Why the Adult Brain Likes PLA

Catherine Marienau
DePaul University, cmariena@depaul.edu

Follow this and additional works at: https://via.library.depaul.edu/snl-cbe

Part of the Education Commons

Recommended Citation

This Article is brought to you for free and open access by the DePaul University School of Continuing and Professional Studies at Via Sapientiae. It has been accepted for inclusion in SCPS Competency-based Education Publications and Presentations by an authorized administrator of Via Sapientiae. For more information, please contact digitalservices@depaul.edu.
I would like to see learning get more headlines and show up more substantively in our rhetoric and practice—not just the learning that comes before PLA, but the learning that also derives from the PLA experience itself. We are all familiar with this tag line: “Credit is granted not for experience but for the learning derived and demonstrated from experience.” Based on my experience in the PLA world for more than 40 years—as a teacher, mentor, and assessor in programs that have benefitted from CAEL’s pioneering advocacy of PLA—I think we need to do more to showcase the fact that students often gain new learning from the process of PLA. I, therefore, propose an additional tag line—something like: “The experience, not the learning, is what’s prior in PLA. PLA leads to new learning.”

Which brings me to the title of this piece: Why the Adult Brain Likes PLA. Or, more explicitly: How PLA works with an adult learner’s brain, especially when it involves constructive, intentional guidance from an experienced educator or facilitator.

Imagine our stored experiences as an archeological site. Through painstaking excavations, archeologists find that radically different civilizations have lived here at different times. Before we can hope to understand those different civilizations, we must examine clues, such as bone
fragments, pottery shards, and cave drawings—all of which can then be pieced together using subsequent knowledge gained from various other digs, as well as the research of other archeologists, to create a meaningful interpretation of past events.

Consider what we educators ask adult learners to do when excavating learning from their deeply layered experience sites. Typically, we would instruct adult learners to, at minimum:

- dig around in their various sites of experience;
- identify and select clues that stand out for them (what they notice, what gets their attention);
- discern some themes or patterns among the clues;
- describe what they have learned about the earlier experiences now that they have constructed and examined these themes or patterns; and
- show evidence of this learning (usually some form of written work that clearly articulates the process of discovery, connection, and interpretation).

Many PLA programs also ask the learner to integrate relevant theories, concepts, or models; connect the learning to a specific statement of competence (competence-based) or outcomes of a given course (course-match); and/or anticipate how to apply this learning to future situations. Clearly, the notion that adults are “getting credit for life and work experience” is a gross oversimplification—and couldn’t be further from the truth of good practice. In any good PLA program, students are required to identify what they have learned through an intense process of analysis, reflection, and meaning-making (Wilbur, Marienau, & Fiddler, 2008).

To examine learning from experience from a more concrete (rather than analogical) brain perspective, let’s consider how learning is ultimately grounded in experience. To make sense of any experience (current or prior), the brain must associate any new stimuli with what it has already stored. But this storage (memory) is not a well-ordered filing cabinet of our experiences. Rather, memory is “a process that involves association and reconstruction of bits of electrochemical impulses encoded in myriad neural networks” (Taylor, Marienau, & Lamoreaux, 2015, np). The PLA process asks adult learners to sort through a web of such “memory traces,” find connections between them, and then figure out what to make of what has surfaced. Here’s the most telling point: brain scientists believe that every memory is reconstructed every time it is reactivated; the process of revisiting earlier experiences establishes new connections and interpretations.

To make the most of this process of new learning requires intention and reflection. Educators can help with intention by providing frameworks that guide the process of potential meaning an adult learner might actualize while “reconstructing” experience. Given that adults’ experiences prior to school typically aren’t designed with specific learning outcomes in mind, or according to the rules of disciplines or fields—rather, experiences occur from encounters with messy life situations—such frameworks can offer helpful direction to the learner in terms of what to reflect on when searching for college-level outcomes. To reiterate, one does not learn from experience per se; one learns from reflecting on experience. What was tacit becomes explicit.

Reflection is therefore essential to meaning-making. It takes the elements of an event, the ways in which the brain has categorized and associated those experiences with what it already feels and knows, and constructs a new understanding, perhaps leading to a new way of seeing or knowing. Thus, reflection is key to the brain’s capacity to learn—building or elaborating new knowledge (Taylor, et al, 2015, np).

Engaging in reflection is one aspect of how the brain works with regard to adults’ learning in the context of PLA. I share CAEL’s stance that optimal learning can occur through the PLA process. Knowing more explicitly how the brain actually learns helps us appreciate and optimize the new learning that gets affirmed, extended, and/or expanded in the PLA process through reflection on experience.
References

