dataset can be seen
in Table 6.1 below. Note that the micro-metrics were not calculated as only
one label was predicted (Anaphora or not).
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Table 6.1: RNN Classification Accuracy for Detecting Anaphors in the Coral
Bleaching and Skin Cancer Datasets

Coral Bleaching Skin Cancer

Data Partition F1 Recall Prec. F1 Recall Prec.

Training Data (CV) 0.597 0.579 0.616 0.624 0.500 0.830
Validation Data (CV) 0.312 0.294 0.332 0.355 0.258 0.570
Test Data 0.358 0.324 0.400 0.473 0.505 0.445

The accuracy of this model is much lower than the other word tagging
models, which achieved micro-F1 scores of 0.81 or higher for detecting concept
codes. This implies this is a more di�cult classification task than predicting
concept codes, which is not surprising because the model is trying to match
against all of the di↵erent concept codes while looking for words with little
semantic content, such as pronouns.

In addition, the model performed better on the skin cancer dataset.
This dataset contained more anaphoric references overall and so the larger
number of training data points helped the model to generalize better on that
dataset. In each dataset, the performance was also higher on the test dataset
than the validation dataset, indicating that the model generalizes better with
a larger training dataset.

6.6 Predicting Anaphor Concept Codes

Two di↵erent approaches were applied for determining the concept code asso-
ciated with an anaphor. The first approach uses the two coreference parsers
described in the previous sections to determine the antecedent for an iden-
tified anaphor. However this is quite a complex approach involving multiple
separate models that were trained on very di↵erent tasks. Subsequently, a
second simpler method was also evaluated which uses the most recently pre-
dicted concept code as the antecedent to see if this performs any better than
the first method. Both approaches use the anaphor tagging model described
in the previous section to first determine the anaphors. These two techniques
are described in more detail in the following sections.
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6.6.1 Coreference Resolution for Resolving Antecedents

A number of di↵erent approaches were evaluated for filtering the coreference
chains to select just anaphoric coreferents. Each filtering approach was evalu-
ated in combination with all other approaches, including using the anaphora
tagging model described in the previous section, and a grid search was per-
formed on the training data to determine the best combination of filters along
with the optimal parameters for each filter. The best combination of filters
was then applied to determine the anaphoric references in the test data.

Because anaphors are often pronouns, the part-of-speech (POS) tags
of each word were used to create two sets of filters for the coreference chains.
One set of POS filters used only coreferents that consisted of either pronouns,
determiners or both, while a second set filtered the antecedents, only selecting
antecedents that consisted of only noun phrases, verb phrases or both. The
POS tags were assigned by the Stanford or Berkeley parser as part of the coref-
erence resolution process. Some of the coreferents identified by the parsers were
very long, containing long multi-word phrases, however most anaphoric refer-
ences are typically very short, consisting of one or two words. Subsequently,
another set of filters filtered out sections of the coreference chain based on
the length of each section using values of 1, 2, 3, 5, 10 and 20 words, as well
as no length filter. One set of these filters filtered the coreferents themselves,
ignoring all coreferents with more than the specified number of words, while
a second set filtered out the possible antecedents in the same way. The final
type of filter used only the previous coreferent in the chain as the antecedent,
as opposed to using all coreferents occurring earlier in the chain.

The filters were first applied to the coreference chain to select any
anaphors in the sentence. Once a coreferent passed the first filter, its an-
tecedents were selected from the chain, passed through the second set of filters
and any remaining antecedents were used to assign concept codes predicted
by the word tagging model to the anaphor. Any concept codes that were as-
signed to at least one word in each antecedent were then assigned to the word
or words comprising the anaphor.

A summary of the results achieved on the training data can be seen in
Table 6.2 below. This represents the accuracy of each approach at detecting
only concept codes that were also labeled as anaphora. ‘Anaphor Filter?’ in
the table describes whether or not the RNN Anaphor tagging model described
in the previous section was used as one of the coreferent filters. The Stanford
parser performed better on the Coral Bleaching dataset whereas the Berkeley
coreference system performed better on the Skin Cancer dataset, indicating
that the performance of each system is highly dependent on the dataset be-
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ing evaluated and how similar it is to the dataset the parser was trained on
originally. The RNN anaphor tagging model improved classification accuracy
in every case except for when the Berkeley parser was used on the Skin Can-
cer dataset, where the recall was much lower. This implies that in that one
case the model excluded too many positive examples by being more selective,
improving precision at the cost of recall, but overall seemed to improve the
performance of this approach.

Table 6.2: Training Data Classification Accuracy for Detecting Anaphor
Concept Codes using the Optimal Set of Filters. All Metrics are Micro Metrics.

Parser Anaphor Coral Bleaching Skin Cancer

Filter? F1 Recall Prec. F1 Recall Prec.

Stanford Yes 0.038 0.020 0.292 0.126 0.070 0.673
Stanford No 0.033 0.035 0.032 0.096 0.059 0.259

Berkeley Yes 0.059 0.032 0.380 0.036 0.019 0.300
Berkeley No 0.035 0.073 0.023 0.044 0.047 0.042

The optimal set of filters for both datasets are listed in Table 6.3 below.
In the table, ‘Nearest Ante.?’ describes whether the nearest antecedent from
the chain or all previous antecedents were used. A ‘-’ indicates that using
no filter was optimal. In every case, using only the nearest antecedent in the
coreference chain improved the accuracy of the results. The columns ‘Max
Anaphor’ and ’Max Ante.’ in the table describe the maximum number of
words allowed in the anaphor or the antecedent for that coreference to be
used by the algorithm. Using a length filter on the anaphors did not improve
classification accuracy in either dataset. This is because the anaphora tagging
model is already restricting the length of the anaphors, meaning additional
length filters do not make a di↵erence. However, restricting the antecedents
to a maximum of 10 words improved accuracy in the skin cancer dataset only,
indicating that some antecedents in that dataset are too long.

The columns ‘POS Anaphor’ and ‘POS Ante.’ in Table 6.3 describe
which POS filters, if any, were optimal. Using a POS filter to filter either the
anaphora or the antecedents did not improve the accuracy in both datasets,
although in most cases it also did not reduce the classification accuracy. This
indicates that the anaphora and antecedents filtered by the Anaphora tagging
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model likely already consisted of the same POS types that those filters were
filtering for.

Table 6.3: Optimal Set of Filters For Each Training Dataset

Dataset Parser Anaphor
Filter?

Nearest
Ante.?

Max
Anaphor

Max
Ante.

POS
Anaphor

POS
Ante.

Coral Bleach. Berkeley Yes Yes - - - -
Skin Cancer Stanford Yes Yes - 10 - -

While the micro-precision and micro-recall are both low when not fil-
tering to the predicted anaphor tags, when that filter is applied the precision is
much higher than the recall, at or above 0.29 compared to a recall that is 0.073
or lower. Given the much higher recall attained from both the Anaphora tag-
ging model and the concept code classifier, the low recall appears to arise from
using the coreference parser to determine the antecedents for each anaphor.

The micro-F1 score for this task is much lower than was achieved on
the concept code word tagging task. Detecting anaphora concept codes is a
much harder task that detecting concept codes alone. The antecedents for the
anaphora can occur anywhere from a few words to several sentences earlier in
the text. Also, the anaphoric references lack the semantic information that
can be used to identify the specific concept code they refer to. Coreference
resolution is also far from a solved problem in NLP, with the Stanford model
achieving an F1 score of only 0.65 [31] and the Berkeley model a score of
0.62 [59] on the CoNLL 2012 dataset they were both trained on. Because
this approach is dependent on the output of each of these systems as well
as the output of the concept code word tagging model from Chapter 4, the
best accuracy that can be attained from this approach is much lower than
the accuracy of each model when used alone. This is because the errors of
each model compound when used together to solve a di↵erent problem. The
two datasets evaluated are also very di↵erent from the CoNLL dataset that
these parsers were trained on. The CoNLL dataset used annotated corpora
from the OntoNotes project, which contains coreference annotations from text
from transcribed telephone conversations, various news sources, web data and
magazine articles [132, 133]. The Berkeley and Stanford coreference parsers
were also trained to detect all types of coreference, not just anaphora which is
what is being evaluated in this task.
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Another aspect that makes this task so challenging is the way in which
the data was annotated. The coreferents annotated in each dataset always
had a concept code associated with them; the annotators did not annotate
any other examples of anaphora that were present. This means that a lot of
examples of anaphors are missing anaphora labels in the training data which
could be causing a lot of confusion for the model. Solving this problem there-
fore requires solving two problems at the same time, both detecting anaphora
and detecting concept codes. If these two tasks were annotated separately,
two separate task-specific models could be trained directly on this dataset and
then combined to determine anaphoric concept codes. This approach would
likely improve performance on this specific task.

6.6.2 Resolving Antecedents using the Predicted Con-
cept Codes

Anaphors refer to antecedents that occur earlier in the same document, and
involves linking words and phrases together, while omitting some terms for
brevity. Because the annotators only labeled instances of anaphors that refer-
ence a concept code, a reasonable assumption is that the code being referred
to is most likely to be the most recently referenced concept code, as that is
freshest in the mind of the reader and would make the text more cohesive. A
simpler approach to solving this problem is then to use the anaphora tagging
model described in section 6.5 to determine which words are anaphors, and
then use the most recently predicted code from the word tagging model as the
concept code of the antecedent. By reducing the complexity of the solution,
this approach could produce more accurate results.

To test this idea, the RNN anaphora word tagging model was used to
determine which words were anaphors, and then the most recently predicted
concept code was used as the code for that anaphor. The concept codes were
predicted by the optimal word tagging model from Chapter 4. This simpler ap-
proach was much more accurate than the previous approach, which can be seen
from the classification metrics in Table 6.4 below. This table also shows the
impact of including this approach on the overall word classification accuracy.
‘Anaphora Codes’ shows the model’s performance on just the Concept Codes
that were labeled as anaphors, ’Concept Codes’ shows the model’s performance
on concept codes excluding those with anaphora tags, and ‘Both’ shows the
performance on all concept codes, including anaphora concept codes.
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Table 6.4: Validation Data Classification Accuracy for Detecting Only
Anaphor Concept Codes (‘Anaphora Codes’), Only Concept Codes and On
Both Sets of Codes. All Metrics are Micro Metrics.

Coral Bleaching Skin Cancer

Predicted Labels F1 Recall Prec. F1 Recall Prec.

Anaphora Codes 0.262 0.241 0.287 0.235 0.167 0.399
Concept Codes 0.837 0.822 0.853 0.821 0.821 0.822
Both 0.832 0.816 0.848 0.815 0.811 0.819

The metrics attained by this approach for the anaphora codes are close
to those achieved from the anaphora tagging model alone when applied to
the validation or test data (see Table 6.1). This implies that in most cases,
the most recent concept code is the one referenced by the anaphor. This
approach performs better on the coral bleaching dataset than the skin cancer
dataset. This is surprising for two reasons. Firstly, the skin cancer dataset has
around 50% more instances of anaphora than the coral bleaching dataset (see
Table 2.10) and so you would expect it to be easier to classify. Secondly, the
anaphora tagging model is more accurate than the coral bleaching model (see
Table 6.1). However, the accuracy of the coreference resolution approaches
are dependent on the accuracy of the concept code tagging model as they rely
on the predictions from that model to resolve the coreferences. The concept
coding model was more accurate on the coral bleaching dataset and is probably
the reason that this approach is also more accurate on that dataset. Note that
this also applies to any other NLP topics and tasks that also depend on first
identifying conceptual information; how well the model performs at identifying
concepts will impact the accuracy of other tasks dependent on identifying those
concepts.

6.6.3 Results

The performance of the 2 Coreference Resolution systems (using the optimal
set of filters) are compared with the heuristic approach in Table 6.5 below.
These results mirror the results on the validation data; while the Stanford or
Berkeley approaches may achieve the higher recall or precision on each dataset,
in each case the overall micro-F1 score is lower as the combination of recall
and precision is much lower than the heuristic approach.
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Table 6.5: Test Data Classification Accuracy for Detecting Only Anaphor
Concept Codes Using Both Coreference Resolution Models as Well as the
Heuristic Approach. All Metrics are Micro Metrics.

Coral Bleaching Skin Cancer

Algorithm F1 Recall Prec. F1 Recall Prec.

Stanford + Filters 0.038 0.020 0.292 0.126 0.070 0.673
Berkeley + Filters 0.059 0.032 0.379 0.036 0.019 0.300
RNN Tagger + Heuristic 0.324 0.282 0.287 0.235 0.167 0.399

6.6.4 Statistical Analysis

When comparing the performance of di↵erent algorithms on solving a ma-
chine learning problem, it is important to determine whether di↵erences in
accuracy are likely due to chance or not. Statistical testing can help answer
this question. Following the approach outlined in Section 4.3 in Chapter 4,
I ran Cochran’s Q Test to test the null hypothesis, which states there is no
significant di↵erence between the performance of each algorithm at the current
task (resolving coreferences). A �

2 value of 2.1, with an associated p-value of
0.354 was attained when comparing model predictions on the coral bleaching
dataset. This is above the significance threshold of 0.05, and thus the null
hypothesis cannot be rejected for the coral bleaching dataset. According to
the results of Cochran’s Q test, there is no significant di↵erence between the 3
approaches, despite the relatively large di↵erences in micro-F1 score. Because
this test focuses on disagreements between the models, this implies that most
of the time, the 3 approaches make the same mistakes, and get the same data
points correct.

Running Cochran’s Q test on the skin cancer dataset however does
produce a significant result; a �

2 value of 15.8 which has an associated p-
value of < 0.001. This is below 0.05, and the null hypothesis can be rejected.
There is a statistically significant di↵erence between the performance of the
algorithms on the Skin Cancer dataset. Running McNemar’s test to compare
the performance of the 2 coreference resolution systems with the heuristic
approach produces the results in Table 6.6 below:
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Table 6.6: Comparing the Performance of the Coreference Resolution Parsers
on the Skin Cancer Dataset with the Heuristic Approach Using McNemar’s
Test

Algorithm F1 p-value vs RNN + Heuristic

Stanford + Filters 0.126 0.006
Berkeley + Filters 0.036 0.003
RNN Tagger + Heuristic 0.235 -

In this case there are just 2 comparisons, so the ↵ value is corrected
to 0.025. According to McNemar’s test, the heuristic approach is significantly
better than the two coreference resolution parsers on the skin cancer dataset.
It is surprising that there is a statistically significant di↵erence between the
heuristic approach and the other approaches on the skin cancer dataset but
not the coral bleaching dataset, given that the heuristic approach’s overall
micro-F1 score is higher on the coral bleaching dataset. This again reflects
what the statistical tests are measuring, that is how often one algorithm is
correct when it disagrees with another algorithm, and not the overall accuracy
of each approach.

6.6.5 Impact on Overall Word Tagging Performance

Table 6.7 below shows the impact of incorporating the best coreference reso-
lution approach (the heuristic) on the accuracy of the concept code labeling
problem when all concept codes are included in the test data.

Table 6.7: Test Data Classification Accuracy for Detecting Only Anaphor
Concept Codes (‘Anaphora Codes’), Only Concept Codes and On Both Sets
of Codes. All Metrics are Micro Metrics.

Coral Bleaching Skin Cancer

Predicted Labels F1 Recall Prec. F1 Recall Prec.

Anaphora Codes 0.324 0.282 0.379 0.295 0.262 0.337
Concept Codes 0.842 0.830 0.855 0.837 0.807 0.869
Both 0.840 0.827 0.853 0.829 0.799 0.862
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In both datasets, the test data micro-F1 score for the anaphora codes
and for both sets of codes was higher than on the validation dataset. The
anaphora tagging model performed better on the test dataset because it had a
larger training dataset to learn from, as we have seen with the other machine
learning models in the previous chapters. This is likely the reason for the higher
test performance on this task. As with the validation data, the classification
accuracy is higher on the coral bleaching dataset than the skin cancer dataset.
If we include all of the instances of each concept code, not just those with
anaphoric references (labeled ‘Both’ in the table), we see that incorporating
the anaphora resolution approach lowers the overall concept code classification
accuracy on both validation and tests datasets. However, the overall impact
on these metrics is small due to the relatively small number of concept codes
with anaphora tags.

The impact on the coral bleaching dataset of including the anaphora
resolution logic is much smaller than on the skin cancer dataset, resulting in a
drop of only 0.02 compared to 0.08 on the test dataset. This is because there
are fewer words and concept codes with anaphora tags in the coral bleaching
dataset (see Table 2.10). Also, there is a smaller number of anaphora tags in
the test dataset partition for the coral bleaching dataset compared to the skin
cancer dataset, with only 39 words with anaphora tags compared to 107 in
the skin cancer dataset. So the lower accuracy and larger number of test data
points resulted in a larger decrease in the overall micro-F1 score for the skin
cancer dataset.

6.7 Predicting Anaphor Causal Relations

In order to predict causal relations that include anaphora, the predictions
from the most accurate concept code anaphora resolution approach were used
to generate the concept code labels, and then the shift-reduce parser model
was re-trained on this new dataset to resolve the additional causal relations
that included anaphoric references. Please see section 5.4.3 for a more detailed
description of the shift-reduce parser model for causal relation detection.

The micro metrics for the validation datasets (using cross-validation)
and the test datasets can be found in Tables 6.8 and 6.9 below. ‘Anaphora
Only’ refers to only the causal relations including anaphors, and ‘Causal Re-
lations’ refers to the model’s accuracy at predicting all causal relations except
the anaphor relations. ‘Both’ refers to the overall accuracy of the model at
predicting all causal relations, including the anaphoric causal relations.
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Table 6.8: Validation Data Classification Accuracy for Detecting Causal
Relations With and Without the Anaphora Causal Relations. All Metrics are
Micro Metrics.

Coral Bleaching Skin Cancer

Predicted Labels F1 Recall Prec. F1 Recall Prec.

Anaphora Only 0.081 0.050 0.214 0.231 0.152 0.479
Causal Relations 0.722 0.727 0.718 0.768 0.721 0.822
Both 0.700 0.682 0.718 0.748 0.688 0.819

Table 6.9: Test Data Classification Accuracy for Detecting Causal Relations
With and Without the Anaphora Causal Relations. All Metrics are Micro
Metrics.

Coral Bleaching Skin Cancer

Predicted Labels F1 Recall Prec. F1 Recall Prec.

Anaphora Only 0.051 0.030 0.167 0.151 0.101 0.300
Causal Relations 0.728 0.766 0.693 0.790 0.760 0.823
Both 0.705 0.733 0.679 0.776 0.737 0.819

Despite being much more accurate at detecting the anaphora concept
codes on the coral bleaching dataset, the causal relation parser model is more
accurate at detecting causal relations including anaphora on the skin cancer
dataset. Overall, the parser model had a much higher classification accuracy
on the skin cancer dataset, and this higher accuracy seems to translate to the
anaphora causal relations also. Please refer to Chapter 5 for a more detailed
discussion on the di↵erence in causal relation extraction performance across the
two datasets. Similar to the concept code tagging results, the precision on the
anaphoric causal relations is much higher than the recall for both datasets on
both the validation and test data. The causal relation model is also dependent
on the predictions from the concept code model, and the higher precision is
likely a result of that model also having higher precision than recall for both
datasets. It is common in NLP classification tasks for precision to be higher
than recall. The main reason for this is the large variety in the vocabulary used
to describe di↵erent concepts and entities in textual data. Out-of-vocabulary
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words that occur in the test data but are missing from the training data can
cause a high false negative rate (and thus a low recall) in the test dataset,
as the model is unable to correctly classify words or phrases that it has not
seen before. The dependency on the concept code tagging model is also the
reason the overall classification accuracy for both datasets is low, because any
additional errors introduced by the causal relation parser further compound
the errors from the concept code labeling task. In addition, very few examples
of anaphoric causal relations exist in the dataset with only around 7% of causal
relations including anaphora (see Table 2.10), making it hard for the model to
generalize well on these examples.

Looking at the classification metrics for all of the causal relations, in-
cluding the anaphoric causal relations again lowers the overall micro-F1 score
due to the much lower classification accuracy achieved on this task. This
approach therefore does not provide the improvement in overall classification
accuracy that was expected. The inclusion of these additional causal relations
has a lesser impact on the skin cancer F1 score than on the coral bleaching
F1 score because the F1 score on the anaphora relations is almost three times
higher while the number of causal relations containing anaphora is about the
same for both datasets.

6.8 Summary and Discussion

The use of pre-trained coreference resolution models was not e↵ective at resolv-
ing concept codes associated with anaphora when combined with the concept
code word tagging model, contrary to my expectations when conceiving this
approach. This is due to some large di↵erences between the training data used
to train the coreference resolution models and the two datasets studied here,
and because of di↵erences in how the coreferents were labeled in these two
essay datasets. Coreferents in this task did not include other coreferents there
were not anaphors, and only included anaphors that were referred to entities
that were part of the causal models defined for each task. Subsequently, a sim-
pler approach combining an anaphora labeling model with the concept code
labeling model, both trained separately on the essay data, out-performed the
coreference resolution parser approach. However even with this approach, a
low overall micro-F1 score was obtained due to the di�culty of this task and
the low number of labeled examples in the training data. These results carried
over into the causal relation model, which is dependent on the predictions from
the concept code tagging model, and which also achieved a low classification
accuracy on the anaphoric causal relations. This implies that for any system
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that is trying to learn relationships between concepts, how well that system
identifies concepts is critical to the overall performance of the system.

6.9 Extensibility to Other Texts and Domains

Due to the very low accuracy of the di↵erent techniques applied in this chap-
ter, it is very hard to predict how well they would perform in other domains.
It is possible that if a similar dataset of essays was collected (and annotated
according to a causal model) where all of the anaphors in that dataset were
labeled, that the anaphor tagging approach combined with the heuristic could
more successfully resolve anaphors. This would in turn improve the accuracy
of the parsing model at detecting causal relations. However, it also unlikely
that such a simple heuristic of assigning the most recent code to the antecedent
would work in other domains, aside from annotating scientific explanatory es-
says. There are many di↵erent ways in which anaphors are used to refer to
entities occurring earlier in texts. This heuristic was quite accurate in this
case because the students were focused on the narrow tasks of explaining the
causality of some scientific phenomena. As they constructed a causal chain
concept by concept, it was natural for them to use anaphors that referred to an-
tecedents which where concepts earlier in that chain. For texts involving more
complex arguments, such as evidence-based essays or arguments presented in
non-scientific text, this assumption may not hold. I therefore believe it is
unlikely that the heuristic would work well for domains other than scientific
explanatory essays.

As discussed in this chapter, the coreference resolution models did not
generalize well to this domain because the essays di↵ered in semantic content
from the texts used to train the coreference models. Applying these systems
to resolve coreferences in other texts in similar or even di↵erent domains might
produce very di↵erent results if the texts have much more semantic overlap
(with the texts used to train these models). However, if the semantic overlap
in these texts is also low (compared to the model’s original training data),
then I would expect to also see a low coreference resolution accuracy.

6.10 Conclusions

In NLP problems, it is common to use pre-trained models such as part-of-
speech taggers or dependency parsers to pre-process text or extract features
when building NLP models. In this chapter, two coreference resolution models
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were used to resolve coreferents within the essay text to parse causal relations
involving anaphoric references. In this case, these systems were ine↵ective at
resolving coreferents because the underlying models were trained on very dif-
ferent corpora to the scientific essay text studied. In Chapter 4, a di↵erent
type of pre-trained model, a language model, was used to create word em-
beddings, which were then used within an RNN tagging model to improve its
performance on the word tagging problem. In that case, the word embeddings
were e↵ective at improving the model’s performance on that task. However,
the embeddings were trained on a semantically related corpus, Wikipedia,
which contained some scientific content. This implies that for NLP problems
in general, using pre-trained models trained on one corpus to solve problems
in a di↵erent corpus is only e↵ective when the two corpora are semantically
related. This is because the vocabulary used can di↵er substantially from one
corpus to another, making generalization across di↵erent corpora very chal-
lenging. When no models exist that have been trained on related content,
building a much simpler domain specific model may present a better solution
to the problem, as we saw in this chapter.

While around 7% of causal relations in the dataset involved coreferences
in the form of anaphora, around 4-5% of causal relations spanned multiple
sentences without any form of explicit anaphoric reference (see Table 2.10 in
Chapter 2). It was common for the students writing the essays to construct
a causal chain over the course of several sentences, each sentence building
on the preceding sentences, and the claims made within them. State-of-the-
art coreference resolution parsers, such as the Stanford and Berkeley parsers
used in this chapter, make use of information from the whole document when
determining all of the coreferents of some entity. Information from the entire
essay should therefore also be used when constructing a causal chain, without
limiting the model to the information present only in the current sentence
being classified. In the next chapter, I will extend the techniques described in
this chapter and Chapters 4 and 5 to utilize information from the entire essay
when constructing a causal model for each essay.
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Chapter 7

Inferring a Causal Model of an
Essay

Research Question 4 asks:

Can a more accurate causal model of an entire essay be con-
structed by using information from the whole essay using either:

A A Transition-Based Parsing Model to parse the entire essay

B A Reranking Model to rerank possible causal models

As discussed in section 2.5, it was common for students to develop an
explanation of the causal phenomena over several sentences. The methods for
detecting causal relations described in Chapter 5 were limited to examining
features in the current sentences only, and did not have access to information
from the rest of the essay. In this chapter, I examine several di↵erent tech-
niques for generating complete causal models from science essays, leveraging
the structure of the whole essay to improve the accuracy of the causal relation
detection. This is illustrated in Figure 7.1 below, which shows an example
of an essay that has undergone word tagging, causal relation extraction and
coreference resolution to produce a final causal model, representing the causal
structure of the whole essay.
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Figure 7.1: Generating a causal model from parsed causal relations. Each
box represents a separate concept, with the code denoted by the green circle.
The cause-e↵ect relations are indicated by the blue arrows, each arrow going
from causer to e↵ect code. Causal relations resolved by coreference resolution
have red arrows, with the coreferences using bold red text.

There are two principle ways that causal relation extraction could be
extended to operate at the essay level to determine the full causal model for
an essay. The first method is to build an essay parser to parse the essay se-
quentially, making use of both local and global features to inform each parsing
decision. The second method is to first determine all of the causal relations
likely to be present in an essay, and then select which subset of these causal
relations form the most probable causal model, given the training data.

The first method was implemented by extending the existing Transition-
Based Shift-Reduce Parsing Model to parse each essay in a single parse, instead
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of parsing each sentence individually and assuming independence between sen-
tences. To implement the second approach, I introduce a novel generate and
rerank algorithm, building upon the reranking approaches applied to struc-
tured learning problems, described in Section 3.4.6. The sentence parsing
model developed in Chapter 5 was extended using a beam search to produce
multiple di↵erent parses for each sentence. A set of candidate causal models
were then generated by taking combinations of these parses across all sentences
in the essay. A separate reranking model was then trained to select the best
candidate causal model created from a subset of these relations. By controlling
the beam size of the beam search, this algorithm presents a novel method of
balancing recall and precision to better optimize the micro-F1 score relative
to the sentence and essay parsing models.

In the rest of this chapter, I will describe each of these algorithms in
more detail, and compare their relative performance to the sentence parsing
model from Chapter 5 to determine whether building a global model for the
whole essay is more e↵ective for solving this problem than a local model op-
erating at the sentence level.

7.1 Evaluation Metrics

Similar to Chapter 5, I use the micro-precision, micro-recall and micro-F1

score metrics computed over all observed causal-relations. However because
the approaches in this chapter operate on entire essays and not sentences, the
metrics are calculated and compared at the essay level, and not the sentence
level. Consequently, the metrics only evaluate the set of unique causal rela-
tions extracted from each essay, ignoring the frequency and location of each
distinct causal relation within each essay. Some casual relations span multi-
ple sentences and were counted more than once when evaluating the sentence
level classification accuracy. Evaluating unique causal relations therefore also
addresses this issue.

7.2 Experimental Design

The same training and test datasets were used as in previous chapters (please
see Section 4.2 and Figure 4.2 for a explanation of the data set partitions).
However, because the metrics were computed at the essay level, the essay level
accuracy of the existing parsing model from Chapter 5 were computed for
comparison to the approaches used in this chapter.
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7.3 Pre-Processing

The same pre-processing was performed on the essays as described in the pre-
vious chapters. In addition, the concept codes for each word were predicted
using the parsing model from Chapter 5 and then augmented using the op-
timal coreference resolution approach from Chapter 6. For the training and
validation datasets, the predictions were made using 5 fold cross-validation;
the essays were partitioned into 5 di↵erent groups, and the predictions for
each group were made using models trained on the remaining 4 groups. For
the test dataset, the models were first trained on the training dataset and used
to make predictions on the test dataset.

7.4 Model Evaluation

The goal of this chapter is to extend the causal relation parsing model to make
use of the structure and content of the whole essay in order to improve upon
the accuracy of the sentence parser. The essay level classification accuracy
metrics for the sentence parser are listed in Tables 7.1 and 7.2 below, and act
as a baseline for evaluating the approaches discussed in this chapter:

Table 7.1: Baseline - Shift Reduce Sentence Parser Causal Relation Classifi-
cation Accuracy on the Coral Bleaching Dataset. All metrics were calculated
at the essay level.

Data Partition Micro-F1 Micro-Recall Micro-Precision

Training Data (CV) 0.783 0.762 0.805
Validation Data (CV) 0.744 0.729 0.759
Test Data 0.737 0.766 0.710
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Table 7.2: Baseline - Shift Reduce Sentence Parser Causal Relation Classifi-
cation Accuracy on the Skin Cancer Dataset. All metrics were calculated at
the essay level.

Data Partition Micro-F1 Micro-Recall Micro-Precision

Training Data (CV) 0.843 0.795 0.898
Validation Data (CV) 0.810 0.764 0.861
Test Data (CV) 0.827 0.800 0.856

The essay level parsing accuracy is noticeably higher on both test
datasets than the sentence level accuracy, with the micro-F1 score increasing
from 0.728 to 0.737 on the coral bleaching dataset, and from 0.790 to 0.827
on the skin cancer dataset. On the coral bleaching data, the improvement
in micro F1 score was due to an improvement in precision alone while in the
skin cancer dataset, both precision and recall improved when aggregating the
predictions to the essay level.

To understand why both recall and precision increase when computing
the micro-F1 score across only unique relations, consider the kind of mistakes
the parser can make and their impact on the precision, recall and F1 scores.
Consider the scenario where the sentence parser predicts two occurrences of a
causal relation when only one is present in the essay. This would result in the
parser producing an additional false positive prediction, which would lower the
precision but not the recall score for that particular relation (see Equations
4.1 and 4.2). However, if we only consider the unique causal relations, this ad-
ditional false positive would not be counted. The precision score is thus higher
for this scenario when only unique causal relations are considered. Consider a
second scenario where there are two instances of a particular causal relation,
but only one instance is predicted by the model. In this scenario, the model
has made a false negative error by failing to predict one of the 2 relations. This
impacts recall but not precision (see Equations 4.1 and 4.2). However, if we
only consider unique causal relations, this additional false negative prediction
would be ignored, and recall would thus be higher. Therefore by considering
only unique causal relations, both precision and recall can improve if both of
the error types described above are present.

For both approaches evaluated in this chapter, features were extracted
that encoded the concept codes and causal relations extracted from other sec-
tions of the essay, as well as features unique to each approach. As in previous
chapters, for each model forward selection was used to select the optimal set
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of features, using the default settings for the model’s hyper parameters. Using
the optimal feature set, grid search was then used to determine the optimal
set of hyper parameters. Five fold cross-validation was used to perform fea-
ture selection and hyper parameter tuning, and the optimal set of features and
hyper-parameters were used to train a final model on the full training dataset,
and then evaluated on the test set.

7.4.1 Transition-Based Essay Parsing Model

Three main changes were made to the transition-based parsing model to adapt
it to parse each essay as a whole instead of sentence by sentence. First, the
features described in section 5.4.3.2 were adjusted so that they encompassed
the entire essay. For example, the Valency features count the number of parsed
causal relations to the left and right of the two codes currently being evaluated
within the current sentence. These features were subsequently extended to
encompass all parsed causal relations across the whole essay occurring either
side of these two codes. The second change was to include an additional set
of feature templates to capture global features from the whole of the essay, as
well as features from the adjacent sentences. Finally, the essays themselves
were flattened from a sequence of sentences to a single contiguous sequence of
words with their predicted concept codes (from the RNN model). A special
token was inserted at the sentence boundaries to allow the model to learn
when it was transitioning from one sentence to the next. This token was also
labelled with a special concept code.

7.4.1.1 Features Evaluated

Five new sets of essay level features were evaluated for the essay parser model.
The students generally constructed the essay answers sequentially, laying down
a sequence of causal inferences resulting in the final causal outcome (coral get-
ting bleached or the presence of skin cancer). Thus ideas developed earlier
in the essay should influence those that come later on. The essay-level fea-
tures attempt to capture this information, looking at the concept codes in
surrounding sentences to see how they influence the causal relations in the
current sentence, and examining all of the relations that have currently been
parsed because those should influence which relations are remaining.

For these new feature sets, essay level features were extracted from
either the entire essay or two di↵erent parts of the essay: the section of the
essay prior to the current top of stack code, the S0 code, and the section of
the essay following the code at the front of the input stream, the I0 code (the
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code at the front of the current input stream). Please refer to section 5.4.3 for
a description of the shift-reduce parser and how it manipulates the stack and
the input stream. Unlike the sentence-level features, most of these features
are numeric and do not fit a simple template pattern, so I have not created a
feature template similar to those in Tables 5.9 and 5.10.

The first set of features called # Concept Codes encoded the number of
predicted concept codes in di↵erent sections of the essay. This set of features
attempted to capture any relationship between the number of codes in an
essay and the likelihood of a causal relation being parsed. These features
included the total number of predicted concept codes, the number of predicted
codes before the S0 code, and the number of predicted codes remaining in the
input stream. Another feature represented the percentage of all predicted
concept codes that were before the S0 token, and a second feature encoded the
percentage of codes after the I0 token.

The next set of features, called Ratio Features, described the ratios
between the number of predicted codes, the number of parsed causal relations
and the number of words and sentences in each essay. With the exception of
the causal relations, separate counts were calculated for each of these items
for the whole essay, as well as the part of the essay prior to the S0 code and
the section of the essay after the I0 code. Each combination of these counts
were then used to compute di↵erent ratios, each forming a unique feature. For
example, one feature captured the ratio between the number of parsed causal
relations and the number of predicted concept codes before the S0 code. The
purpose of this set of features was to determine if there was any relationship
between these ratios and the likelihood of there being a causal relation in the
current parser state, for example there might exist a relationship between the
length of an essay and the number of causal relations, or between the number
of concept codes and the number of causal relations.

It was common for the students to create a causal chain over the course
of several sentences, or even to define causal relations that span several sen-
tences. The next set of features captured information about the predicted
codes in the previous and next sentence to help the model leverage this in-
formation. I will refer to these features as Adjacent Sentence Codes. The
number of codes in the previous and next sentence were encoded as separate
features, and for each code in each adjacent sentence, a unique bigram feature
was created combining that code and its location (previous or next sentence)
with the top of stack code S0, the current input stream code I0, and finally
combined with both tokens to form a trigram feature. These features indicated
to the model how inter-sentential sequences of codes influence the likelihood
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of certain causal relations being present in the current sentence based on how
the students construct their causal arguments.

The fourth set of features were created to describe how far the parser
has progressed through the essay, and is be referred to as the Sentence Posi-
tion features. It is possible that certain causal relations tend to occur more
frequently near the start, middle or end of the essays. For example, causal
relations near the end of the causal chain in each causal model (see section
2.2) might occur more frequently near the end of an essay. A separate feature
was created for the number of sentences before the S0 code, the number of
sentences after the I0 code and the number of sentences between these two
codes (because some causal relations span multiple sentences). Two more fea-
tures described whether the S0 and I0 codes were in the start, middle or end
of the essay, irrespective of essay length, and another feature computed what
percentage of all of the essay’s sentences were between these two codes.

The final set of features captured information about the causal relations
that had been parsed by the parser in the essay before it entered its current
parse state. These features will be referred to as Causal Features. The essays
were written to describe the complete chain of causes and e↵ects leading to
some outcome. The presence of one causal relation therefore depends on the
causal relations that have already been stated earlier in the essay, and this
set of features attempts to capture this information. The number of causal
relations parsed as well as the number of unique causers or e↵ects across those
relations were encoded as features. Additionally, the number and percentage
of parsed relations that spanned more than one sentence formed new features.
It is possible for the same causal relation to be mentioned multiple times in
an essay. The number of times each causal relation has been parsed formed
another set of features. Similarly, an additional set of binary features en-
coded which causal relations occurred more than once, ignoring the relative
frequency of each relation. Usually the cause is mentioned before the e↵ect
in the essay, but sometimes the order is reversed and the e↵ect is stated first.
The proportion of causal relations where the cause preceded the e↵ect in the
essay text formed an additional feature.

The main purpose of the causal relation parser is to determine whether
any two codes could be combined to form a causal relation, whether one of both
should be discarded (as they are not part of any relation), or whether either of
them should be stored in memory as they may participate in a causal relation
with a code occurring later in the essay. In other words, S0 and I0 codes could
be combined to form a causal relation, one or both may need to be discarded
by the Skip transition, or the input stream token may need to be pushed onto
the stack. Because this parser parses the whole essay, the S0 and I0 codes
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can span multiple sentences and are no longer restricted to being within the
same sentence. One binary feature captures whether these two codes form
a causal relation that has already been parsed, and another feature encodes
how many times the potential relation has already been parsed. Finally, for
each parsed causal relation three features were created, combining it first with
the SO code, then with the IO code and then both codes forming bigram and
trigram features. These features di↵er from the Label Set features described
in Chapter 5, which encoded combinations of causal relations, stack and input
stream codes with the words that constituted those codes, and were limited
to only relations parsed within the same sentence.

7.4.1.2 Feature Selection

For each dataset, the model was first initialized with the optimal set of features
used in the sentence parser. With five new feature sets, performing forward
selection over all of the original feature sets in addition to these five would
have been computationally intensive and impractical. Because most of these
original features were local and not global in nature, it was assumed that the
set of optimal sentence parser features were still useful for the essay parser
and forward selection was performed only on the additional essay level feature
sets. All word features were stemmed as before. Feature selection was again
performed on sets of related features rather than individual features because
there were too many individual features for model-based feature selection to
be tractable. Logistic regression was used as the based model as before, and
the values for the di↵erent hyper-parameters were chosen based on the optimal
settings for the sentence level parser, as described in section 5.4.3.4.

To demonstrate the relative utility of the new feature sets, the micro-F1

scores are listed in Table 7.3, where each feature set was added individually to
the existing sentence level features. The most valuable essay level feature set
across both datasets is the # Concept Codes feature set, when no other essay
level features were present. This feature set produced the largest increase in
micro-F1 score in the Skin Cancer dataset, and the second largest increase in
the coral bleaching dataset. Conversely, the Causal Features feature set which
produced the biggest improvement in the coral bleaching dataset, made the
skin cancer model slightly worse, and was ranked lowest in the skin cancer
dataset when no other essay level features were selected. However, the change
in performance in the skin cancer model from adding any of these features
was very small and so the ranking of each of these features may not be a
reliable indication of their relative utility. This implies instead that either any
information provided by these features is already present in the sentence level
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features when extended to the essay level, or that essay level information was
not useful in parsing the skin cancer essays. A much larger improvement in
micro-F1 score was also observed with the coral bleaching model.

Table 7.3: Each Essay Level Feature Set Ranked by Micro-F1 Score When
Used in Isolation with the Sentence Level Features. Adj. = Adjacent

Coral Bleaching Skin Cancer

Feature Set F1 Feature Set F1

1 Causal Features 0.741 # Concept Codes 0.806
2 # Concept Codes 0.740 Ratio Features 0.803
3 Adj. Sentence Codes 0.738 Sentence Position 0.802
4 Sentence Position 0.736 Adj. Sentence Codes 0.801
5 Ratio Features 0.732 Causal Features 0.800

Di↵erent features can have a di↵erent impact on a machine learning
model when combined with other features than they can have when used on
their own. Table 7.4 shows the order in which features were chosen by the
forward selection algorithm and the impact on the overall micro-F1 score. The
first row, with 0 additional feature sets, represents the baseline performance
before any additional features were added. In both datasets, the feature sets
ranked the lowest when evaluated individually were the most useful feature sets
once the first feature set had been selected. This implies that they did not
provide enough information on their own to produce an accurate model, but
added additional value once the top feature was present. In both datasets,
only 2 sets of features were chosen by forward selection before the model’s
accuracy started to decline, indicating the model was overfitting the dataset
when more than 2 essay level feature sets were added.
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Table 7.4: Micro F1 Score as Additional Feature Sets Are Added by Forward
Selection. Adj. = Adjacent

Coral Bleaching Skin Cancer

# Fts. Added Feature Set F1 Added Feature Set F1

0 - 0.7356 - 0.8046
1 Causal Features 0.7414 # Concept Codes 0.8065
2 Ratio Features 0.7433 Causal Features 0.8067
3 Adj. Sentence Codes 0.7403 Sentence Position 0.8043

As with the previous models, we can compute the reduction in the
number of features resulting from the feature selection process. Table 7.5
below shows the total number of additional features added to the sentence
parser in developing the essay parser, and compares this with the number of
features chosen by feature selection. The number of features were computed
for the validation dataset and averaged across all cross-validation folds.

Table 7.5: The Reduction in the Number of Additional Features Added for
the Essay Parsing Model as a Result of Feature Selection. Addl. = Additional,
Fts. = Features

Dataset # All Addl. Fts. # Optimal Fts. % Reduction

Coral Bleaching 5,559.4 3,312.6 40.4%
Skin Cancer 5,322.0 5,189.0 2.5%

The new essay level features added a much smaller number of features
to the skin cancer dataset than to the coral bleaching dataset, with an 8.2%
increase compared to 14.9%. There were a lot more unique causal relations
in the coral bleaching dataset than there were in the skin cancer dataset (see
Table 2.9) which is the main reason for the di↵erence in the number of new
features. This di↵erence may also explain why the essay level features had
a much bigger impact on the coral bleaching model’s accuracy because more
novel information could be conveyed in this larger set of features.
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7.4.1.3 Hyper-Parameter Tuning

The hyper-parameters for this model are the same set of hyper-parameters as
for the sentence level parser. However, due to the changes made to the parser
and the additional features added, the original set of hyper-parameters may no
longer be optimal, and so a grid search was performed to determine the optimal
settings for this model. The Logistic Regression model hyper-parameters were
optimized as in previous experiments - C values of 0.1, 0.5, 1, 10, and 100
were evaluated using L1, L2 and dual mode regularization methods. The two
additional SEARN model hyper-parameters were also tuned once more, the
� parameter, which controls the degree of interpolation between consecutive
runs, and the max epochs parameter, which represents the maximum number
of SEARN training iterations. Values of � of 0.1, 0.2, 0.3, 0.4, 0.5, 0.75 and
1.0 were evaluated, along with max epoch values of 1, 2, 3, 5, 10, 15 and 20.

The essay parsing model took longer to converge than the sentence
parsing model with a max epochs of 10 for the coral bleaching model and 5
for the skin cancer model. The optimal values for the other hyper parameters
were similar to the sentence parsing model. For the coral bleaching model, a
� value of 0.5 was optimal with L2 regularization using dual mode as before,
but with a lower value for the C parameter of 0.1. For the skin cancer dataset,
a C value of 0.5 and a � value of 0.3 were optimal. For this model, however,
L2 regularization was more e↵ective with dual mode on, which di↵ers from
the sentence parsing model where L1 regularization without dual mode was
optimal.

These results indicate that the essay parser model took longer to con-
verge on both datasets than the sentence parsing model. This is unsurprising
due to the relative complexity of parsing an entire essay relative to a single
sentence. There were on average 9.1 sentences per essay in the coral bleaching
corpus and 9.8 sentences in the skin cancer corpus. Modifying the parser from
operating at the sentence level to the essay level meant that for each parse,
many more sequential decisions had to be made, resulting in a much larger
search space. Finding an optimal search policy to parse essays rather than
sentences was therefore a much more complex task, and it is not surprising
that the essay parsing model took longer to converge on an optimal policy.
The skin cancer dataset has fewer concept codes and thus fewer unique causal
relations (refer to Tables 2.4 and 2.9) and so presents a simpler parsing prob-
lem with a smaller search space. This may explain why fewer epochs were
needed to learn the optimal policy, even though the essays in that dataset
were slightly longer.
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7.4.1.4 Results

Tables 7.6 and 7.7 below show the accuracy of the essay parser across the
training, validation and test datasets, and includes the sentence parser’s per-
formance on the test data for comparison. As a reminder, with my evaluation
methodology the models typically perform better on the test dataset because
they were trained on a larger amount of training data (see Section 4.2).

Table 7.6: Sentence Parser and Essay Parser Causal Relation Classification
Accuracy on the Coral Bleaching Dataset. TD = Training Data, VD = Vali-
dation Data

Data Partition & Algorithm Micro-F1 Micro-Recall Micro-Precision

Essay Parser TD (CV) 0.861 0.787 0.950
Essay Parser VD (CV) 0.748 0.710 0.791
Essay Parser Test Data 0.740 0.729 0.750
Sentence Parser Test Data 0.737 0.766 0.710

Table 7.7: Sentence Parser and Essay Parser Causal Relation Classification
Accuracy on the Skin Cancer Dataset. TD = Training Data, VD = Validation
Data

Data Partition & Algorithm Micro-F1 Micro-Recall Micro-Precision

Essay Parser TD (CV) 0.898 0.851 0.951
Essay Parser VD (CV) 0.811 0.783 0.841
Essay Parser Test Data 0.821 0.813 0.829
Sentence Parser Test Data 0.827 0.800 0.856

Unusually, the essay parser actually performs worse on the coral bleach-
ing test dataset than the validation dataset. This implies the model may have
overfit the validation data during hyper-parameter tuning and feature selec-
tion. However, the performance on the skin cancer test dataset is higher than
on the validation data, similar to that seen with the other models studied in
the previous chapters.

Comparing the accuracy of the essay parser to the sentence parser on
the test data, only the coral bleaching model shows a slight improvement over
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the sentence parser, while a small decrease in F1 score is seen in the skin cancer
dataset. There is also a much larger di↵erence between the essay parser’s
performance on the training data and its performance on the validation and
test data when compared with that of the sentence parser (see Tables 7.1
and 7.2). This implies that the essay parser is more susceptible to overfitting
than the sentence parser. Therefore, extending the parsing model to work on
whole essays instead of sentence by sentence does not produce a consistent
improvement in parsing accuracy across both datasets.

There are several reasons why this approach is more susceptible to
overfitting. The essay parser has more features, 8.2% more for the skin cancer
model and 14.9% for the coral bleaching model. The more features a model
has, the more likely it is to overfit because it has more degrees of freedom
which can be used to memorize the training data, and learn arbitrary patterns
that don’t generalize to unseen data points. The SEARN model also has a
much larger search space to explore when it parses a whole essay compared to
a single sentence because it has to make a larger number of sequential decisions
on each parse. This makes it harder to learn an optimal policy because an
incorrect parsing decision made near the start of the essay could cause errors
in parsing the rest of the essay, instead of just impacting a single sentence’s
parse.

Switching from a sentence parser to an essay parser had very di↵erent
e↵ects on recall and precision in the two datasets. In the coral bleaching
test dataset, recall dropped but precision increased, while in the skin cancer
test dataset the opposite occurred. The micro-F1 score only improved in the
coral bleaching test dataset when using the essay parsing model, and this
is partly because there is a smaller di↵erence between recall and precision
(0.021 instead of 0.056) than for the sentence parsing model. F1 score is the
harmonic mean of recall and precision and penalizes larger di↵erences in the
two values; smaller di↵erences result in an F1 score that is closer to the mid-
point between both numbers. The increase in precision from using the essay
parser was also greater than the drop in recall for the coral bleaching test
dataset, which also contributed to a higher overall F1 score. While the gap
between recall and precision also dropped for the skin cancer dataset, the
drop in precision was about twice as large as the increase in recall (a decrease
of 0.027 compared to an increase of 0.013), resulting in a lower overall test
data micro-F1 score when compared to the sentence parser. The skin cancer
causal model contains fewer concept codes than the coral bleaching model,
9 codes compared to 13, and thus there are fewer observed causal relations
resulting from combinations of these codes. This makes achieving a higher
recall easier as there are more training examples for each concept code and
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each unique causal relation, allowing the model to generalize better to new
data points. The essay parser model seems better able to take advantage of
this than the sentence parsing model, causing improvements in recall with
fewer false negatives but a higher false positive rate for the skin cancer model,
resulting in a lower recall and a lower overall micro-F1 score.

7.4.2 Reranking Model

Reranking is a technique used in machine learning where an initial model is
used to generate a set of potential solutions to a problem, and then a more
complex model is used to rerank these solutions to produce a more optimal
ordering. The top solution or solutions can then be selected from this ranked
list. Learning to rank models are widely used in information retrieval, where
an initial set of results returned by a search engine are reranked by a machine
learning model [17]. Reranking has also been used to improve the accuracy of
parsing systems. Traditional greedy approaches to parsing construct a parse
tree a word at a time by executing a sequence of locally optimal decisions,
performing a greedy search through the search space of possible parse trees.
However greedy searches, while computationally e�cient, can get stuck in local
optima and arrive at sub-optimal solutions [192]. In contrast, using an initial
model to generate a top-n list of the best parses which are then reranked by
a ranking model allows for a more thorough exploration of the search space
of possible parse trees. Because the reranker is able to evaluate complete
parse trees, it can attempt to find a globally optimal tree rather than being
constrained to choose a sequence of locally optimal decisions.

In his 2002 paper, Collins showed how Rosenblatt’s perceptron algo-
rithm could be extended to handle structured learning problems by introduc-
ing a GEN(x) function which generates all possible output structures for a
given input x [35]. The structured perceptron is then used to rerank the out-
put structures by their expected loss over the whole structure, so the best
candidate structure with the lowest expected loss can be selected. In contrast
to the essay parsing approach where the parsing decisions are made while the
causal model is being constructed, the reranking algorithm allows us to select
the globally optimal causal model, and allows for the evaluation of features
that can be computed over the entire causal model, instead of a partially con-
structed one. Collins’ reranking approach to structured prediction is therefore
a good fit for this problem. To prevent over-fitting, Collins developed weight
averaging as a form of regularization when training the perceptron [35], and
this was used to regularize the causal model reranking model. For more infor-
mation on the structured perceptron, please refer to section 3.4.5.
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To adapt this approach to determine the best candidate causal model
for an essay, the optimal sentence parsing model from Chapter 5 was used, the
Shift-Reduce Parser, and extended to perform a beam search when parsing
the causal relations from each sentence. A beam search algorithm modifies the
best-first search algorithm by keeping a fixed number of the ‘best’ candidate
solutions at each search step (see section 3.4.5 for more details). Rather than
outputting a single set of causal-relations for each sentence, the beam search
parser generates k sets of causal relations, or parses, where k is the beam size.
At the start of the sentence, for each concept code it decides which transition
from the transition system to apply (see Figure G.2 in the Appendix for the
transition system). Instead of only executing the optimal transition according
to the parsing model, it executes the optimal k transitions. It then continues
in this way, dropping all but the top k decisions for each parse step, keeping
k concurrent parses in memory as it processes the sentence’s concept codes.

The beam search parser was used to construct the GEN(x) function
for the reranking model, as outlined in Algorithm 7.1 below.

Algorithm 7.1 The GEN(x) Function for the Reranking Model

1: function GenerateCausalModels(e) . e is an essay
2: C  ; . C is the set of causal models
3: for each s 2 e do . s is a sentence
4: p BeamSearchParse(s, k) . k is the beam size
5: for i 1 to k do
6: C  C [ pi

7: end for
8: end for
9: return GetPermutations(C)
10: end function

The GenerateCausalModels function works as follows. For each sen-
tence s in essay e, the beam parser produces an array of sentence parses p.
p contains the k best sentence parses, where k is the beam size. Each sep-
arate sentence parse pi produces a set of causal relations. All of the causal
relations parsed across all of the sentences are added to C, the set of unique
parsed causal relations for the essay. Once all of the causal relations have
been parsed for the essay, the GetPermutations function is called which re-
turns the set of all possible permutations of the causal relations in C. Each of
these permutations is a set of causal relations, i.e. a candidate causal model
for the entire essay. If there are n relations in C, then there will be 2n candi-
date causal models generated from C by this function. For some essays with a
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relatively large number of causal relations, this algorithm therefore generates a
very large number of causal models, too many to rerank in an acceptable time
frame. To address this problem, an upper limit was chosen for the number of
parsed causal relations; if more causal relations were parsed, those assigned
the lowest confidence by the parsing model were dropped, and the remainder
used to generate the causal models.

To determine a reasonable upper bound for the number of causal rela-
tions used in the generative model, statistics were computed to describe the
distribution of the number of causal relations per essay in the training data
(labelled by humans), and the number of causal relations parsed per essay
by the sentence parser (using cross-validation on the same dataset). This is
shown in Figures 7.2 and 7.3 below.

Figure 7.2: The Distribution of the Number of Causal Relations Per Essay
in the Coral Bleaching Dataset (Actual vs. Predicted by the Sentence Parser)

In the human assigned labels, 95% of coral bleaching essays have 8 or
fewer causal relations, while 95% of skin cancer essays have 10 or fewer causal
relations. The causal relations parsed by the sentence parser closely follow the
same distribution, with 8 causal relations also at the 95th percentile for the
coral bleaching data, and 9 instead of 10 causal relations at the 95th percentile
for the skin cancer data. Values of 8 and 9 respectively were therefore used as
the maximum number of causal relations used to generate the set of potential
candidate causal models.

Once sets of candidate causal models were generated for each essay,
a micro-F1 score was computed for each and used to rank the solutions by
their quality. A reranking model was then trained to replicate this ranking
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Figure 7.3: The Distribution of the Number of Causal Relations Per Essay
in the Skin Cancer Dataset (Actual vs. Predicted by the Sentence Parser)

(optimizing the essay level micro-F1 score) using a set of features computed
from each causal model. The set of features used and how they were derived
will be explained in the following section.

7.4.2.1 Features Evaluated

The features chosen for the reranking task were designed to capture informa-
tion about the structure of the parsed model, the parser’s confidence in the set
of causal relations it contains, and possible errors in the model construction.
To di↵erentiate between the original ideal causal model that was defined by the
team of cognitive psychologists who defined the original task and the causal
models generated by the algorithm, the human constructed causal model will
be referred to as the ‘reference’ causal model in the remainder of this chapter
any time it is referred to specifically.

The di↵erent types of causal model features are listed below, with a
brief description of each:

• Causal Relations Frequency - How many occurrences of each type of
causal relation are in the model?

• Probability Statistics - Statistics computed over the set of probabili-
ties the model assigned to each causal relation

• Causal Relation Confidence - The proportion of causal relations with
a probability above a set of thresholds - 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9
and 0.95
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• Total Number of Causal Relations - How many causal relations were
there in the model?

• Causal Relation Types - Percentage of di↵erent types of relation,
including duplicate relations, relations crossing between 2 paths in the
reference causal model, and relations where the direction of causality
matches that of the reference causal model

• Inverted Causal Relations - If a relation A→B exists, does B→A
exist? Frequency and proportion of inverted relations.

• Causal Relation Span Statistics - Mean, minimum and maximum
distance (number of concept codes) between the pairs of concepts in
each causal relation when computed from the reference causal model

• Causal Chains - A causal chain is a sequence of two or more causal
relations connected in the reference causal model

• Causal Chain Statistics - Statistics include the number, frequency
and maximum length of all chains

• Concept Code Frequency - How many occurrences of each concept
code are there in the candidate causal model?

When training a structured perceptron model using numerical features
for a reranking task, it is important that the features are normalized to all have
the same range. This prevents features with large ranges from dominating the
model. Min-max rescaling [114] was consequently used for feature normaliza-
tion. For some feature x, the feature is re-scaled to xnorm by subtracting the
minimum value and dividing by the range [114], as described in Equation 7.1
below:

xnorm =
x�min(x)

max(x)�min(x)
(7.1)

7.4.2.2 Feature Selection

As in previous experiments, forward selection was used to select the combi-
nation of feature sets with the highest overall micro-F1 score. The forward
selection procedure was executed until either the micro-F1 score declined over
the previous run, or a maximum combination of 6 feature sets had been evalu-
ated. A number of important hyper-parameters control how the model works
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and help prevent over-fitting. These include the number of training iterations
used to train the reranker, the beam size of the beam search algorithm and
the learning rate parameter. Sensible default values for each of these parame-
ters were chosen and fixed throughout the feature selection process, and then
fine-tuned following feature selection.

Early-stopping was used to determine the number of iterations, as de-
scribed in Chapter 4 in Section 4.7.4. The reranking model was trained initially
using all features on 80% of the training data. Training was then stopped when
the classification accuracy on the remaining 20% of the training data started
to decline. From this procedure, the optimal number of training iterations was
determined to be 2 for the coral bleaching dataset and 1 for the skin cancer
data. These values were then used throughout the forward selection process.
A beam size of 2 and a learning rate of 0.3 were used to train the model during
feature selection. Section 7.4.2.3 will discuss these hyper parameters in more
detail, and describe how they were tuned following feature selection.

To understand the importance of each feature in the absence of the
other features, the micro-F1 score of each feature set used individually is show
in Table 7.8 below. These numbers were calculated during the first forward
selection loop.

Table 7.8: Each Baseline Feature Set Ranked by Micro-F1 Score When Used
in Isolation. Stats. = Statistics, Conf. = Confidence, Rel. = Relation.

Coral Bleaching Skin Cancer

Feature Set F1 Feature Set F1

1 Probability Stats. 0.738 Causal Rel. Conf. 0.810
2 Causal Rel. Conf. 0.734 Probability Stats. 0.803
3 Concept Code Frequency 0.732 Causal Rels. Frequency 0.798
4 Number Causal Rels. 0.731 Concept Code Frequency 0.790
5 Causal Rels. Frequency 0.729 Number Causal Rels. 0.672
6 Causal Rel Span Stats 0.636 Causal Rel. Types 0.671
7 Causal Rel. Types 0.634 Causal Rel Span Stats 0.629
8 Causal Chain Stats. 0.624 Causal Chain Stats. 0.623
9 Causal Chains 0.339 Causal Chains 0.613
10 Inverted Causal Rels. 0.000 Inverted Causal Rels. 0.446

In both datasets, the Probability Statistics and the Causal Relation
Confidence were the two most useful sets of features when used alone, the
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Probability Statistics performing better in the coral bleaching dataset, whilst
the Causal Relation Confidence had the higher micro-F1 score in the skin
cancer dataset. When a causal relation is parsed, it is possible to determine the
parser’s confidence in the prediction by examining the probability it assigned
to that decision. Both of these sets of features measure the overall confidence of
the parser in its predictions, with Probability Statistics computing the average,
minimum and maximum probabilities across all parsed relations, while Causal
Relation Confidence computes the same measures for each unique relation.
Using these features to determine the overall quality of each causal model
appears to be critical for the ranking task. Usually when combining models
in this way, including the base model’s confidence as well as its prediction
improves the classification accuracy of the higher-level model consuming its
predictions [221, 198].

However, the true value of a set of features is how much they contribute
to improving the model’s accuracy when combined with all other useful fea-
tures. Table 7.9 below shows the order in which features were added by feature
selection for each dataset:

Table 7.9: Micro F1 Score as Additional Feature Sets Are Added by Forward
Selection. Stats. = Statistics, Conf. = Confidence, Rel. = Relation.

Coral Bleaching Skin Cancer

# Fts. Added Feature Set F1 Added Feature Set F1

1 Probability Stats. 0.7376 Causal Rel. Conf. 0.8098
2 Causal Rel. Conf. 0.7405 Inverted Causal Rels. 0.8104
3 Causal Rel. Types 0.7382 Number Causal Rels. 0.8107
4 Inverted Causal Rels. 0.7384 Causal Chain Stats. 0.8118
5 Causal Rel Span Stats 0.7386 Causal Rel Span Stats 0.8113

For the coral bleaching dataset, the model only selected the two feature
sets that describe the model’s confidence in its predictions, indicating that
information about the structure of the causal model, the causal chains within
it and the size of the model were not useful for that dataset. These types of
features did improve the accuracy of skin cancer reranking model, although
the increase in micro-F1 score over the Causal Relation Confidence feature set
was small.

Concept Code Frequency was ranked in the top three and four features
for each dataset when evaluated individually, however it did not appear in
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the final set of selected features, suggesting that it did not add any additional
useful information when used in conjunction with other features. The same is
true for the Probability Statistics feature set in the skin cancer dataset. The
number of Inverted Causal Relations was not useful in the coral bleaching
dataset, but was the second set of features to be added to the skin cancer
dataset. This implies that the skin cancer parser was less certain about the
direction of causality, generating causal relations in both directions due to the
beam search. Adding this feature allowed it to penalize causal models where
this occurred. Because the algorithm generates all possible causal models from
the set of most probable parsed causal relations, some generated models may
contain too many or too few causal relations when compared to the ground
truth. The Total Number of Causal Relations feature encodes this information,
and proved useful in the skin cancer dataset only.

The two causal chain feature sets capture information about the causal
chains within the causal models. In this context, a causal chain is a sequence
of two or more causal relations that are connected in the reference causal
model. For example, a causal chain from the coral bleaching domain would be
‘Increase in Water Temperatures → Decrease in CO2 → Decrease

in Photosynthesis’ (see Figure 2.1). The Causal Chains features contain a
separate feature for each causal chain in the candidate causal model. However,
it appears these individual features were too rare to be useful to the reranking
model. Causal Chain Statistics encode the number of causal chains and their
average and maximum length, and were the last feature set to be selected
by the skin cancer reranking model. Providing high level statistics about the
causal chains allowed the model to generalize better over the causal chain data.
Their inclusion in the final dataset alongside the Inverted Causal Relations and
the Total Number of Causal Relations indicates that information about the
structure and size of the candidate causal models was useful for the reranking
task.

The goal of feature selection is to produce a simpler, more robust model
by eliminating redundant or noisy features. Table 7.10 below shows the re-
duction in the number of features in the parsing model as a result of feature
selection.
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Table 7.10: The Reduction in Number of Features for the Reranking Model
as a Result of Feature Selection

Dataset # All Features # Optimal Features % Reduction

Coral Bleaching 1,698.8 33 98.1%
Skin Cancer 798.8 88.6 88.9%

There was a smaller reduction in the total number of features in the
skin cancer dataset as more sets of features were selected by forward selection.
Overall, the features providing summary statistics about the quality of the
causal model proved more useful to the ranking task than the high cardinality
features that listed the specific causal chains or causal relations present in the
causal models. Once the optimal set of features was determined, the model
hyper parameters were tuned to maximize the F1 score on the validation data
set.

7.4.2.3 Hyper-Parameter Tuning

A number of important hyper-parameters control how the reranking approach
works - the beam size, the number of training iterations and the learning rate.
Beam size controls the size of the beam used in the beam search, in other
words how many di↵erent parses are considered at each parse step, and thus
determines the number of parses that are generated for each sentence parsed.
Beam size is a critical parameter in the algorithm’s design, as it influences
how many di↵erent causal relations are parsed per essay and therefore how
many candidate causal models are generated. A beam size of 1 generates the
same set of causal relations as the original sentence parser studied in Chapter
5. However, setting a beam size of 2 or higher allows the parser to explore a
larger search space, parsing additional causal relations which were not parsed
by the original parser. A larger beam size therefore allows the algorithm to
attempt to improve recall, although in doing so it may reduce precision by
increasing the false positive rate.

As in previous chapters, a grid search was used to tune the beam
size and the learning rate hyper-parameters. Learning rate is the coe�cient
that controls the size of each weight update applied. The other main hyper-
parameter, the number of training iterations, was fixed throughout feature
selection and hyper parameter tuning after an initial value was set using early-
stopping (see Section 7.4.2.2). Beam sizes of 1, 3, 5, 7 and 10 were evaluated,
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along with learning rates of 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 and 1.
For the coral bleaching dataset, the optimal beam size was 1, with a learning
rate of 0.1. In contrast, for the skin cancer dataset the optimal beam size
was 5, with a learning rate of 0.05. This implies very di↵erent optimal search
strategies for each dataset when generating models to rerank.

7.4.2.4 Results

The performance of the reranker model with the optimal features and hyper-
parameters across the 3 di↵erent data partitions can be seen in Tables 7.11
and 7.12 below. The performance of the sentence parsing model on the test
dataset is also shown for comparison.

Table 7.11: Sentence Parser and Reranker Causal Relation Classification
Accuracy on the Coral Bleaching Dataset

Data Partition & Algorithm Micro-F1 Micro-Recall Micro-Precision

Reranker Training Data (CV) 0.743 0.704 0.786
Reranker Validation Data (CV) 0.741 0.704 0.783
Reranker Test Data 0.750 0.748 0.752
Sentence Parser Test Data 0.737 0.766 0.710

Table 7.12: Sentence Parser and Reranker Causal Relation Classification
Accuracy on the Skin Cancer Dataset

Data Partition & Algorithm Micro-F1 Micro-Recall Micro-Precision

Reranker Training Data (CV) 0.812 0.779 0.849
Reranker Validation Data (CV) 0.814 0.780 0.850
Reranker Test Data 0.829 0.814 0.845
Sentence Parser Test Data 0.827 0.800 0.856

In both datasets, the highest micro-F1 score was achieved on the test
dataset due to a larger amount of training data. Little di↵erence in F1 score
is seen between the training and validation data for both the coral bleaching
and skin cancer datasets, indicating that this approach is not prone to over-
fitting. This contrasts with the essay parser model, which was susceptible to
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over-fitting. Similar to the essay parsing model, precision is higher than recall
for both datasets across the training, validation and test data partitions.

Comparing the reranking algorithm’s performance to the sentence pars-
ing model, the reranking model shows a consistent improvement in the test
data micro-F1 score across both datasets, indicating that this approach does
improve upon the sentence parser’s predictions. However, the gain in micro-F1

score is very small for the skin cancer dataset. In the test data, the reranking
approach improves the recall in the skin cancer dataset while lowering the pre-
cision. In contrast, the exact opposite is true for the coral bleaching dataset,
the precision is increased at the cost of recall. The beam size parameter allows
the algorithm to trade o↵ precision and recall to optimize the micro-F1 score.
F1 score is the harmonic mean of both recall and precision; when there is a
di↵erence in recall and precision, the F1 score is below the mid-point between
the two values and is closer to the lower value. Thus, it penalizes approaches
that heavily favor either recall or precision, and do not balance both metrics.
During the hyper parameter tuning, the optimal values for the beam size were
determined to be 1 for the coral bleaching dataset, and 5 for the skin cancer
dataset. A beam size of 1 means that the set of causal relations that are
parsed are the same as those parsed by the regular sentence parser. With a
beam size of 1, the reranker is essentially learning which of these relations
to prune and which to keep, which has the e↵ect of improving precision by
reducing the false positive rate (see Equation 4.1), although recall may su↵er
as a result. Conversely, a larger beam size such as 5 means that additional
causal relations are being added to the causal model, enabling improvements
in recall also. Thus the beam search acts to improve recall, while the struc-
tured perceptron reranking model acts to improve precision. This behavior
explains why the reranking approach improves precision in the coral bleaching
dataset while improving recall in the skin cancer dataset due to the di↵erent
beam sizes.

To illustrate this point, the impact of beam size on precision and recall
during hyper-parameter tuning can be seen in Tables7.13 and 7.14 below.
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Table 7.13: The Impact of Beam Size on the Accuracy Metrics and the Size
of the Generated Causal Models in the Coral Bleaching Validation Dataset.
Max. = Maximum, Rels. = Causal Relations. All Metrics are Micro Metrics.

Beam Size Max. Rels. Mean Rels. F1 Recall Precision

1 13 2.96 0.7414 0.7040 0.7829
2 13 2.97 0.7410 0.7000 0.7870
3 15 3.64 0.7396 0.6982 0.7863
5 22 5.35 0.7392 0.7015 0.7813
7 22 5.36 0.7391 0.6985 0.7847
10 22 5.36 0.7383 0.6985 0.7828

Table 7.14: The Impact of Beam Size on the Accuracy Metrics and the Size
of the Generated Causal Models in the Skin Cancer Validation Dataset. Max.
= Maximum, Rels. = Causal Relations. All Metrics are Micro Metrics.

Beam Size Max. Rels. Mean Rels. F1 Recall Precision

1 13 3.97 0.8095 0.7578 0.8689
2 13 3.98 0.8092 0.7583 0.8674
3 15 4.81 0.8133 0.7783 0.8516
5 25 7.75 0.8138 0.7804 0.8502
7 25 7.75 0.8136 0.7809 0.8491
10 25 7.75 0.8131 0.7794 0.8498

To provide some context, the maximum number of unique causal rela-
tions observed in the manually labelled data (ground truth) per essay was 15
causal relations in each dataset. Thus the larger beam sizes must be generat-
ing a number of false positives for some essays. When modifying an algorithm
to improve recall, often precision su↵ers because we are trading one type of
error (false negatives) for another (false positives). In other words, broadening
the coverage of the algorithm also increases the number of bad matches we get
for a particular class. The opposite is also true for the same reason, improving
precision often hurts recall. From Table 7.14 we see that for the skin cancer
dataset, as we increase beam size, recall improves while precision drops. How-
ever, for the coral bleaching dataset, increasing beam size hurts both recall
and precision. This implies that for the coral bleaching data, the beam search

186



does not generate additional valid causal relations, but the reranking model is
still e↵ective at pruning invalid causal relations.

Overall, the sentence parser’s predictions are much more accurate on
the skin cancer data than the coral bleaching data, and this performance nat-
urally carries over to the reranker model which consumes those predictions.
Consequently, the reranker has a much larger impact on improving the ac-
curacy of the coral bleaching model - an improvement in micro-F1 score of
1.76% compared to 0.24% on the test data, because there are more errors to
correct. The reranking algorithm also appears to be better at correcting for
low precision than low recall. The gain in precision on the coral bleaching test
dataset as a result of the reranking algorithm (5.92%) was much higher than
the subsequent gain in recall on the skin cancer test dataset (0.49%).

7.5 Summary and Discussion

To evaluate the e�cacy of these two approaches at improving the accuracy of
causal relation parsing, at the essay level, I compare the algorithm’s perfor-
mance using both the micro-F1 score, and the macro-F1 score, which is more
sensitive to model’s performance at detecting the less frequent labels. Addi-
tionally, I perform a number of statistical tests to determine of the di↵erences
in model performance are statistically significant or likely due to chance, and
finally I discuss the extensibility of these techniques to other texts and other
domains.

7.5.1 Micro-F1 Performance

Summary Tables 7.15 and 7.16 below compare the test data classification ac-
curacy for the essay parser and reranking algorithm with the sentence parser
discussed in Chapter 5.

Table 7.15: Test Data Accuracy by Algorithm on the Coral Bleaching
Dataset. All Metrics are Micro Metrics. Sent. = Sentence, Feats. = Fea-
tures

Algorithm F1 Recall Precision Features

Sent. Parser 0.737 0.766 0.710 Templated Parsing Feats.
Essay Parser 0.740 0.729 0.750 Causal and Ratio
Reranker 0.750 0.748 0.752 Causal Probabilities
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Table 7.16: Test Data Accuracy by Algorithm on the Skin Cancer Dataset.
All Metrics are Micro Metrics. Sent. = Sentence, Feats. = Features, Probs.
= Probabilities

Algorithm F1 Recall Precision Features

Sent. Parser 0.827 0.800 0.856 Templated Parsing Feats.
Essay Parser 0.821 0.813 0.829 # Concept Codes, Causal
Reranker 0.829 0.814 0.845 Causal Probs, Structural

When compared to the micro-average classification metrics computed
at the sentence level (see Tables 5.18 and 5.19 in Chapter 5), we see a clear
improvement in the micro-F1 score, and the micro-precision and micro-recall
scores are the same or better, even when comparing the sentence-level parser’s
performance on both sets of metrics. This indicates that when ignoring the
specific location of the causal relations (i.e. the sentence in which they occur),
the model is more accurate at determining the causal relations present.

When compared to the sentence parsing model discussed in Chapter 5,
only the reranking model shows a consistent improvement in micro-F1 score
on the test data for both datasets. The essay parser produces a smaller gain
in F1 score on the coral bleaching dataset, but has a lower F1 score on the
skin cancer dataset than the sentence parser. The reranking algorithm was
designed to improve upon the predictions of the sentence parser model while
utilizing additional features computed over the final parsed causal models.
Empirically, it improves the sentence parser’s accuracy in a di↵erent way for
each dataset. For the coral bleaching dataset, it improves the micro-precision
by pruning relations that were assigned a low probability by the sentence
parser. However, no new causal relations were parsed because the beam search
was not used (beam size was 1) so the recall dropped slightly relative to the
sentence parser. In contrast, for the skin cancer dataset recall was improved by
using a beam search to parse additional causal relations but similarly incurring
a slight drop in precision as a result.

The goal of Research Question 4 was to determine whether we could
make use of the structure of the whole essay and the predicted causal model to
improve the causal relation parsing accuracy at the essay level. Extending the
sentence parser to parse whole essays using some structural features produced
a small improvement in F1 score on the test data (0.41%), but only in the coral
bleaching dataset. The reranking algorithm produced a larger accuracy gain
on the same dataset (1.76%) but only used features derived from probabilities
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assigned each causal relation by the sentence parser, and did not use any
structural features derived from the predicted causal models. The reranker
did produce an increase in micro-F1 score by using some structural features
on the skin cancer dataset. However, the additional accuracy produced by
adding these structural features (see Table 7.9) was very small, as was the
overall increase in F1 score over the sentence parser model on the skin cancer
data. Therefore any advantage conferred from using structural information
seems to be very small, if any. Nevertheless, the flexibility of the reranking
approach to trade o↵ recall and precision and correct for di↵erent types of
errors made by the sentence parser was e↵ective in improving the accuracy
of the predicted causal models. Based on the feature selection results, using
information about the sentence parser’s own confidence in its own predictions
was also critical to the success of the reranking approach on both datasets,
and was much more important than the structural information.

7.5.2 Macro-F1 Performance

The micro-average classification metrics take into account the relative fre-
quency of each class, or in this case each causal relation, in the entire dataset
when evaluating the overall F1, recall and precision metrics. As in previous
chapters, it is also useful to look at the macro-average metrics to understand
how the di↵erent models perform on the rarer causal relations in the dataset.
Tables 7.17 and 7.18 below show the macro-average classification accuracy
metrics for the each algorithm at detecting causal relations at the essay level.
For a detailed explanation of the di↵erences between micro and macro aver-
ages, please refer to Section 4.1.3.

Table 7.17: Macro Test Data Metrics by Algorithm on the Coral Bleaching
Dataset

Collection Macro-F1 Macro-Precision Macro-Recall

Sent. Parser 0.295 0.284 0.308
Essay Parser 0.249 0.254 0.245
Reranker 0.253 0.247 0.260
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Table 7.18: Macro Test Data Metrics by Algorithm on the Coral Bleaching
Dataset

Collection Macro-F1 Macro-Precision Macro-Recall

Sent. Parser 0.319 0.335 0.304
Essay Parser 0.336 0.331 0.340
Reranker 0.327 0.340 0.315

From these tables we can see that the macro-average metrics are con-
siderably lower than the micro-average metrics. This indicates that the three
di↵erent algorithms studied in this chapter are much more accurate at pre-
dicting the more common classes (causal relations) than the rarer classes. In
general, machine learning models produce more accurate predictions when
there are more examples of the target class to learn from. Many of the indi-
vidual causal relations occur rarely in the data (less than 5 times). The errors
on the rare classes are much higher than on the more common classes, and this
is reflected in the much lower macro-average scores. This disparity was also
observed between the micro and macro average metrics scores for the causal
relation classification task studied in Chapter 5 (see Tables 5.23 and 5.24).
This disparity has carried over to the models studied in this chapter which
either consume predictions from these models or further extend them.

When comparing the essay-level with the sentence-level macro averages,
the essay-level metrics are lower than the sentence-level averages (see Chapter
5). This contrasts with the micro-averages, where the opposite was observed.
When computing these metrics at the essay level, duplicate causal relations
within each essay are ignored. It is inherently more likely to observe a more
common causal relation multiple times within an essay, so by ignoring duplicate
causal relations the essay level macro averages are even more sensitive to the
rarer causal relations, explaining this di↵erence in relative performance across
the di↵erent averaging methods.

Examining the macro-average metric performance by algorithm, a very
di↵erent pattern emerges when compared to the micro-averages. The algo-
rithm that has the lowest micro-F1 score in each dataset has the highest
macro-F1 score in that dataset. Specifically, the sentence parser has the high-
est macro-F1 score on the coral bleaching dataset, and the essay parser has the
highest macro-F1 score on the skin cancer dataset. The F1 metric is non dif-
ferentiable, and cannot be optimized directly via gradient-based methods, and
thus the micro and macro-F1 metrics are also non di↵erentiable (see Section
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4.1.4 for a more detailed explanation). The two shift-reduce parser models and
the reranking algorithm each try to optimize the micro-F1 score, the parsers
use a custom cost function within the SEARN algorithm (see Appendix G, Sec-
tion G.5) while the reranking approach uses the beam size hyper-parameter to
vary the precision-recall trade o↵. The approaches most e↵ective at optimizing
the micro-F1 score perform worse at optimizing the macro-F1 metric, thus by
focusing more on reducing the errors for the more frequent classes, the rarer
classes perform worse. However, in spite of this the reranking algorithm still
has the second highest macro-F1 score across both tasks.

7.5.3 Statistical Analysis

As in previous chapters, I ran a Cochran’s Q test to compare the performance
of the 3 di↵erent approaches at detecting the causal relations at the essay
level. The approach to statistical testing used in this thesis is described in
detail in Section 4.3 in Chapter 4. Cochran’s Q test produces a �

2 value of
7.0, with a p-value 0.03, on the coral bleaching dataset, rejecting the null
hypothesis. Thus the 3 techniques studied, the sentence parser, the essay
parser, and the reranking approach, have statistically significant di↵erences in
accuracy on this dataset. Running McNemar’s test to determine if there is
a statistically significant di↵erence between the reranking approach and the
other two algorithm produces the results shown in Table 7.19 below:

Table 7.19: Comparing the Performance of the Di↵erent Algorithms on the
Coral Bleaching Dataset with the Reranking Approach Using McNemar’s Test

Algorithm F1 p-value vs Reranker

Sentence Parser 0.737 0.002
Essay Parser 0.740 0.437
Reranker 0.750 -

Once again, the ↵ value has to be corrected to 0.025 to account for
2 comparisons, using the Bonferroni correction. Based on McNemar’s test,
there is a significant di↵erence between the performance of the reranker and
the sentence parser, but when compared to the essay parser. Thus there is
not a statistically significant di↵erence between the accuracy of the reranker
and both of the other techniques, but the improvement in performance over
the sentence parser alone does not appear to be due to chance, on the coral
bleaching dataset.
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Running Cochran’s Q test to compare the algorithm performance on
the skin cancer dataset, a �

2 value of 4.13 is attained, which has an associated
p-value of 0.127. This is above the ↵ value and is not significant. The null
hypothesis holds, and there does not seem to be a significant di↵erence between
the performance of the three techniques on the skin cancer dataset. The micro-
F1 scores di↵er only slightly on the skin cancer dataset, so this is unsurprising.
Using the reranking approach or extending the sentence parser to parse whole
essays does not appear to improve upon the sentence parser, for the reasons
discussed earlier in this section.

7.5.4 Extensibility to Other Texts and Domains

The techniques in this chapter focus on extending the causal relation parsing
model from the sentence to the essay level. However, based on the improve-
ments in micro-F1 score and the results of the statistical testing, there is only
a significant improvement in the coral bleaching dataset, and not the skin can-
cer dataset. Given that consistent results are not seen across both datasets, it
is hard to predict whether an improvement would be seen in other domains,
where a sentence parsing model for detecting binary relations was extended
in the same way using a reranking approach. In order to better answer this
question, this experiment would need to be repeated on a number of additional
datasets (preferably in domains other than scientific essays) to see if the same
results are found, or whether these approaches are more or less successful when
applied to other texts. Based purely on the results from this thesis, I would
argue that it is possible but unlikely that these results would extend to other
domains, given the small e↵ect size observed in the coral bleaching dataset,
despite the fact that the performance improvement over the sentence parser
was statistically significant.

7.6 Conclusions

One key advantage of reranking approaches in structured learning is that they
allow for the use of an objective function that seeks the globally optimal so-
lution, rather than optimizing a series of local decisions [43]. In this chapter
I presented a reranking model that was able to predict more accurate causal
models by optimizing the overall micro-F1 score per essay, rather than at the
sentence level. Furthermore, the combination of a beam search followed by a
reranking model allowed for the F1 score to be optimized indirectly by better
balancing recall and precision by tuning the beam size hyper-parameter. As
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was observed in Chapter 5, the closer we can get to optimizing the desired eval-
uation metric in our model design, the better the model will perform on that
metric, and the results from this chapter further support this conclusion. Ad-
ditionally, it was demonstrated that when using a beam parser as the GEN(x)
function in Collin’s reranking approach [35], the beam-size can be varied to
optimize the micro-F1 score. This approach could be extended to optimize
any aggregate F1 metric in other multi-label classification problems, provided
a suitable GEN(x) function could be used to generate di↵erent combinations
of labels.

The goal of Research Question 4 was to determine whether using in-
formation from the whole document would improve the accuracy of the causal
relation extraction, compared to an approach that processes each sentence in-
dependently. My results from this chapter were inconclusive. On the one hand,
using the reranking approach did produce an improvement in the classification
accuracy on both datasets. However, the reranking models relied principally
on features that encoded the confidence of the sentence parser in its own pre-
dictions; the structural features had little impact on the model’s accuracy, and
were removed by feature selection on the coral bleaching dataset, where the
biggest accuracy gains were observed. While it is possible that di↵erent mod-
els or di↵erent sets of features could produce a larger improvement in accuracy
when using structural features, these results imply that for scientific explana-
tory essays, most of the information needed to determine causality is encoded
locally at the sentence level. One possible reason for this is the presence of
coreferences within the essays. An analysis of the causal relations within the
essays show a significant number of causal relations involving coreferences (see
Section 2.5). Coreference resolution is a very di�cult NLP problem, the Stan-
ford and Berkeley systems evaluated in Chapter 6 achieving an F1 score of only
0.62 and 0.65 when they were evaluated on the dataset they were trained on
[31, 59]. They then performed much worse when applied to the essay text. If
a better coreference resolution model were developed that was more accurate
at resolving coreferences on this dataset, a whole essay parsing approach could
be more successful.

These results also have implications for building pipelines of machine
learning models, where the predictions from some models feed into other down-
stream models. When models are stacked in this way, the success of the down-
stream models is dependent on the overall accuracy of the models earlier in the
pipeline. Errors tend to propagate through the system, and it is hard for the
downstream models to correct for errors earlier in the pipeline. This is demon-
strated by the performance of the reranking algorithm studied in this chapter.
While precision was improved by removing some false positive predictions from
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the base model (the sentence parser), the main gains in micro-F1 score came
from better balancing recall and precision. In each dataset, it improved either
precision or recall, but not both; an improvement to one resulted in a decrease
in the other. Because reranking algorithms rely on the predictions from a base
model, this is a well known limitation of this approach [43].
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Chapter 8

Summary and Conclusions

In conjunction with the READI grant [70] (funded by the National Center for
Education Research), a study was undertaken by a team of cognitive psychol-
ogists to evaluate how e↵ectively students are able to synthesize and combine
information from di↵erent source texts. Two essay topics were chosen describ-
ing di↵erent scientific phenomena, the bleaching of coral reefs and the causes of
skin cancer, and source texts were selected that described the di↵erent causes
underlying these phenomena. The sources were selected so that no single text
contained all of the information necessary to answer the essay questions; the
students were forced to integrate information from multiple sources to answer
each essay question. 1,100 explanatory essays explaining the two science topics
were collected from high school students in the Chicagoland area and anno-
tated according to 2 pre-defined causal models. Each causal model described
the causal reasoning structure that the students were expected to produce in
an ideal essay answer. These annotated essays were then used to train the
machine learning models evaluated in this thesis.

The goal of this research was to produce a machine learning system
which can parse the causal structure of an essay in either scientific domain,
mapping the causal inferences in the essay to the reference causal model. The
problem was decomposed into 4 di↵erent sub-problems, producing 4 di↵erent
research questions. Solutions to these 4 sub-problems comprise a system for
inferring causal models from essay text in each of these two domains. It is
hoped that this system could be used as a general framework for extracting
causal models from text in many di↵erent domains, not just limited to sci-
entific essays. Existing essay grading software relies on shallow surface-level
lexical and grammatical features [185, 48]. While these features are e↵ective
at predicting an essay’s grade by evaluating a student’s writing proficiency,
they are not able to e↵ectively judge the quality or validity of the student’s
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arguments [164, 56, 247]. Instead, new techniques are needed which can eval-
uate the quality of the arguments and the causal reasoning of the student, as
expressed through their writing [94]. The approaches outlined in this research
could be used to build such a system.

8.1 Summary

The micro-F1 metric was chosen as the principle evaluation metric for this
research because it is designed for evaluating classification accuracy in multi-
class multi-label classification problems, where the class labels are imbalanced
(see Section 4.1 for a more detailed definition). The goal of Research Question
1 was to determine the most e↵ective machine learning approach for labelling
words with concept codes from the causal model. Five di↵erent word tagging
models were trained to predict the concept or concepts associated with each
word in the essays - a window-based tagging model, a Conditional Random
Field (CRF), a Hidden Markov Model (HMM), a Structured Perceptron and
a Bidirectional Recurrent Neural Network (RNN). The bidirectional RNN was
most e↵ective at this task when evaluated across both datasets. The key
to this model’s success lay in its ability to use and fine-tune pre-trained word
embeddings, produced by a language model that was trained on a semantically
related dataset (GloVe vectors [88, 168] trained on Wikipedia, which contains
scientific content). Furthermore, the bidirectional and recurrent nature of
the RNN model gave it a unique advantage, as it was able to learn from
all of the labels and words to the right and left of the target word. Also,
the RNN was not restricted to a fixed-size word window or only learning
from the left context of the target word. The window-based tagging model
also achieved a high classification accuracy on this task, comparable to the
RNN on one of the datasets. Unlike the other 4 approaches, this model only
used features extracted from the surrounding words, and did not learn from
the labels assigned to preceding or subsequent words. This implies that for
this task, the surrounding words and not their concept codes, were the most
important features for this task.

Research Question 2 addressed the problem of learning causal relations
between concepts. Using the predictions from the most accurate word tag-
ging model (the bidirectional RNN), three di↵erent models were trained to
determine the causal relations linking the predicted concepts within each sen-
tence. The first model evaluated was a bidirectional RNN, which extended
the word tagging model from Research Question 1 to tag words with causal
relations. The second approach applied the idea of ‘stacked generalization’
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[246]. Sentence-level features were extracted from the word tagging model’s
predictions and used to train a meta-classifier, a logistic regression model, to
predict the causal relations present in each sentence. Finally, a shift-reduce
parser was developed which used the SEARN imitation learning algorithm [45]
to train a transition-based dependency parsing model to parse binary relations
between predicted concept codes.

The shift-reduce parser achieved the highest performance across both
datasets. Critical to the success of this approach was its use of a custom cost
function which allowed the model to directly optimize the micro-F1 score (see
Section G.5 in Appendix G). Moreover, instead of learning to predict each
causal relation as a separate label, this model solved a more general problem
- it was able to learn to determine if any relation existed between any pair
of codes. Because there are more occurrences of causal relations between
pairs of concept codes than there are occurrences of individual relations, this
lowered the sample complexity of the problem [232, 231] and allowed the model
to generalize more e↵ectively to classify new data points. Therefore, this
model was able to achieve better generalization because it was designed to
take advantage of the structure of the problem.

Research Question 3 addressed the problem of resolving anaphoric ref-
erences to words associated with a concept code. Two existing state-of-the-art
systems were evaluated on this task, the Stanford and Berkeley coreference
resolution systems [90, 89]. However, both of these systems proved ine↵ective
at resolving the labelled coreferences within the two essay datasets. Conse-
quently, an alternative solution was developed to solve this problem. A bidi-
rectional RNN was trained to predict which words were labelled as anaphors
in the training data. Using predictions from this model, the antecedents were
then resolved to their coreferents using a simple heuristic - match the most
recently mentioned concept code occurring before the target coreferent in the
essay. This combination of a word tagging model and a simple heuristic was
more accurate at resolving anaphors than the two coreference resolution mod-
els. This illustrates the relative e↵ectiveness of a simple domain-specific ap-
proach when compared to a more complex approach that was designed to solve
a much more general problem.

The intent of Research Question 4 was to determine the most e↵ective
method for extracting a causal model from an entire essay. Two di↵erent ap-
proaches were developed to solve this problem. The first approach extended
the shift-reduce dependency parser developed for Research Question 2 (see
Section 5.4.3) to parse whole essays, rather than just sentences. While this
approach produced a small improvement in the classification performance on
one dataset, it performed worse on the other dataset when compared to the
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sentence parser. Building upon the work of Collins [35, 36], the second ap-
proach used a reranking model to rerank the causal models produced by a
generative approach. A beam search was used to generate the top n parses per
sentence using the sentence parser. Multiple di↵erent candidate causal models
were then generated for each essay by computing all of the possible permuta-
tions of the causal relations generated from the parsed sentences. Finally, the
reranking model was trained to rerank the candidate models and select the
best model for each essay. By using an objective function that evaluates the
accuracy of the whole causal model rather than optimizing the individual deci-
sions used to construct it, the reranking model is much closer to optimizing the
key evaluation metric, the overall micro-F1 score. This approach consequently
out-performed the essay parsing method, attaining a small improvement in
performance across both datasets. Determining the optimal beam size was
also critical to the success of this approach. Each dataset had a di↵erent op-
timal beam size, and finding the right beam size allowed for a higher overall
micro-F1 score by better balancing recall and precision.

8.2 Conclusions

A number of general conclusions can be drawn from this work that can be
applied to the design of other machine learning systems:

• Directly optimize the evaluation metric. In Research Question 2,
the shift reduce parser attained a higher classification accuracy by using
a custom cost function that directly optimized the critical measure of
classification performance, the micro-F1 score. This was also observed
in Research Question 4, when the reranking approach out-performed the
sentence and essay parsing models by directly optimizing the micro-F1

score for each essay. Furthermore, the algorithm’s overall design allowed
it to better balance recall and precision, thus optimizing the micro-F1

score

• Utilize the problem’s structure. For structured prediction problems,
models that can make use of the problem’s structure will generally out-
perform more general purpose algorithms. In Research Question 2, I
attempted to use the optimal word tagging model to label words with
causal relations. However, the parsing model attained a higher overall
performance by solving a more general problem - determining whether a
causal relation exists between any two concept codes. By re-framing the
problem to make better use of its structure, the parser model was able to
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generalize more e↵ectively to new data. In Research Question 4, I also
tried to extend the sentence parsing model from Research Question 2 to
parse whole essays. Similarly, the reranking approach achieved a higher
overall classification accuracy by optimizing the overall micro-F1 score
of each essay, rather than trying to learn to make a sequence of locally
optimal parsing decisions.

• Transfer learning between models is e↵ective only if both mod-
els were trained on related datasets. In Research Question 1, GloVe
vectors [88, 168] trained on Wikipedia, which includes scientific content,
enabled the RNN model to achieve a higher classification accuracy. How-
ever, in Research Question 3, two state-of-the-art pre-trained coreference
resolution models achieved a very low classification accuracy when used
to resolve coreferences in the essay data. Unlike the GloVe vectors, the
Stanford and Berkeley Coreference Resolution Systems were trained on
a very di↵erent dataset with little semantic overlap to the scientific es-
say text. This prevented the models from generalizing e↵ectively on the
essay text.

• When stacking models, use the base model’s confidence esti-
mates. Although the stacking approach evaluated in Research Ques-
tion 2 was not the most accurate method for detecting causal relations,
features computed from the base model’s predicted probabilities were
amongst the top features evaluated on the skin cancer dataset. Simi-
larly, for the reranking model studied in Research Question 4, the top
features for both datasets were the sentence parser’s probability esti-
mates for each parsed causal relation. When stacking machine learning
models, better results are usually obtained when the confidence as well
as the predictions of the base-models are used as the features [221, 198].

• When stacking models, errors propagate upwards. With the ex-
ception of the first research question, the models developed to solve each
subsequent problem built upon the predictions of the previous models.
When building a pipeline of models in this manner, errors from the
earlier models tend to propagate to the downstream models [200]. For
example, the performance of the causal-relation parsing models was very
dependent on the accuracy of the word tagging models at detecting con-
cept codes. Overall the techniques studied in Research Questions 3 and
4 (the coreference resolution model, the essay parser and the reranking
algorithm), were the least e↵ective at solving their respective problems.
These models were also furthest removed from the original data, being
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reliant on predictions from the word tagging and causal relation extrac-
tion models. An end-to-end model, capable of learning to solve all of
these sub-problems in one combined approach may mitigate these issues
and produce a more accurate solution to the problem.

8.3 Future Work

There are a number of limitations to this work that could be addressed in future
research. One limitations is the overall system design. Designing the system
as a pipeline of models, where the predictions from each step in the pipeline
are fed into the models used in later steps, has led to errors propagating
through the pipeline, from the earlier models to the models used in the final
pipeline steps. This is one reason why the techniques used to address Research
Questions 3 and 4 were less e↵ective than the models applied to the earlier
Research Questions. Deep learning models have been developed than can
solve many di↵erent problems using the same neural network architecture, for
example the work of Collobert et al [39] who trained a single model capable
of solving a variety of NLP tasks, including named entity recognition and
semantic role labeling. It is possible that a system could be designed which
could solve all 4 research questions using a single model. In some cases, multi-
task learning can help a machine learning system generalize better to new data
points due to transfer learning between tasks, as found in [39].

In chapter 4, for Research Question 1 we saw how the GloVe word em-
beddings improved the performance of the RNN model at the word tagging
task. However, a limitation of word embedding models is that they learn a sin-
gle representation for each word, regardless of how many di↵erent word senses
(meanings) that word has. Recently, deep language models have been devel-
oped that can learn contextualized word embeddings, embeddings for words
that are adjusted based on the context in which the word appears. These
models have been to used to improve the state-of-the-art performance of a
number of neural models on a variety of NLP tasks, such as question answer-
ing, sentiment analysis and coreference resolution [52, 171, 249]. In each of
these systems, a pre-trained deep language model was incorporated into a deep
neural network, and then fine-tuned on some other task. Use of a pre-trained
deep-language model could improve how well the word tagging model gener-
alizes on new data points, provided it was trained on a semantically related
dataset. This would also improve the accuracy of the models reliant on its
predictions, those used to solve research questions 2, 3 and 4. Furthermore,
it might reduce the number of labeled essays needed to attain high classifica-
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tion accuracy, by utilizing transfer learning to allow the model to learn more
e�ciently on new data points.

The results of the statistical testing indicate that in most cases that it
is hard to determine which of the algorithms studied was the most e↵ective at
a particular task. With only two datasets evaluated, it is hard to determine
how well these techniques will generalize to other sets of scientific essays, or
to other domains where causal relations could be extracted. Replicating this
work using other datasets, especially datasets in domains other than scientific
essays, would more e↵ectively help determine the most accurate technique for
solving each of these problems. This would also help us to better understand
how well these techniques generalize to other topics, other types of essays and
other problem domains, such as extracting di↵erent types of binary relations
between concepts.

Additionally, one question that this work fails to answer is how well
these techniques would perform at detecting causal relations in general, with-
out being limited to only detecting the causal relations present in a pre-defined
causal model. A number of techniques have been developed in discourse pars-
ing that look for general occurrences of causal relations in natural language
discourse (see Section 3.2). Future research could investigate methods of ex-
tending these techniques to detect models that are capable of detecting any
type of causal relation, in texts from many di↵erent domains.

One final criticism of this work is that the models used to solve Re-
search Question 2 don’t accurately detect the rarer causal relations in the two
datasets. Techniques exist for enabling machine learning models to learn more
e↵ectively when only a few labels are present. One area of research, called
few-shot learning, develops techniques that are able to learn e↵ectively from
only a small number of examples of each label [238]. An extreme variant,
called one-shot learning, studies models that can learn e↵ectively given only a
single example of each training label [66]. Utilizing techniques from few-shot
or even one-shot learning could enable the causal-relation parsing models to
detect the rare causal relations with a higher level of accuracy. Making use of
transfer learning, for example using a deep-language model as part of a neural
parsing model, could also help improve the classification accuracy on the rarer
causal relations.
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[75] Salvador Garćıa, Alberto Fernández, Julián Luengo, and Francisco Her-
rera. A study of statistical techniques and performance measures for

208



genetics-based machine learning: accuracy and interpretability. Soft
Computing, 13(10):959, 2009.

[76] Stuart Geman and Mark Johnson. Dynamic programming for parsing
and estimation of stochastic unification-based grammars. In Proceedings
of the 40th Annual Meeting on Association for Computational Linguis-
tics, pages 279–286. Association for Computational Linguistics, 2002.

[77] Richard J Gerrig and Gail McKoon. The readiness is all: The functional-
ity of memory-based text processing. Discourse Processes, 26(2-3):67–86,
1998.

[78] C Lee Giles. Special issue on dynamic recurrent neural networks. IEEE,
1994.

[79] R. Girju and D. Moldovan. Mining answers for causation questions. In
Proc. The AAAI Spring Symposium on Mining Answers from Texts and
Knowledge Bases, 2002.

[80] R. Girju, P. Nakov, V. Nastase, S. Szpakowicz, P. Turney, and D. Yuret.
Semeval-2007 task 04: Classification of semantic relations between nom-
inals. In Proceedings of the 4th International Workshop on Semantic
Evaluations, page 13–18, 2007.

[81] Claudio Giuliano, Alberto Lavelli, and Lorenza Romano. Exploiting
shallow linguistic information for relation extraction from biomedical
literature. In EACL, volume 18, pages 401–408. Citeseer, 2006.

[82] Shantanu Godbole and Sunita Sarawagi. Discriminative methods for
multi-labeled classification. In Advances in Knowledge Discovery and
Data Mining, pages 22–30. Springer, 2004.

[83] Yoav Goldberg and Michael Elhadad. An e�cient algorithm for easy-first
non-directional dependency parsing. In Human Language Technologies:
The 2010 Annual Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 742–750. Association for
Computational Linguistics, 2010.

[84] Yoav Goldberg and Joakim Nivre. A dynamic oracle for arc-eager de-
pendency parsing. Proceedings of COLING 2012, pages 959–976, 2012.

[85] Alan Graves, Abdel-rahman Mohamed, and Geo↵rey Hinton. Speech
recognition with deep recurrent neural networks. In Acoustics, Speech

209



and Signal Processing (ICASSP), 2013 IEEE International Conference
on, pages 6645–6649. IEEE, 2013.

[86] Alex Graves et al. Supervised sequence labelling with recurrent neural
networks, volume 385. Springer, 2012.

[87] Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami,
Horst Bunke, and Jürgen Schmidhuber. A novel connectionist system for
unconstrained handwriting recognition. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 31(5):855–868, 2009.

[88] Stanford University NLP Group. Pre-trained GloVe Word Embedding
Vectors. http://nlp.stanford.edu/data/glove.6B.zip, 2017. [On-
line; accessed 25-March-2017].

[89] The Berkeley NLP Group. Berkeley Entity Resolution System. http:
//nlp.cs.berkeley.edu/projects/entity.shtml, 2018 (last accessed
December 8th, 2018). [Online; accessed 8-December-2018].

[90] The Stanford Natural Language Processing Group. Stanford Corefer-
ence Resolution System. https://stanfordnlp.github.io/CoreNLP/
coref.html, 2018 (last accessed December 8th, 2018). [Online; accessed
8-December-2018].
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Appendix A

Essay Prompts

The essay prompts below were created by researchers from the Northern Illinois
University Department of Psychology.

A.1 Coral Bleaching

One purpose of reading in science is to understand the causes of scientific phe-
nomena; in other words, we read to understand how and why things happen.
To do this, we often need to gather information from multiple sources.

Today you will be reading about what causes “coral bleach-
ing”. Coral, which lives in the ocean, can be many di↵erent colors,
but sometimes it loses its color and turns white. You will have to piece
together important information across multiple sources to construct a good
explanation of how and why this happens. No single source will provide all
of the important parts of the explanation. Instead, you are the one making
connections across sources and coming up with an explanation.

Your task is to read the following set of sources to help you
understand and explain what leads to di↵erences in the rates of coral
bleaching.

While reading, it is important to show your thinking by mak-
ing notes in the margins or on the texts.

You will be asked to answer questions and use specific infor-
mation from the sources to support your ideas and conclusions.

You can read the sources in any order you wish, but you should read
the sheet called “Background: What is ‘Coral Bleaching?’” first, because it
gives general information on the topic.
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A.2 Skin Cancer

One purpose of reading in science is to understand the causes of scientific phe-
nomena; in other words, we read to understand how and why things happen.
To do this, we often need to gather information from multiple sources.

Today you will be reading about what causes some people to
experience abnormal cell growth like skin cancer. You will have to
piece together important information across multiple sources to construct a
good explanation of how and why this happens. No single source will provide
all of the important pieces of the explanation. Instead, you are the one making
connections across sources and coming up with an explanation.

Your task is to read the following set of sources to help you
understand and explain what leads to di↵erences in the risk of de-
veloping skin cancer.

While reading, it is important to show your thinking by mak-
ing notes in the margins or on the texts.

You will be asked to answer questions and use specific infor-
mation from the sources to support your ideas and conclusions.

You can read the sources in any order you wish, but you should read
the sheet called “Background: Skin Damage” first, because it gives general
information on the topic.
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Appendix B

Example Source Documents

The sample source documents below were taken from a set of source texts
compiled for the essay writing task, to help the students answer the two essay
prompts listed in appendix A. They were created by researchers from the
Northern Illinois University Department of Psychology after the initial causal
models were decided upon.

B.1 Coral Bleaching

B.1.1 Background: What is “Coral Bleaching?”

Marine biologists have discovered many di↵erent types of corals living in the
oceans. These invertebrate animals live together in colonies and tend to stay
in one place. The di↵erent types of algae living within the coral polyps give
the corals their varying colors (see Figure B.1).

Figure B.1: A healthy coral
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Some coral have been “bleached” a plain white. Coral bleaching is a
phenomenon in which coral loses its color. Events leading to coral bleaching
are a serious problem with a serious impact on the world’s coral reefs.

As can be seen in Figure B.2, coral bleaching is most noticeable in the
Pacific Ocean. This ocean covers about 1/3 of the surface of the entire globe,
and contains double the amount of water found in the Atlantic Ocean.

Figure B.2: This map of the Pacific Ocean shows coastal regions most af-
fected by coral bleaching (darker areas near land masses).
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B.1.2 Coral Bleaching Reports per Year

Figure B.3: Coral Bleaching Reports Per Year

B.2 Skin Cancer

B.2.1 Background: Skin Damage

It may surprise you to learn that the skin on our bodies is our largest organ (see
Figure B.4). It covers every region of our bodies in order to protect our inner
tissue from infection and loss of water. In addition, our skin helps regulate our
body temperature. Although we take our skin for granted, there are several
ways for things to go wrong with our skin.

Figure B.4: A section of healthy skin
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There are numerous skin disorders, conditions, and diseases. Of these,
skin cancer is among the most feared because everyone is at some risk of
developing skin cancer, but some people are at a higher risk than others. Ad-
ditionally, skin cancer is the most common form of cancer in the United States
(Figure B.5 shows a patch of skin cancer). Skin cancer is the uncontrolled
growth of abnormal skin cells. The variety of skin cancer that develops de-
pends on the type of skin cell that reproduces irregularly.

Figure B.5: The dark patch to the right of this person’s eye is caused by a
basal cell carcinoma.

There are three main varieties of skin cancer: basal cell carcinoma,
squamous cell carcinoma, and malignant melanoma. Together, basal and squa-
mous cell carcinomas make up approximately 95 percent of skin cancers. Ma-
lignant melanoma only occurs in approximately 5 percent of skin cancer cases.
However, malignant melanoma is responsible for the most deaths from skin
cancer. Checking your skin for suspicious changes can help with detecting
skin cancer at its earliest stages. Early detection of skin cancer gives you the
maximum chance for successful treatment.

B.2.2 Latitude and Direct Sunlight

A common way to locate points on the surface of the earth is by geographic
coordinates (see Figure B.6).
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Figure B.6: Important lines of latitude

These geographic coordinates are called latitude and longitude. Lat-
itude and Longitude are measured in degrees and represent distances from
the center of the Earth. We can imagine the Earth as a sphere, with an axis
around which it spins. The ends of this axis are the North and South Poles.
The Equator is an imaginary line around the Earth at 0 degrees latitude. Lat-
itude values indicate the distance between the Equator and points north or
south of it. Depending on location, amount of direct sunlight may vary a lot
or a little throughout the year. As a rule of thumb, the closer you are to the
Equator, the more consistent direct sunlight will be. This means people closer
to the equator need to be more aware of the dangers of direct sunlight.Those
who live in areas with less direct sunlight may be less concerned about any
dangers, although there are still some risks associated with sun exposure wher-
ever you live and at any time of year. Some locations are more likely to have
moderate to extreme levels of year-round direct sunlight. Examples of this
include the Northern third of Australia and the Southern parts of the United
States. The most year-round direct sunlight occurs between the Tropics of
Cancer (23°N) and Capricorn (23°S). Due to the amount of direct sunlight in
these areas, the amount of UVb radiation is also high. Generally speaking,
the more direct sunlight there is, the more UVb radiation there is.
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Appendix C

Essay Scoring and Inter-Rater
Reliability Procedure

Three individuals were trained as coders for the pre and post EBA essay data.
Coders were trained on materials for each topic (coral bleaching or skin can-
cer) using annotated versions of the five documents, causal models indicating
numberings associated with concepts in the models, and spreadsheets of ideal
answers and vague answers. Two individuals were trained on only one topic,
and a third coder was trained on both. The single topic coders were respon-
sible for scoring every essay on their topic, whereas the double topic coder
was responsible for scoring 20% of the essays for each topic. Thus, two coders
scored 20% of the essays, and one coder scored the remaining 80

Training on the scoring process began with a meeting to discuss the
causal models, the scoring structure, and the numberings associated with each
concept code. All three coders were given practice essays from a previous
round of data collection using the same science topics and tasks. Cohen’s
Kappa was used to establish inter-rater reliability. To do this, the 13 concept
codes in the coral bleaching model and the 9 concept codes in the skin cancer
model were displayed vertically in a spreadsheet for each participant’s essay.
The cells in the adjacent columns were filled with 1s and 0s depending on
whether a given concept code was included in that coder’s compiled claim. A
Kappa score was calculated based on these sets of 1s and 0s. The Kappa scores
for the three rounds of training were .76, .84, and .94 for the coral bleaching
essays and .90, .93, and .97 for the skin cancer essays.

Following this, the two single topic coders began scoring sets of essays
with each set consisting of about 1/6th of the total set of essays. After each
set of essays was scored, the double topic coder randomly selected 20score.
Kappa scores were calculated for each round of essays, and disagreements
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were reconciled through discussion. This allowed for consistency in scoring
throughout the essay scoring time frame. The Kappa scores for the coral
bleaching essay sets were .75, .89, .85, .86, .86, and .93. The Kappa scores for
the skin cancer essay sets were .64, .92, .88, .89, .85, and .93.
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Appendix D

Example Essays

D.1 Coral Bleaching

D.1.1 Example 1

The world’s temperatures are constantly changing. This is one reason coral
bleaching goes on the in the world. Another reason coral bleaching happens
is because of us humans. And because sometimes they can’t get what they
need to stay healthy. The first reason coral bleaching happens is because of
the tempatures that constantly change. The weather of course a↵ects water
temperature. When the water is too warm, the carbon dioxide decreases. Ac-
cording to “Coral & Photosynthesis” “Changes in the amount of CO2 threaten
the delicate balance required to keep corals healthy.” So if coral don’t get the
right amount, they could turn white. Second, us humans are good at destroy-
ing many things and coral is one of them. “Examples of this include, blast
fishing and tourists who drop anchors or walk on reefs.” From this, I think that
with those things, the zooxantheallae are caused either crushed or scratched
o↵ from the coral. And the last cause of coral bleaching is not having the right
circumstances to keep them healthy. If they don’t have enough zooxanthallae,
then they turn white. They loose them because they might get stressed. I be-
lieve this happens because of weather changes. Now that I have learned what
coral bleaching is, I believe it happens because of the temperatures, people,
and not getting enough of what they need.

D.1.2 Example 2

Coral bleaching can be caused by many things, they all have to do with some-
thing that happens to the symbiotic relationship they have with the zooxan-
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thellae. The reason for this is because of the fact that if something happens
to the zooxanthellae that causes them to basically throw out the food they
had, which the coral eat, then the coral starts to starving and looses its color.
Since the zooxanthellae alos gives the coral its color. This leads to the “look”
of coral bleaching which gives it it’s name. In reality it has nothing to do
with bleach like you’d think it would it’s just nameed like that because of,
again, the “look.” The rates are kind of di↵erent/inconsistent every year. The
highest report though was in 1998 for more than 70 reports. The reates aren’t
really specific, at least not to me, so I infer that the rates of coral bleaching
happening are risning since in the text it clearly states that coral bleaching
happens because a disturbance in the environment caused the zooxanthellae
to be ejected from the coral. With that being said we know how bad weather
condtions invasive we’re become when it comes to animals and their habitats.
That’s why I infer that the di↵erences in the rates of coral bleaching are in-
creasing due to environment changes in the coral’s habitats that are primarily
caused by us humans.

D.1.3 Example 3

There are many things that lead to di↵erences in the rates of coral bleaching.
One of them is how things change and threatens the corals health. For ex-
ample; in the article coral & photosynthesis it says, “As water temperature
increases, the amount of carbon dioxide (CO2) in water decreases. Changes
in the amount of Co2 threaten the delicate balance required to keep corals
healthy.” Meaning that they need a specific amount, and if it changes, the
corals won’t be healthy. What is coral bleaching? Coral bleaching is a phe-
nomenon in which coral loses its color. Coral bleaching can lead to serious
impact on the world’s coral reefs. The # of countries reporting coral coral
bleaching every year goes up down, up down, up down throughout the years.
Not until 1998 were about 73 or 74 countries reported coral bleaching. On the
article coral and zooxanthallae it says, “For example, a massive coral bleaching
event in 1998 is considered one of the worst ever observed. This event resulted
in the death of 16% of the worlds coral reefs” Meaning that all of the years
before they had trouble but not as bad as the one in that year. In conclusion,
there are many things that leads to di↵erences in the rates of coral bleaching
most of it is the environmental change, which can cause stress to corals.
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D.2 Skin Cancer

D.2.1 Example 1

What leads into the risk of developing skin cancer is di↵erent ways such as re-
ally bad sunburn, being exposed to some kind of dangerous radiation, or some-
thing that goes wrong in our skin. As stated in the text, there are three kinds
of skin cancer, basal Cell carcinoma, squamous cell carcinoma, and malignant
melanoma. The most hamrful type of skin ancer is malignant melanoma. It
has caused the most deaths. Lets talk about how sun burn is a big way to
get skin cancer. When sunburn happens, blood gets directed from your body
to the sunburnt skin to try and repair it. The damaged cells will get replaced
with healthy ones. When sunburn is red, it is the blood flow trying to repair
the skin. If you have severe enough sunburn, it is called sun poising, which
can lead to infection, shock, or even death. So, if you have severe sunburn that
does not heal, you will have many dead skin cells which is not healthy. After
looking at this evidence, I think skin cancer is caused by really bad sunburn
which causes skin cells to die and something going wrong inside skin cells. We
may never know exactly how or why but looking at evidence it looks like those
are a part of the cause.

D.2.2 Example 2

Skin cancer is most likely the cancer that is in the back of everyones mind,
yet its the most common form of cancer in the United States. With there
being three main varieties of skin cancer, basal cell carcinoma, squamous cell
carcinoma, and malignant melanoma, it can be pretty easy to develop skin
cancer. Two major ways you can develop skin cancer is sunburn and basically
where you live. Sunburn can cause skin cancer because it happens when you
are just out in the sun to long and that means you are damaging skin cells, so
your body needs to replace it which is additional blood flow, hense the skin
turning red. However if a sunburn is severe enough it is less likely that the
damaged cells will be removed which causes the cancer. Where you live can
cause skin cancer because the closer you are to the equator the greater risk
you have. That is due to the strength of the uvb radiation, because the more
sunlight you receive the stronger it gets. The risks of exposure are increased
greatly. Overall the di↵erence with skin cancer is that you can’t really help it,
it can happen naturally, the only thing that can control it is the sun and you
can’t control that.
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D.2.3 Example 3

You can get skin cancer from excessive UVb exposure. You can also get skin
cancer if you have certain skin disorders.
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Appendix E

Word Tagging Performance By
Algorithm and Code

E.1 Coral Bleaching

Table E.1: Test Data Metrics for the Window-Based Tagger on the Coral
Bleaching Dataset

Code F1 Recall Precision

1 0.826 0.796 0.858
2 0.740 0.687 0.802
3 0.827 0.781 0.879
4 0.832 0.819 0.845
5 0.449 0.311 0.805
5b 0.030 0.023 0.045
6 0.836 0.802 0.873
7 0.838 0.760 0.934
11 0.899 0.877 0.923
12 0.863 0.780 0.966
13 0.734 0.692 0.781
14 0.748 0.744 0.753
50 0.904 0.880 0.929

Micro 0.842 0.802 0.885
Macro 0.740 0.689 0.800
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Table E.2: Test Data Metrics for the CRF on the Coral Bleaching Dataset

Code F1 Recall Precision

1 0.836 0.801 0.876
2 0.762 0.741 0.784
3 0.820 0.774 0.871
4 0.793 0.792 0.795
5 0.319 0.208 0.688
5b 0.000 0.000 0.000
6 0.834 0.779 0.896
7 0.826 0.739 0.936
11 0.927 0.931 0.922
12 0.863 0.780 0.966
13 0.729 0.679 0.787
14 0.700 0.684 0.718
50 0.900 0.884 0.917

Micro 0.835 0.797 0.878
Macro 0.725 0.676 0.781

Table E.3: Test Data Metrics for the HMM on the Coral Bleaching Dataset

Code F1 Recall Precision

1 0.784 0.852 0.726
2 0.441 0.844 0.299
3 0.733 0.728 0.738
4 0.708 0.765 0.658
5 0.152 0.245 0.111
5b 0.073 0.295 0.042
6 0.821 0.784 0.861
7 0.731 0.653 0.830
11 0.869 0.912 0.830
12 0.698 0.807 0.615
13 0.702 0.794 0.630
14 0.715 0.877 0.603
50 0.871 0.864 0.878

Micro 0.747 0.799 0.702
Macro 0.657 0.725 0.602
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Table E.4: Test Data Metrics for the Structured Perceptron on the Coral
Bleaching Dataset

Code F1 Recall Precision

1 0.839 0.819 0.860
2 0.783 0.735 0.837
3 0.808 0.751 0.876
4 0.827 0.825 0.828
5 0.446 0.330 0.686
5b 0.031 0.023 0.050
6 0.836 0.802 0.873
7 0.820 0.725 0.943
11 0.893 0.882 0.905
12 0.882 0.826 0.947
13 0.717 0.654 0.792
14 0.731 0.734 0.727
50 0.901 0.871 0.934

Micro 0.837 0.794 0.884
Macro 0.737 0.691 0.789
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Table E.5: Test Data Metrics for the Bidirectional RNN on the Coral Bleach-
ing Dataset

Code F1 Recall Precision

1 0.819 0.859 0.781
2 0.712 0.673 0.756
3 0.827 0.774 0.889
4 0.845 0.889 0.806
5 0.587 0.670 0.522
5b 0.308 0.273 0.353
6 0.833 0.784 0.888
7 0.840 0.765 0.931
11 0.909 0.902 0.915
12 0.939 0.917 0.962
13 0.753 0.740 0.766
14 0.687 0.677 0.697
50 0.908 0.903 0.912

Micro 0.842 0.830 0.855
Macro 0.769 0.756 0.783
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E.2 Skin Cancer

Table E.6: Test Data Metrics for the Window-Based Tagger on the Skin
Cancer Dataset

Code F1 Recall Precision

1 0.826 0.789 0.867
2 0.852 0.844 0.861
3 0.835 0.818 0.852
4 0.733 0.679 0.797
5 0.852 0.834 0.870
6 0.679 0.552 0.880
11 0.621 0.485 0.865
12 0.529 0.409 0.750
50 0.836 0.825 0.847

Micro 0.814 0.779 0.853
Macro 0.761 0.693 0.843

Table E.7: Test Data Metrics for the CRF on the Skin Cancer Dataset

Code F1 Recall Precision

1 0.801 0.742 0.871
2 0.835 0.843 0.826
3 0.792 0.770 0.814
4 0.731 0.667 0.809
5 0.851 0.825 0.879
6 0.706 0.587 0.886
11 0.660 0.530 0.875
12 0.529 0.409 0.750
50 0.831 0.792 0.873

Micro 0.804 0.759 0.855
Macro 0.756 0.685 0.843
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Table E.8: Test Data Metrics for the HMM on the Skin Cancer Dataset

Code F1 Recall Precision

1 0.712 0.799 0.642
2 0.745 0.778 0.715
3 0.725 0.844 0.635
4 0.529 0.586 0.481
5 0.802 0.816 0.788
6 0.580 0.698 0.495
11 0.607 0.561 0.661
12 0.403 0.341 0.492
50 0.641 0.677 0.609

Micro 0.675 0.731 0.628
Macro 0.644 0.678 0.613

Table E.9: Test Data Metrics for the Structured Perceptron on the Skin
Cancer Dataset

Code F1 Recall Precision

1 0.813 0.759 0.876
2 0.846 0.837 0.856
3 0.828 0.806 0.850
4 0.730 0.662 0.813
5 0.854 0.846 0.864
6 0.673 0.544 0.883
11 0.604 0.485 0.800
12 0.557 0.443 0.750
50 0.845 0.825 0.866

Micro 0.814 0.773 0.860
Macro 0.757 0.690 0.840
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Table E.10: Test Data Metrics for the Bidirectional RNN on the Skin Cancer
Dataset

Code F1 Recall Precision

1 0.853 0.821 0.888
2 0.853 0.857 0.850
3 0.836 0.787 0.892
4 0.750 0.688 0.824
5 0.862 0.847 0.877
6 0.751 0.684 0.832
11 0.667 0.515 0.944
12 0.472 0.341 0.769
50 0.870 0.861 0.880

Micro 0.837 0.807 0.869
Macro 0.779 0.711 0.862
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Appendix F

Causal Relation Performance by
Relation and Frequency

F.1 Coral Bleaching

Causal
Relation

% Words % Sents. Bidirectional
RNN

Stacked
Classifier

Shift-Reduce
Parser

1→2 0.696 1.048 0.840 0.667 0.840
1→3 1.753 2.595 0.651 0.591 0.682
1→4 0.053 0.078 0.000 0.000 0.000
1→5 0.044 0.059 0.000 0.000 0.500
1→6 0.004 0.010 0.000 0.000 0.000
1→7 0.046 0.069 0.000 0.000 0.333
1→11 0.008 0.010 0.000 0.000 0.000
1→13 0.021 0.020 0.000 0.000 0.000
1→14 0.017 0.029 0.000 0.000 0.000
1→50 2.570 4.261 0.809 0.788 0.822
2→1 0.006 0.010 0.000 0.000 0.000
2→3 0.413 0.500 0.583 0.640 0.615
2→6 0.013 0.010 0.000 0.000 0.000
2→50 0.071 0.078 0.000 0.000 0.750
3→1 0.114 0.186 0.000 0.000 0.500
3→2 0.011 0.010 0.000 0.000 0.000
3→4 0.942 1.577 0.852 0.923 0.868
3→5 0.936 1.254 0.769 0.683 0.744
3→5b 0.029 0.029 0.000 0.000 0.000
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Causal
Relation

% Words % Sents. Bidirectional
RNN

Stacked
Classifier

Shift-Reduce
Parser

3→6 0.098 0.147 0.667 0.000 0.000
3→7 0.178 0.235 0.500 0.333 0.500
3→13 0.024 0.039 0.000 0.000 0.000
3→14 0.050 0.059 0.000 0.000 0.000
3→50 2.480 3.839 0.591 0.752 0.774
4→3 0.013 0.020 0.000 0.000 0.000
4→5 0.574 0.803 0.722 0.778 0.739
4→5b 0.170 0.186 0.000 0.000 0.000
4→6 0.007 0.010 0.000 0.000 0.000
4→7 0.057 0.078 0.000 0.000 0.500
4→11 0.008 0.010 0.000 0.000 0.000
4→13 0.005 0.010 0.000 0.000 0.000
4→14 0.720 0.872 0.600 0.824 0.842
4→50 0.769 1.009 0.514 0.615 0.600
5→3 0.008 0.020 0.000 0.000 0.000
5→4 0.007 0.010 0.000 0.000 0.000
5→5b 0.296 0.372 0.286 0.000 0.286
5b→5 0.033 0.039 0.000 0.000 0.000
5→7 0.088 0.157 0.000 0.000 0.800
5b→7 0.066 0.088 0.000 0.000 0.000
5→11 0.005 0.010 0.000 0.000 0.000
5→13 0.007 0.010 0.000 0.000 0.000
5→14 0.013 0.029 0.000 0.000 0.000
5b→14 0.013 0.020 0.000 0.000 0.000
5→50 0.357 0.568 0.667 0.308 0.667
5b→50 0.267 0.353 0.000 0.000 0.250
6→5 0.007 0.010 0.000 0.000 1.000
6→5b 0.004 0.010 0.000 0.000 0.000
6→7 1.165 1.518 0.844 0.863 0.894
6→14 0.410 0.548 0.333 0.444 0.519
6→50 0.484 0.735 0.455 0.737 0.750
7→1 0.014 0.010 0.000 0.000 0.000
7→4 0.011 0.010 0.000 0.000 0.000
7→5 0.007 0.010 0.000 0.000 0.000
7→5b 0.029 0.039 0.000 0.000 0.000
7→13 0.007 0.010 0.000 0.000 0.000
7→14 0.033 0.049 0.000 0.000 0.000
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Causal
Relation

% Words % Sents. Bidirectional
RNN

Stacked
Classifier

Shift-Reduce
Parser

7→50 3.318 4.780 0.798 0.788 0.783
11→3 0.027 0.059 0.000 0.000 0.000
11→4 0.014 0.020 0.000 0.000 0.500
11→6 0.017 0.029 0.000 0.000 0.000
11→11 0.001 0.010 0.000 0.000 0.000
11→12 0.527 0.862 0.778 0.778 0.824
11→13 0.724 1.058 0.595 0.737 0.791
11→14 0.104 0.186 0.400 0.000 0.545
11→50 0.404 0.715 0.522 0.720 0.750
12→5b 0.005 0.010 0.000 0.000 0.000
12→7 0.020 0.029 0.000 0.000 0.000
12→11 0.008 0.010 0.000 0.000 0.000
12→13 0.641 0.823 0.696 0.957 0.870
12→14 0.038 0.049 0.000 0.000 1.000
12→50 0.060 0.069 1.000 0.000 0.000
13→4 0.007 0.010 0.000 0.000 0.000
13→5 0.005 0.010 0.000 0.000 0.000
13→6 0.028 0.029 0.000 0.000 1.000
13→7 0.023 0.039 0.000 0.000 0.000
13→11 0.021 0.039 0.000 0.000 0.000
13→12 0.017 0.029 0.000 0.000 0.000
13→14 0.633 0.930 0.700 0.923 0.880
13→50 0.659 0.970 0.421 0.483 0.522
14→6 0.005 0.010 0.000 0.000 0.000
14→7 0.026 0.029 0.000 0.000 0.000
14→50 0.612 0.578 0.471 0.533 0.545
50→1 0.018 0.029 0.000 0.000 0.000
50→3 0.008 0.020 0.000 0.000 0.000
50→7 0.041 0.078 0.000 0.000 0.000
50→50 0.011 0.029 0.000 0.000 0.000

Table F.1: Causal Relation Classification Accuracy (micro-F1 score) by Al-
gorithm, Relation and Frequency

250



F.2 Skin Cancer

Causal
Relation

% Words % Sents. Bidirectional
RNN

Stacked
Classifier

Shift-Reduce
Parser

1→2 3.774 6.043 0.842 0.812 0.855
1→3 0.567 0.764 0.812 0.692 0.800
1→4 0.030 0.039 0.000 0.000 0.000
1→5 0.192 0.264 0.667 0.000 0.000
1→50 3.372 5.338 0.747 0.725 0.815
2→1 0.011 0.020 0.000 0.000 0.000
2→2 0.013 0.020 0.000 0.000 0.000
2→3 1.355 2.723 0.804 0.757 0.785
2→4 0.444 0.774 0.500 0.533 0.267
2→5 0.610 1.077 0.605 0.333 0.357
2→6 0.028 0.029 0.000 0.000 0.000
2→11 0.004 0.010 0.000 0.000 0.000
2→50 3.982 6.396 0.818 0.701 0.769
3→2 0.011 0.020 0.000 0.000 0.000
3→4 1.393 2.302 0.835 0.867 0.909
3→5 0.206 0.411 0.444 0.400 0.400
3→6 0.207 0.284 0.500 0.444 0.500
3→11 0.007 0.010 0.000 0.000 0.000
3→50 2.232 3.820 0.746 0.742 0.753
4→4 0.009 0.020 0.000 0.000 0.000
4→5 1.268 2.439 0.881 0.792 0.845
4→6 0.340 0.539 0.222 0.000 0.000
4→11 0.004 0.010 0.000 0.000 0.000
4→12 0.004 0.010 0.000 0.000 0.000
4→50 0.602 0.979 0.529 0.231 0.412
5→4 0.288 0.656 0.372 0.000 0.400
5→5 0.038 0.069 0.000 0.000 0.000
5→6 3.194 5.260 0.878 0.881 0.867
5→12 0.007 0.010 0.000 0.000 0.000
5→50 5.313 9.158 0.852 0.843 0.847
6→3 0.003 0.010 0.000 0.000 0.000
6→4 0.013 0.020 0.000 0.000 0.000
6→5 0.050 0.078 0.000 0.000 0.500
6→50 2.240 4.192 0.912 0.876 0.876
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Causal
Relation

% Words % Sents. Bidirectional
RNN

Stacked
Classifier

Shift-Reduce
Parser

11→3 0.093 0.127 0.000 0.000 0.000
11→4 0.009 0.010 0.000 0.000 0.000
11→5 0.029 0.049 0.000 0.000 0.000
11→12 0.687 1.704 0.808 0.809 0.800
11→50 0.421 0.617 0.667 0.632 0.571
12→2 0.071 0.176 0.400 0.000 0.000
12→3 0.950 2.840 0.825 0.774 0.840
12→4 0.008 0.020 0.000 0.000 0.000
12→5 0.017 0.049 0.000 0.000 0.000
12→12 0.003 0.010 0.000 0.000 0.000
12→50 0.097 0.186 0.250 0.000 0.286
50→2 0.028 0.039 0.000 0.000 0.000
50→3 0.014 0.020 0.000 0.000 0.000
50→4 0.007 0.010 0.000 0.000 0.000
50→5 0.008 0.020 0.000 0.000 0.000

Table F.2: Causal Relation Classification Accuracy (micro-F1 score) by Al-
gorithm, Relation and Frequency
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Appendix G

The Shift-Reduce Dependency
Parser Algorithm

A shift-reduce parser is an e�cient approach to table-driven bottom-up parsing
that is used to parse formal languages such as programming languages, in
addition to its use in natural language parsing. Parsers operate on an input
stream of tokens, transforming them into a parse tree. In the case of natural-
language parsers, the input stream usually consists of a sequence of words
forming a sentence. Shift-reduce parsers construct the parse tree incrementally,
bottom-up and left to right without backtracking, by making a combination of
shift and reduce steps, while manipulating a stack. The stack represents the
current state of the parser at any step in the current parse, and can hold one
or more partially complete parse trees that are eventually combined into one
final parse tree. The shift step advances the input stream by one token, and
creates a new single-node parse tree out of the shifted token and pushes it onto
the top of the stack. A reduce step then applies some grammar rule to some
of the parse trees in the stack, joining them together into a single tree with a
new root node. To parse a sentence, the parser applies shift and reduce steps
as needed until all of the input sequence has been consumed and all partial
parse trees on the stack have been combined into a single parse tree.

In the following Appendix, I describe the implementation details of the
causal relation parsing model, which adapts a shift-reduce dependency parser
to the task of parsing causal relations between pre-identified concept codes.
The parser itself uses a modified arc-eager transition system, the SEARN
algorithm to train the parser, and a dynamic oracle to evaluate parse states not
observed directly in the training data. The shift-reduce dependency parsing
algorithm is described in detail in the following sections.
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G.1 The Arc-Eager Transition System

Natural language dependency parsers are typically transition-based parsers.
This means that they are defined in terms of a transition system - an abstract
state machine that consists of a set of rules governing how the system transi-
tions from one state to another. A number of di↵erent transition systems have
been developed to adapt shift-reduce parsing to the task of natural-language
dependency parsing, including Nivre’s arc standard and arc-eager systems
[154, 155]. The arc-eager system was adapted for this model because it makes
a number of improvements over the arc-standard system. In the arc-standard
transition system, a dependency arc can only be created between two nodes if
the dependent node has all of its dependents, which means it is often necessary
to delay attaching some right-dependents. In contrast, the arc-eager system
adds an arc as soon as possible, allowing it more flexibility to build parts of
the dependency tree in a top-down fashion [155].

The traditional arc-eager system can be defined as follows, based on
the description in [155]. The arc-eager transition system constructs a labeled
dependency tree D = (W,A), where W is a string of words W = wi . . . wn, A
is a set of arcs (wi, wj)(wi, wj 2 W ) and wi precedes wj in the string W (i.e.
i < j). If word wi is currently at the top of the stack, and word wj is the
next token in the input stream, then the parser chooses between four di↵erent
transitions to process the next token:

1. The Left-Arc transition creates an arc wj ! wi from the next input
token wj to the token at the top of the stack wi, and pops this token o↵
the top of the stack.

2. The Right-Arc transition creates an arc wi ! wj from the token wi at
the top of the stack to the next input token wj, and pushes wj on to the
top of the stack.

3. The Reduce transition pops the stack, removing the top token wi.

4. The Shift transition pushes the next input token wi on to the top of the
stack.
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G.2 The Modified Arc-Eager Transition Sys-
tem

In a traditional dependency parser, the parser operates on a sequence of words
and turns them into a dependency tree. However, when parsing causal rela-
tions we have a sequence of concept codes, each of which can span multiple
words. In addition, not all of the codes will always be linked into a single tree
structure as some causal relations may not be connected to the others, and
some concept codes do not form part of a causal relation. In order to adapt
the arc-eager system to parse causal relations, two modifications were made
to the standard arc-eager transition system. First, the parser operates only
on a sequence of concept codes; if multiple words are assigned to one concept
code, it will be represented as a single token in the input. Second, to ignore
codes that do not form part of a causal relation, a fifth Skip transition was
created. The Skip transition discards the current input token wj and advances
the input by one token. Note that now W now represents the sequence of
concept codes in the sentence, and not the set of words.

More formally, a parser configuration can be represented by the triple
hS, I, Ai, where S is the stack, I is the list of remaining input tokens, and A

is the current set of arc relations for the dependency tree. Starting with an
input string W , the parser is initialized with an empty stack - hnil,W, ;i, and
terminates when it reaches a configuration hS, nil, Ai (for any list S and set
of arcs A), when all of the input has been consumed. The arc-eager system
then be defined by the states and transitions given in figure G.1. The first two
lines in the figure represent initialization and termination states, while the
remaining four lines represent the four di↵erent transition states mentioned
above. The! symbols in the digram represent the transition from one parser
configuration on the left to the configuration to the right of the arrow. The
expressions to the right of the first three transitions represent the necessary
conditions that need to first be satisfied for that transition to take place.
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Figure G.1: Arc-Eager Transition System, from [155]

Initialization hnil,W, ;i
Termination hS, nil, Ai
Left-Arc hwi|S,wj|I, Ai ! hS,wj|I, A [ {(wj, wi)}i ¬9wk(wk, wi) 2 A

Right-Arc hwi|S,wj|I, Ai ! hwj|wi|S, I, A [ {(wi, wj)}i ¬9wk(wk, wj) 2 A

Reduce hwi|S, I, Ai ! hS, I, Ai 9wj(wj, wi) 2 A

Shift hS,wi|I, Ai ! hwi|S, I, Ai

In order to adapt the arc-eager system to parse causal relations, two
modifications were made to the standard arc-eager transition system. First,
the parser operates only on a sequence of concept codes; if multiple words are
assigned to one concept code, it will be represented as a single token in the
input. Second, to ignore codes that do not form part of a causal relation,
a fifth Skip transition was created. The Skip transition discards the current
input token wj and advances the input by one token. This gives the modified
transition system in figure G.2.

Figure G.2: Modified Arc-Eager Transition System for Parsing Causal Relations

Initialization hnil,W, ;i
Termination hS, nil, Ai
Left-Arc hwi|S,wj|I, Ai ! hS,wj|I, A [ {(wj, wi)}i ¬9wk(wk, wi) 2 A

Right-Arc hwi|S,wj|I, Ai ! hwj|wi|S, I, A [ {(wi, wj)}i ¬9wk(wk, wj) 2 A

Reduce hwi|S, I, Ai ! hS, I, Ai 9wj(wj, wi) 2 A

Shift hS,wi|I, Ai ! hwi|S, I, Ai
Skip hS,wj|I, Ai ! hS, I, Ai

One assumption of dependency parsers is that all of the dependencies
are projective [155], i.e. the arcs between the nodes don’t cross one another.
Traditional dependency parsers cannot therefore parse non-projective depen-
dencies, and this will also be a limitation of the causal relation parser. Section
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G.4 of this Appendix will illustrate how the parser attempts to parse a pair of
non-projective dependencies.

G.3 The Dynamic Oracle

To train a dependency parser, an oracle is used to derive optimal transition
sequences from gold parse trees. These transition sequences can then be used
to train a machine learning classifier to approximate the oracle at parsing time
[84]. In traditional natural language parsing, there can be multiple gold parse
trees for a given sentence. However, in these 2 datasets there is only one golden
parse for any given sentence because this represents the set of causal relations
for that sentence.

Initial work on training dependency parsers focused on static oracles
that produce a single canonical sequence of transitions based on a golden
parse tree. Often when parsing sentences not present in the training data, the
parser makes mistakes or sub-optimal decisions that leads it to deviate from
the golden parse. The parser subsequently encounters configurations that are
not present in the training data generated by a static oracle. In some of these
configurations, the golden parse is no longer reachable. The static oracle does
not provide training examples that can teach the model how to handle these
configurations or recover from earlier errors. It would then be preferable for the
parser to explore non-gold configurations at training time, and learn how best
to handle these situations. Another limitation of this approach is in handling
spurious ambiguity, where the same golden parse tree is can be potentially
produced by multiple derivation sequences. Some derivation sequences are
easier to learn than others, and the canonical sequence produced by a static
oracle may not be the easiest sequence for a supervised parsing model to learn
[84].

In 2012, Goldberg and Nivre presented the idea of a dynamic oracle
to address the limitations of a static oracle [84]. A dynamic oracle is capable
of determining the optimal parse decision provided any parser configuration,
including those that deviate from the golden parse tree. In configurations
where the golden tree is no longer accessible, the dynamic oracle returns the
parser derivation that produces the parse tree with the minimum loss when
compared to the golden tree. A dynamic oracle also permits all transitions that
can lead to the golden tree and does not force a single canonical derivation
sequence.

Designing a dynamic oracle for causal relation extraction is simpler
than designing one for dependency parsing; the optimal parsing decision is the

257



one that parses all remaining causal relations that exist between the concept
codes that remain in the input streamW and the stack S. The binary relations
in a dependency parse have a direction; they consist of a head word and its
dependents. Each word has exactly one single head word (or has the special
ROOT symbol as the head), but a head word can have multiple dependents.
For the causal relations, a causal concept can have multiple e↵ects, and an
e↵ect can have multiple causes. I am therefore unable to use the direction of
causality in place of the head-dependent relation because there is not always
a single cause or a single e↵ect for each concept code in a causal relation. To
address this problem, the parser is only responsible for determining when a
causal relation exists between 2 concept codes, and a separate binary classifier
then decides which code is the cause and which is the e↵ect.

I define the dynamic oracle in Algorithm G.1, where C is the set of
remaining causal relation tuples in the sentence (that aren’t currently in A),
S represents the stack, and wi and wj represent the top of the stack and the
next input token as before. A causal relation is defined as a tuple of two
concept codes (wi, wj) where (wi, wj 2 W ). The tokens returned (LEFT-
ARC, RIGHT-ARC, etc) represent the optimal parse decision to make given
the current parser configuration, which is dependent on wi,wj and S, and the
set of unparsed causal relations C. C is maintained by the oracle throughout
the parse, and updated as relations are parsed.

Algorithm G.1 works as follows. On lines 2 and 9 of the algorithm, the
oracle checks to see if there is a causal relation between the code at the top of
the stack wi and the next input token wj in C (i.e. that is not currently in A).
If there is, then the parser needs to create an arc between these two codes.
LEFT-ARC creates an arc between wi and wj and then discards wi, while
RIGHT-ARC creates an arc between wj and wi and pushes wj onto the stack
for use later (see Figure G.2). If there are no other causal relations including
wi (lines 4 and 11), then LEFT-ARC is invoked, and wi is discarded, otherwise
RIGHT-ARC is invoked, keeping wi and pushing wj onto the stack. In either
case, C is updated to remove the detected causal relation (lines 3 and 10), so
that it maintains the set of the unparsed relations. If there is no causal relation
between wi and wj but a causal relation does exist between wj and some other
token wk in the stack S (line 16), then the REDUCE command is invoked,
popping the stack so that other causal relations can be considered between
the items on the stack and wj. If one or more causal relations exist in C that
include wj (line 18), then SHIFT is invoked, pushing wj on to the stack for use
later. Finally, if line 18 is false (i.e. wj is not involved in any remaining causal
relations), the SKIP operation is invoked, discarding the token and advancing
the input.
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Algorithm G.1 The Dynamic Oracle Algorithm

1: function DynamicOracle(wi,wj,S,C)
2: if (wi, wj) 2 C then
3: C  C \ (wi, wj)
4: if ¬9wk(wk, wi) 2 C then
5: return LEFT-ARC
6: else
7: return RIGHT-ARC
8: end if
9: else if (wj, wi) 2 C then
10: C  C \ (wj, wi)
11: if ¬9wk(wk, wi) 2 C then
12: return LEFT-ARC
13: else
14: return RIGHT-ARC
15: end if
16: else if 9wk(wk, wj) 2 C ^ wk 2 S then
17: return REDUCE
18: else if 9wk(wk, wj) 2 C then
19: return SHIFT
20: else
21: return SKIP
22: end if
23: end function
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The dynamic oracle always makes the optimal parsing decision given
the parser’s current configuration and the set of unparsed causal relations. To
prove this, two conditions must be true:

1. The oracle must not make any parsing decisions that prevent any causal
relations from being parsed between concepts in the stack S and in the
remaining input stream W .

2. All remaining causal relations present in a sentence must be parsed.

For condition 1 to be true, the parser must never discard the token wi

at the top of the stack or the current input token wj if they form part of a
relation in C. From Figure G.2, the only parse decisions that discard wi are
LEFT-ARC and REDUCE. From lines 4 and 11 in Algorithm G.1, we see that
RIGHT-ARC will be invoked instead of LEFT-ARC if wi has a causal relation
with some other concept, and because of the preceding if clauses, REDUCE
will only be invoked if there is no relation between wi and wj, preventing this
token from being discarded incorrectly. However, it is possible that REDUCE
could be invoked when there is a causal relation between wi and some other
concept code in W , aside from wj. However, this only arises when wi forms
part of a non-projective relation, which is not handled correctly by our parser
as discussed in Section 5.4.3.1. How the parser handles non-projective relations
will be discussed in the next section. Finally, the only parsing decision that
discards the next input token wj without pushing it onto the stack is the
SKIP decision. This will only be invoked when no more relations exist in C

that include that concept code (see line 18). Therefore, provided all causal
relations are non-projective, the oracle will never discard concept codes that
form causal relations.

It is also clear that the oracle will always detect all projective relations,
satisfying condition 2. When the oracle encounters the first concept code in
a causal relation, it will be pushed onto the stack by the SHIFT operation
(due to line 18) if it does not form a relation with an existing item on the
stack. If it does form a relation with another item on the stack, that item
will be popped to the the top of the stack by the REDUCE action (lines 16
and 17) if it is not already at the top. Then wj will either be pushed on to
the stack by RIGHT-ARC, or by a LEFT-ARC followed by a SHIFT action.
All tokens pushed onto the stack will then eventually be parsed into a causal
relation with the other concept code in the relation when it becomes the next
input token wj. This is because of line 16, which invokes the REDUCE action,
popping the stack until the top of the stack token wi forms a causal relation
with wj by LEFT-ARC or RIGHT-ARC.
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G.4 The Parser and Oracle in Action

The example in Figure G.3 shows an example of a sentence containing 2 pro-
jective causal relations, and Table G.1 shows a trace of how the oracle and
shift-reduce parser parse this sentence. There are five concept codes in the
sentence, a, b, c, d and e, with two causal relations, one between a and b and
a second between d and e. The parser is initialized with a special token Root
on the stack. The oracle then invokes the SHIFT action pushing the a token
on top of the stack because it forms part of a causal relation but not with the
Root symbol. Then LEFT-ARC is invoked because wi = a and wj = b and no
other relations exist involving the a code (thus RIGHT-ARC is not invoked).
The new relation a→b is then added to the set of arcs A, and removed from
the set of remaining relations C. The oracle then invokes SKIP twice, discard-
ing the b and c codes because they are not involved in any remaining causal
relations. The oracle then invokes SHIFT to push d onto the top of the stack,
and then LEFT-ARC to form a relation with e. As before, the token d is
discarded by LEFT-ARC, and the new relation d→e is removed from C and
added to A. Finally SKIP discards the last remaining input token e. Note
that a second classifier is invoked after each arc is created to determine the
direction of causality, which in this case would invert the last relation to be
e→d.

Figure G.3: Parser Example - Projective Causal Relations
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Table G.1: Parser Trace for Projective Causal Relations Example

Step Action Stack (S) Input (W ) Arcs (A) Remaining Causal
Relations (C)

0 Root a|b|c|d|e a→b,d→e
1 SHIFT Root|a b|c|d|e a→b,d→e
2 LEFT-ARC Root b|c|d|e a→b d→e
3 SKIP Root c|d|e a→b d→e
4 SKIP Root d|e a→b d→e
5 SHIFT Root|d e a→b d→e
6 LEFT-ARC Root e a→b,d→e
7 SKIP Root a→b,d→e

A limitation of traditional dependency parsers is that they can only
parse projective dependencies [157]. If non-projective dependencies exist in
the sentence, some of them will fail to be parsed. Figure G.4 below shows
an example of a sentence containing two non-projective dependencies, while
Table G.2 shows the parser trace illustrating how the parser would attempt to
parser the sentence, failing to parse the second dependency arc: b→d.

Figure G.4: Parser Example - Non-Projective Causal Relations

262



Table G.2: Parser Trace for Non-Projective Causal Relations

Step Action Stack (S) Input (W ) Arcs (A) Remaining Causal
Relations (C)

0 Root a|b|c|d a→c,b→d
1 SHIFT Root|a b|c|d a→c,b→d
2 SHIFT Root|a|b c|d a→c,b→d
3 REDUCE Root|a c|d a→c,b→d
4 LEFT-ARC Root c|d a→c b→d
5 SKIP Root d a→c b→d
6 SHIFT Root|d a→c b→d

I have described how a dynamic oracle can produce the optimal parse
for any sentence containing non-projective causal relations. In the next section,
I will describe how such a parser can learn to imitate the dynamic oracle using
machine learning techniques.

G.5 Imitation Learning: Applying Reinforce-
ment Learning to Train a Shift-Reduce
Parser

As described in Section 3.4.8, reinforcement learning is a form of machine
learning where an agent learns by interacting with its environment, receiving
a reward or punishment for each action based on how the action impacted
its goals. Imitation learning then adapts reinforcement learning to solve su-
pervised learning problems. Reinforcement learning is a good fit for solving
structured learning problems because structured prediction usually involves
making a sequence of decisions before a final prediction is made. Usually the
loss associated with a particular decision is not known, only the loss associ-
ated with the final prediction, once it has been made. This results in a credit
assignment problem; it is not clear which of the decisions contributed most
to the success or failure of the final prediction. This is the exact problem
reinforcement learning attempts to solve.

SEARN is an imitation learning algorithm used to solve structured pre-
diction problems. SEARN tackles structured prediction by decomposing each
structured prediction problem into a sequence of cost-sensitive classification
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decisions, and then trains a set of cost-sensitive classification algorithms to
handle each of these decisions [43]. SEARN does not make use of a novel
machine learning algorithm, instead it can use any cost-sensitive classification
algorithm. For each decision made on the training data, a new cost-sensitive
classification example is created for each possible action that can be taken
from that decision. To create these examples, a cost function is required that
estimates the relative cost of making each possible decision. These examples
are then used to train the set of cost-sensitive classifiers before the next iter-
ation. SEARN and imitation learning are described in more detail in Section
3.4.8.

In order to address Research Question 2, the SEARN algorithm was
used to train the causal relation parser described in the previous sections. To
achieve this, a cost function was defined to compute the cost of invoking each
action from a particular parse state and was designed to estimate the impact on
the micro-F1 score of taking each action. Micro-precision and micro-recall are
computed by calculating the false positives, false negatives and true positives
for all classes across all data points, then the micro-F1 score is calculated as the
harmonic mean of the micro-precision and micro-recall (see Section 4.1). For a
parse action ai, the cost of the action, cost(ai), is defined as the increase in the
number of false positive and false negative causal relations that were parsed
when compared to the optimal action aopt supplied by the oracle. This reflects
the impact that action will have on reducing the final micro-F1 score. Given the
set Ropt of relations parsed following invocation of the optimal action aopt, and
the set Ri of relations parsed following invocation of action ai, then the increase
in false positives is the number of parsed relations that would otherwise not
have been parsed by following the optimal action: fp = |Ri \Ropt|. Similarly,
the increase in false negatives is the number of relations in the optimal parse
that were not parsed by following action ai: fn = |Ropt \Ri|. The cost for the
optimal action aopt is the number of true positives, which is defined as the size
of Ropt. This number is negative because this action has a negative associated
cost. Equation G.1 below describes the cost function in full.

cost(ai) =

(
� |Ri| , if ai = aopt

|Ri \Ropt|+ |Ropt \Ri| , otherwise
(G.1)

In this cost function, the costs are computed relative to the optimal
parse given the current parse state (as determined by the oracle) in place of
the golden parse from the training data labels. This is because in the middle
of a parse, a number of mistakes may have already been made that cannot be
corrected, and I do not want to include those mistakes when computing the
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costs. Instead I compute costs only relative to the optimal achievable parse
given the current parse state. The cost function was then used to create the
cost-sensitive training examples used to train the machine learning algorithm
for each iteration of SEARN. A logistic regression classifier from the LibLinear
package [65] package was chosen to train the SEARN models because it is
capable of cost-sensitive learning, robust to overfitting, and scales well. Using
Logistic Regression also enabled the use of the same model for feature selection
and model training because it scales well to datasets with large amounts of
features.
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