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Abstract 

Voice over IP (VoIP) systems are gaining increased popularity due to the cost effectiveness, ease 

of management, and enhanced features and capabilities. Both enterprises and carriers are 

deploying VoIP systems to replace their TDM-based legacy voice networks. However, the lack 

of engineering models for VoIP systems has been realized by many researchers, especially for 

large-scale networks. The  purpose  of  traffic  engineering  is  to  minimize  call  blocking  

probability  and  maximize resource utilization.  The current traffic engineering models are 

inherited from the legacy PSTN world, and these models fall short from capturing the 

characteristics of new traffic patterns. The objective of this research is to develop a traffic 

engineering model for modern VoIP networks. We studied the traffic on a large-scale VoIP 

network and collected several billions of call information. Our analysis shows that the traditional 
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traffic engineering approach based on the Poisson call arrival process and exponential holding 

time fails to capture the modern telecommunication systems accurately.    We  developed  a  new  

framework  for  modeling  call  arrivals  as  a  non-homogeneous Poisson  process,  and we 

further enhanced the model by providing a Gaussian approximation for the cases of heavy traffic 

condition on large-scale networks.  In the second phase of the research, we followed a new time-

to-event survival analysis approach to model call holding time as a generalized gamma 

distribution and we introduced a Call Cease Rate function to model the call durations.  The 

modeling and statistical work of the Call Arrival model and the Call Holding Time model is 

constructed, verified and validated using hundreds of millions of real call information collected 

from an operational VoIP carrier network. The traffic data is a mixture of residential, business, 

and wireless traffic. Therefore, our proposed models can be applied to any modern 

telecommunication system. We also conducted sensitivity analysis of model parameters and 

performed statistical tests on the robustness of the models’ assumptions.   

  We implemented the models in a new simulation-based traffic engineering system 

called VoIP Traffic Engineering Simulator (VSIM). Advanced statistical and stochastic 

techniques were used in building VSIM system.  The core of VSIM is a simulation system that 

consists of two different simulation engines: the NHPP parametric simulation engine and the 

non-parametric simulation engine.  In addition, VSIM provides several subsystems for traffic 

data collection, processing, statistical modeling, model parameter estimation, graph generation, 

and traffic prediction. VSIM is capable of extracting traffic data from a live VoIP network, 

processing and storing the extracted information, and then feeding it into one of the simulation 

engines which in turn provides resource optimization and quality of service reports.   
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CHAPTER 1 

 

 

1    Introduction 
 

  The wide deployment of high-bandwidth, reliable, and cost-effective IP networks is 

pushing towards a major paradigm shift in the telecommunications world. The wired and 

wireless industries are heading towards an All-IP backbone for their future networks. According 

to Wikipedia [1], V  c   v   I        P    c    V IP)  s “a general term for a family of 

transmission technologies for delivery of voice communications over IP networks”  Acc          

a report from “US Business VoIP Overview: Optimization Trumps Expansion” [2] in January 

2010, 42% of US businesses at the end of 2009 had a VoIP solution in at least one business 

location. Furthermore, VoIP growth among US businesses will increase rapidly over the coming 

few years, reaching 79% by 2013. The same report predicts that the revenues of Broadband IP 

Telephony will continue to grow and will be more than double by 2013. In-Stat released a report 

in March 2010 that sheds light on the penetration of VoIP through the US government sector [3]. 

The report indicates that 48% of the government agencies under survey have VoIP solution 

deployed in at least one location. 

Telecommunication system traffic engineering, also known as “T      ff c            ”, 

is defined in Wikipedia [4]  s  h  “application of traffic engineering theory to 

telecommunications. Teletraffic engineers use their basic knowledge of statistics including 
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queuing theory, the nature of traffic, their practical models, their measurements and simulations 

to make predictions and plan for telecommunication networks at minimum total cost”  

Throughout this research, we will use the general term Traffic Engineering (TE) instead of 

Teletraffic Engineering to discuss traffic on PSTN, and VoIP networks. Traffic engineering 

provides the tradeoff between service and cost. Traffic engineering of the traditional circuit-

switched PSTN networks passed through many phases and reaches the maturity with 

mathematical models that could efficiently capture the parameters and behavior of the traditional 

telecom process.  

IP networks are packet-switched rather than circuit-switched. In order to transport voice 

conversations over IP networks, the voice stream must be broken down into transportable units 

which are then encapsulated into IP packets. The resources and characteristics of IP networks are 

different from these of circuit-switched networks. For example the major resource in a circuit-

switched network is the number of circuits (trunks). Each phone call is assigned to a separate 

circuit (trunk) for the duration of the call. This scheme does not provide the optimal utilization of 

resources since the circuit is reserved for the call regardless of whether or not voice is being 

exchanged on that circuit. The circuit switched scheme is easier to engineer since the resource 

requirements for each call can easily be calculated and allocated. Therefore, the resources 

required for a VoIP call are not clearly identified. We provide a deep analysis for VoIP resource 

requirements and provided a new metric that can be used to quantify the number of calls that can 

be carried on a VoIP network.  
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1.1    Motivation 

  It has been realized that the traditional traffic engineering models fall short from 

capturing the traffic characteristics on modern telecommunication networks. The popularity of IP 

telephony, the wide spread of wireless services, and the drop in phone call prices have 

significantly affected the phone usage and hence resulted in different traffic patterns.  Many 

other research studies and our traffic data show that the traditional traffic engineering approaches 

are inadequate for modern telecommunication systems.  

The most common traffic engineering model is the Erlang-B model. This model was 

developed in 1920 and was widely used to engineer PSTN networks. The Erlang-B model is 

based on Poisson call arrival process and negative exponential call holding time. It has been 

proven through many studies that the Poisson and exponential distributions cannot capture the 

characteristics of traffic on modern telecommunication systems. However, none of the previous 

studies examined the traffic on a large-scale VoIP system and provided a complete model that 

can be used to design such systems. In this research we use live traffic data to build and validate 

call arrival and call holding time models, and we plan to develop a complete traffic engineering 

model for such large VoIP networks. 

 

1.2    Scope  

  The scope of this research is limited to providing a traffic engineering model for 

performance analysis, traffic prediction and resource optimization of VoIP networks. The models 

of call arrival rate and call holding time can also be applied to any Internet-based telephony, such 
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as Skype.   We use Call Administration Control (CAC) to allow/reject incoming calls, and this is 

a common approach on the private enterprise and carrier networks.  The approach of CAC does 

not apply to Internet telephony for resource management; however, the call arrival rate and call 

holding time models will still be the same.  

 

1.3     Goals  

  The main goal of this research is to provide a modern traffic engineering model for large-

scale VoIP networks that enables us to conduct performance analysis, and resource optimization 

of VoIP systems under different load conditions. In order to do so, we need to study the 

characteristics of VoIP traffic, and develop new models that can fit the complex modern traffic 

patterns. After these models are developed, we need to provide simulation-based solution for the 

traffic problem.  

 

1.4    Contributions 

The major contributions of this research are summarized as follows: 

 Literature review of VoIP and PSTN traffic engineering models 

In this thesis we provide comprehensive literature review for PSTN, and VoIP systems 

and the traffic engineering and modeling work that has been done in this field.  In 

addition, we provide analyses of pros and cons of various approaches and modeling for 

VoIP networks. 
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 Applying a new traffic measure, Maximum Call Load for VoIP systems. 

We propose to use the max call load for VoIP networks as a comparable measure to 

network TDM trunks.  Therefore, traffic engineering models can be used to determine the 

call capacity of VoIP networks. The new Maximum Call Load metric can support the 

Call Admission Control (CAC) to accept or reject an incoming call request. 

 Using packet per second (pps) in addition to bit per second (bps) in determining 

network capacity (Maximum Call Load). 

The traditional calculation of the maximum number of calls is based on network 

bandwidth, and our experimental research shows that this approach fails to work on some 

routed networks with high speed links.  Our experiments show that packet throughput of 

network devices (pps) could be a constraint for VoIP traffic as well.  When doing traffic 

engineering for VoIP networks, network engineers should calculate not only the physical 

bandwidth of network interfaces but also the capacity (measured in pps) of network 

devices.   

 

 Framework for modeling call arrival rate as None Homogeneous Poisson Process 

(NHPP).  

Our study of hundreds of millions of call data showed that the traditional Poisson 

approach of modeling call arrival rate include high amount of approximation and errors 

because it depends on assuming a fixed call arrival rate over the engineering period. We 

propose to use a NHPP with a variable arrival rate. Furthermore, we present a framework 

for finding a function of time that accurately captures the call arrival rate. We present 

statistical and mathematical background and validation for our work.  
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 Normality (Gaussian) approximation of call arrival rate under heavy traffic 

condition 

We propose a new model for call arrival rate on VoIP tandem networks under heavy 

traffic conditions. Based on empirical evidence, such call arrival rate can be modeled as 

linear Gaussian processes instead of NHPP. We show that the Gaussian approach 

provides intuitive and accurate representation for the call arrival process. The Gaussian 

approximation allows finding explicit mathematical equations for the model parameters, 

and provides effective model validation and significance testing. Our work is validated 

by using hundreds of millions of call records collected from a large-scale VoIP network 

in the U.S. Our statistical analysis of a few data samples shows that the coefficient of 

determination, R
2
, for the proposed Gaussian model is 0.9973 which means that 99.73% 

of the variability in the data is explained by the proposed model. 

 

 Framework for using a survival-analysis approach to model call holding time. The 

approach introduces a “Call Cease Rate” function to model call holding time 

We present a new approach for modeling call holding time on VoIP networks.  Our study 

of hundreds of millions of call information shows that E      B      ’s exponential 

assumption is not valid for the modern VoIP networks. We propose a new approach 

based on time-to- v        ys s  W         c   h  c  c p   f “c    c  s       f  c    ” 

and find a mathematical model for this function based on the captured call data.   After 

studying several models, we found that both the log-logistic and the generalized gamma 

distributions provide a good fit for the data.  
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 Development of a parametric and non-parametric Traffic engineering simulation 

models for VoIP systems  

We provide a new VoIP simulation suite that consists of a parametric simulator based on 

Non-homogeneous Poisson Process (NHPP) call arrival model, and a non-parametric 

simulator based on real traffic data. Our simulators are validated against real call data 

obtained from multiple offices of a production VoIP carrier network. The simulation 

results show that our simulator can provide up to 28% better resource utilization than the 

legacy Erlang B model. Our simulator can also help carriers dynamically allocate 

network resources to meet various traffic demands. 

 

 

1.5    Publications 

Journal Articles 

 Imad Al Ajarmeh, James Yu and Mohamed Amezziane, "Modeling VoIP Traffic on 

Converged IP Networks with Dynamic Resource Allocation", INTERNATIONAL 

JOURNAL of COMMUNICATIONS, ISSN: 1998-4480, Issue 1, Volume 4, 2010, page 

47-55 

 James Yu and Imad Al Ajarmeh, "Design and Traffic Engineering of VoIP for 

Enterprise and Carrier Networks", International Journal On Advances in 

Telecommunications, vol. 1 no 1, year 2008 
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1.6    Thesis Outline     

    This Thesis is organized as follows: Chapter 2 contains a high-level description of VoIP 

networks and characteristics of VoIP traffic. The literature review and previous work is 
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presented in Chapter 3. Chapter 4 contains the research methodology and environment for data 

collection and analysis. Chapter 5 provides the detailed modeling results and analysis. Chapter 6 

presents VSIM design. Chapter 7 includes VSIM simulation details and analysis. And Chapter 8 

includes the conclusions and future work. 
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CHAPTER 2 

 

2    VoIP Networks 
 

In this chapter we present a study for VoIP traffic characteristics and analysis. Also we study 

different VoIP networks and their resource constraints. Based on the analysis of traffic and 

networks, we discuss the need of Call Administration Control (CAC) to ensure voice quality. 

 

2.1    VoIP Traffic 

  VoIP Systems create two types of messages on the IP networks:  (a) control traffic 

(signaling), and (b) bearer traffic (IP encapsulated voice payload). The control traffic is 

generated by the call setup and management protocols and is used to initiate, maintain, manage, 

and terminate connections between users. VoIP control traffic consumes little bandwidth and 

does not require to be included in the traffic engineering modeling.  The focus of our analysis is 

on the bearer traffic. 

 

  VoIP encapsulates digitized voice in IP packets.  The standard Pulse Code Modulation 

(PCM) uses 256 quantization level and 8,000 samples per seconds.  As a result, we have a 
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digitized voice channel of 64 kbps (DS0).  If we use 20ms sampling interval, each sample will 

be:  

64,000 bps × 20 ms = 1,280 bits = 160 bytes 

 

This digitized voice is then encapsulated in an RTP/UDP/IP packet as illustrated in Table 1 

 

Table 1. VoIP frame 

Layer-2 header IP header 

(20 Bytes) 

UDP header 

(8 bytes) 

RTP header 

(12 bytes) 

Payload 

(160 bytes) 

 

 

If the layer-2 is Ethernet, the 802.3 frame header, Frame Check Sequence (FCS), preamble, and 

Inter-Frame Gap (IFG) add additional 38 bytes.  If the layer-2 is Point-to-Point Protocol (PPP), 

its header and FCS are 7 bytes.  

PCM is the standard codec scheme for G.711, and it does not use any voice compression 

algorithm.  If a compression algorithm is used, the bandwidth for a voice channel is reduced to 8 

kbps for G.729A and 5.3-6.3 kbps for G.723.1. Some codec schemes employ a silence 

compression mechanism where the bit rate is significantly reduced if no voice activity is 

detected. Furthermore, look-ahead algorithms are used in order to anticipate the difference 

between the current frame and the next one. A summary of voice codec schemes is shown in 

Table 2.  
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Table 2. Vocoding and VoIP overhead 

 G.711 

(10 ms sampling 

interval) 

G.711 

(20 ms sampling 

interval)  

G.729A 

(20 ms sampling 

interval) 

G.723.1 

(30 ms sampling 

interval) 

Raw BW in bps 
1 

64,000 64,000 8,000 5,300 

VoIP Payload (bytes) 80 160 20 20 

VoIP overhead (802.3) 78 78 78 78 

VoIP overhead (PPP) 47 47 47 47 

BW in bps (802.3)
 1

 126,400 95,200 39,200 26,133 

BW in bps (PPP) 
2
 101,600 82,800 26,800 17,867 

 

 

 

 

2.2    VoIP Network Types 

VoIP traffic can be divided into five different categories based on users 

1. Residential: This is VoIP service for home users, and it is also referred to as Broadband 

phone. This service is enabled by the wide deployment of broadband Internet connections 

such as DSL or cable at homes as shown in Figure 1. Traffic generated by residential VoIP 

calls tends to peak during the evenings when people are back home. The Internet service 

provider subscribes a certain number of simultaneous SIP sessions (SIP trunk) to the VoIP 

provider (S1 in Figure 1).  The limiting resource in this network is the number of trunks  

(usually ISDN-PRI links) between the provider and the PSTN. 

                                                           
1
 The bandwidth (BW) is for one voice channel 

2
 Required Bandwidth including the overhead based on the codec packet sampling rate 
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Figure 1. Residential Internet-based VoIP 

 

 

2. Enterprise [intranet]: This is a VoIP network within the company intranet. Many 

companies deploy local VoIP solutions over their existing intranet aiming to reduce the cost 

of phone calls within the company. Such solution is more efficient for larger businesses with 

multiple locations especially if some of these locations are located outside the country. 

Traffic generated by such systems is easily predicted and tends to peak in the mornings. 

Figure 2 shows a basic Enterprise VoIP system. The limiting resource in this network is the 

WAN connections to the remote offices (W1, W2 and W3). The number of trunks to the 

PSTN (N1 and N2) could be another limiting resource for the traffic from and to PSTN.  
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Figure 2. Enterprise VoIP architecture 

 

3. Carrier-to-Enterprise Network (aka SIP Trunking service): This VoIP network 

provides business customers subscription for SIP trunk groups with a VoIP carrier or service 

provider. A typical business VoIP solution is illustrated in Figure 3.   The service provider 

owns and runs the VoIP system and network, and the business customer subscribes via trunk 

groups with a certain capacity. Traffic generated by such systems is easily predicted and 

tends to peak in the mornings of the business days. 
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Figure 3. SIP Trunking VoIP solution 

 

 The limiting resource in this configuration is the number of sessions in the SIP 

trunk (capacity of the trunk group, shown in Figure 3 as S1). If an enterprise subscribes 

too few trunks, the end-user would experience a high probability of blocking, for both 

incoming and outgoing calls.  If the enterprise subscribes too many trunks, many of them 

will not be used resulting in poor resource utilization and waste of money. 

 

4. Carrier Networks: Networks built to carry voice calls over IP networks. Usually, such 

networks are large and carry huge amount of traffic. Traffic on these networks tends to be a 
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mixture of business and residential, so it is harder to predict and needs more complex 

mathematical modeling. Many carrier networks provide Service Level Agreement (SLA) 

guarantees for the voice traffic and hence proper traffic engineering for these networks 

becomes very important and business-critical. Figure 4 shows a typical VoIP carrier 

network that spans multiple cities. 

 

 

Figure 4. VoIP carrier network 

 

Large-scale carrier networks have more than one limiting resource: (i) the WAN connections 

between the central offices (W1, W2, W3 and W4), (ii) the number of trunks to the PSTN, 

and  (iii) the capacity of the softswitch and VoIP Gateways. In this research, we focus on the 

WAN connections described in (i) which is considered the most important limiting resource 

of such VoIP network. 
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5. Call Centers: call centers are a special case of business users category with three major 

differences: (i) unlike regular business phone systems, call centers have automated attendant 

systems and waiting queues where calling customers can interact with the automated system 

and/or wait for the next available agent.  (ii) calls to call centers tend to be relatively longer. 

(iii) call centers usually operate even outside the business hours or days. The limiting 

resource on a call center system is the number of agents servicing customer calls. 

 

 

2.3    Call Admission Control (CAC) 

  The purpose of Call Admission Control (CAC) is to determine whether or not the 

network has sufficient resource to route an incoming call. In the circuit-switched networks the 

Call Admission Control algorithm is simply to check if there are circuits (or trunks) available 

between the origination switch and the termination switch. VoIP traffic is carried over packet-

switched networks, and the concept of circuits (trunks) is not applicable.  However, the need for 

Call Admission Control (CAC) for VoIP calls is the same. Packet switched networks, by nature, 

accept any packet regardless of voice or data packets. When the incoming traffic exceeds the 

network capacity, congestion occurs. Control mechanism is needed to address the issue of 

congestion by traffic shaping, queuing, buffering, and packet dropping. As a result of this 

procedure, packets could be delayed or dropped. Delay is usually not an issue for data-only 

applications. Packet loss can also be recovered by retransmission which is supported by many 

protocols such as TCP or TFTP.  However, retransmission would cause longer delay which is not 

acceptable to time-sensitive applications such as VoIP. For voice traffic, delay and packet loss 
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would degrade the voice quality, which is not acceptable to end-users.   ITU-T standards provide 

the following guideline for the voice quality measurement [6]. Table 3 shows a summary of ITU-

T guidelines for VoIP: 

Table 3. VoIP Quality Measurement 

Network  

Parameter  

 

Good Acceptable Poor 

Delay (ms)   0-150 150-300   > 300  

Jitter (ms)   0-20   20-50    > 50  

Packet Loss   0-0.5 %   0.5-1.5%   > 1.5%  

   

  The standard voice quality measurement is the Mean Opinion Score (MOS) where 

different voice samples are collected and played back to a group of people who rank the voice 

quality between 1 and 5 (1 is the worst and 5 is the best). An MOS of 4 or better is considered 

toll quality. The objective of Call Admission Control is to prevent network congestion so that all 

calls could achieve toll quality or better. 

 

Figure 5. Call Admission control for VoIP system 
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Figure 5 shows a simple CAC for a VoIP system. It should be noted that that CAC is 

different from Quality of Service (QoS) as frequently referenced in the literature.  The main 

difference is that QoS is a priority scheme to differentiate the traffic that is already on the 

network, while CAC is to police the traffic from coming to the network when the network is 

congested [7]. CAC for circuit-switched network is implemented in the Q.931 and SS7 signaling 

protocols. Q.931 is used to determine if there is a free B channel in the ISDN trunk and reserve 

that channel for an incoming call. SS7 signaling is to identify a free DS0 channel between central 

office switches and reserve that DS0 channel for an incoming call. Although VoIP is on a 

packet-switch network; however, voice communications still require end-to-end connections to 

guarantee the voice quality. There are many publications about ensuing voice quality over IP 

networks, and the general approach of Call Admission Control is to reject a VoIP call request if 

the network cannot ensure the voice quality. CAC mechanisms are classified as measurement-

based control and resource-based control.  

Measurement-based Control: For measurement-based control, monitoring and probing tools 

are required to gauge the network conditions and load status in order to determine whether to 

accept new calls or not [66].  A protocol, such as RSVP, is required to reserve the required 

bandwidth before a call is admitted into the network. 

Resource-based Control: In the case of resource-based control, resources are provisioned and 

dedicated for VoIP traffic.  

  Those two mechanisms are also referenced as link-utilization-based CAC and site-

utilization-based CAC [9]. Another reference of these two methods is measurement-based CAC 
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and parameter-based CAC [10]. In both CAC methods, voice quality of a new call and existing 

calls shall be assured after a call admission is granted. 

Traditional CAC approaches make their decision without taking into consideration of the priority 

of the requested service. It is difficult to use such CAC systems for networks that provide 

differentiated services with different priorities. For example a network may have voice, video, 

data, interactive data, and signaling traffic. Therefore, some recent researches focus on providing 

priority-based CAC algorithms in which service priority as well as requirements is taken into 

consideration. Bae et al (2009) [11] proposed an adoptive resource-based CAC algorithm for 

packet-switched IP-based mobile network. Whenever resources are needed to satisfy a service 

request, the CAC algorithm estimates the required number of Physical Resource Blocks (PRBs). 

Other factors are considered in determining the number of PRBs such as the service type, and 

modulation and coding scheme (MCS) level. The goal of this CAC is to guarantee QoS 

requirements for packet delay in the packet-switched network. Dandan et al (2007) [12] proposed 

another adoptive CAC algorithm for CDMA networks. The algorithm determines the required 

resources based on the service requirements and the priority of the traffic. 

 

 

 

2.4    VoIP Call Resources and Admission Control 

  It is common to calculate the resources needed for VoIP calls based on bandwidth 

requirements alone [9].  In this section we present a study for the VoIP call resource 

requirements in which we show that there are other resources that must be taken into 

consideration. Resource requirements studied in this research are model-independent. This 
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means these resources are the same whether traffic engineering is based on Erlang models or any 

other models.   For example, the Erlang-B model uses traffic intensity and Grade of Service 

(GoS) to determine the number of trunks in circuit-switched networks. VoIP, however, is carried 

over packet-switched networks, and network capacity is measured in bits per second instead of 

the number of trunks. We studied different network designs for VoIP, and proposed a Call 

Admission Control (CAC) scheme based on network capacity. We then proposed a new 

measurement scheme to translate network bandwidth into the maximum call load. With this new 

metric, resource requirements in traffic engineering models such as number of trunks in Erlang-B 

model become applicable to VoIP.  We conducted experiments to measure the maximum call 

loads based on various voice codec schemes including G.711, G.729A, and G.723.1.  Our results 

show that call capacity is most likely constrained by network devices rather than physical 

connections.  Therefore, we recommend considering both packet throughput (pps) and bit 

throughput (bps) in determining the max call load. If network capacity is constrained by packet 

throughput, then codec schemes would have almost no effect on the maximum call load. 

 

2.4.1  Empirical Results and Analysis 

  We emulated VoIP in the lab over different links. The expected results (theoretical limit) 

are calculated based on the overall bandwidth requirements for each codec shown in Table 2. 

Table 4 shows a summary of the theoretical maximum call load for different codec schemes on 

different links. 
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Table 4. Theoretical limit of VoIP call capacity (Max Call Load) 

Links G.711 

(20ms) 

G.711 

(10ms) 

G.729A 

(20ms) 

G.723.1 

(30ms) 

FD FT1 (768k) 9.3 7.6 28.7 43 

FD E1 (2.0M) 24.2 19.7 74.6 111.9 

FD 2×E1 (4.0M) 48.3 39.4 149.3 
1
 223.9 

1
 

10BaseT (HD) 52.5 39.6 127.6 
1
 191.3

1
  

10BaseT (FD) 105  255.1 382.7 

100BaseTX (FD) 1,050 791.1 2,551 3,827 

 

We compare the experimental results with the theoretical limits presented in Table 2 using the 

following metric: 

Utilization = experimental result ÷ theoretical limit 

 

This new metric is to measure the efficiency of a link for voice calls, and it is different from the 

traditional measure of data throughput and link utilization. 

 The first experiment is a VoIP traffic test over a full duplex 10/100BaseTX link. The key 

measurement is the maximum number of simultaneous calls with toll quality (max call load). 

When we tried to run this experiment over the 100BaseTX link, the CPU utilization of the Linux 

machine reached 98%.  Therefore, the experiment of 100M is considered not applicable for 

measuring the max call load. The second experiment is to test the VoIP traffic over a serial link 

with two routers; we configured the link speeds to 768Kbps, 2Mbps, and 4Mbps.  The third 

                                                           
1
 Note that a Full Duplex Serial link of 4.0M carries more calls than a half-duplex 10BaseT link because PPP has 

less overhead than Ethernet. 
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experiment is to emulate VoIP over three routers with 10BaseT link (half duplex).  During the 

experiment run, we also monitor the CPU utilization of traffic transmitter and receiver.  The 

CPU utilization on the transmission side is 40% for G.723.1 and G.729A and 20% for G.711.  

The utilization is much lower on the receiver side, less than 10% in all cases. The fourth 

experiment is to emulate VoIP over a routed full duplex 100BaseTX link.  In this experiment, we 

used a Linux-Based router on a Pentium 4 machine, and the CPU utilization for sender and 

receiver is less than 40% in all cases. A summary of the observed maximum call loads versus 

expected (theoretical) maximum call loads is shown in Figure 6. 

 

 

Figure 6. Call utilization for various links 

 

The observations from these experiments are summarized as follows: 

 We are able to achieve line speed performance (96% or better) using the max message size in 

all experiments.  This result confirms the validity of the measurement tool and the 

experiment process. 
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 The data shows close to 100% utilization on 10BaseT switched Ethernet.  It shows that we 

could achieve the max call load as calculated from the available bandwidth. 

 In the cases of routed networks, we observed close to 100% utilization only on low speed links, 

but poor utilization on high speed links.  It shows that the max call load cannot be achieved 

on the high speed links. 

 G.711 always yields better utilization than G.729A which is comparable to G.723.1.  It shows 

that the smaller size for a codec scheme would yield less utilization on the link.  This is an 

interesting result, and we will investigate further later. 

 Although G.729A and G.723.1 compress the voice payload by a factor of 8-10, their 

improvement to the max call load is less than 10% on high speed links. 

 When using larger packet sampling rates (from 10ms to 20ms), we notice significant increase 

in the Max Call Load. 

  In summary, the experimental results raise a question about how to measure max call 

loads for VoIP. Many other studies calculate the call load based on the bit throughput (bps), and 

our experiment shows that bps alone could not explain the results observed in the experiment as 

there is a large discrepancy between observed data and calculated data. 

 

2.4.2 Packet Throughput and Maximum Call Load 

  Our lab experiments show that in the case of low utilization, it always involves routers. 

This observation leads to the study of packet throughput (number of packets processed per 

second) of network devices.  The routers used in this experiment are Cisco 2610 and Cisco 2620.  

According to the product specifications, these routers are able to carry 1,500 packets per second 
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(pps).  If Cisco Express Forwarding (CEF) is enabled and the traffic pattern is applicable, the 

router could achieve 15,000 pps. Each VoIP call requires two connections (one in each direction) 

and this is the symmetric characteristic of VoIP traffic.  The way pps is calculated for router is 

that   each packet is counted twice as it goes through the incoming port and the outgoing port. If 

we use 20ms sampling interval and 64-byte frames, the calculated max call load of a router 

would be:  

15,000 pps  ÷ (1000 sec  ÷ 20 ms) ÷ 4 = 75 calls/sec 

And for 30ms sampling interval (G723.1) we have: 

15,000 ÷ (1000 ÷ 30) ÷ 4 = 112 calls/sec 

These numbers are consistent with all the experimental results of the routers.  In other words, the 

  x c          s b       by  h         “c p c  y”    h    h    h     k c p c  y  We also noticed 

that we were able to achieve maximum utilization on the physical links for the baseline tests 

(using MTU as the packet size). The inconsistency in utilization leads to the question about the 

root cause of difference between the baseline tests and emulated VoIP tests. To answer this 

question, we need to study the VoIP traffic characteristics explained in Section 2.1 and compare 

with the processing of packets by network devices. We find that VoIP uses small packet size to 

transfer calls. In order to achieve higher link utilization using small packet size, we need to send 

more packets per second. Pushing more small packets into the network would not cause 

congestion on the link itself; instead, the routers may not be able to process the demand and 

become the congesting point.  

 As an example, the frame size of G.729A is 98 bytes (or 784 bits, see Table 2). If we want 

to achieve full link utilization (10 Mbps) using G.729 codec, we need packet throughput of: 
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10,000,000 bps ÷ 2 ÷ 784 bit/packet = 6,377pps 

Since VoIP traffic is symmetric in both directions, we need the network to handle twice this 

amount. According to the product specification, each packet is counted twice as it goes through 

the router (coming and leaving). Therefore, the required packet throughput for the router is: 

6,377  2 2 =  25,508 pps 

Given that our router (Cisco-2600) is capable of processing 15,000 pps.  Because of this 

constraint, we observe a lower link utilization which is:   

15,000 ÷ 25,508 = 58.8% 

This calculated utilization is almost identical to our experimental results of 57% as presented in 

Figure 6 . This example of calculation is applicable to all the results we obtained in this research. 

I  p  v s     p      h    h           f c     b       ck)  s     h        ’s c p b    y    p  c ss 

packets rather than the network itself. Therefore, to provide sound traffic engineering for VoIP 

we need to consider pps as well as bps. 

 

2.5    Summary 

  We propose to use the max call load for VoIP networks as a comparable measure to 

network trunks.  With this modification, traffic engineering models can be used to determine the 

call capacity of VoIP networks.  Packet-switched networks, by nature, do not have the concept of 

blocking, and all incoming packets are accepted even if the new packets will cause congestion on 

the network which could result in delay and packet loss. In the case of VoIP, this will cause 



49 
 

quality degradation to the new calls as well as to the existing ones. The solution to this problem 

is to use a Call Admission Control (CAC) where call manager or softswitch can apply a traffic 

engineering model to implement a CAC algorithm to accept or reject an incoming call request. 

 The traditional calculation of the maximum number of calls is based on network 

bandwidth, and our experiments show that this approach fails to work on some routed networks 

with high speed links.  Our experiments show that packet throughput of network devices (pps) 

could be the constraint for VoIP traffic.  When doing traffic engineering for VoIP networks, 

network engineers should calculate not only the physical bandwidth of network interfaces but 

also the capacity (measured in pps) of network devices.  If the device capacity is the limiting 

factor, codec schemes would have no effect on the call capacity; instead, packet sampling 

interval could significantly change the maximum call load. 
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CHAPTER 3 

 

3    Literature Review of Traffic 

Models 
 

In this chapter we provide a review for the work that has been done in the traffic theory and traffic 

engineering for VoIP as well as PSTN.  

 

3.1    Telecommunication System Modeling 

 
  A telecom system can be viewed as a service center in which customers arrive at a 

service point, get serviced and then depart the system. Some systems have a single server others 

have multiple servers. Some systems allow customers to wait if they arrive while the server(s) is 

busy such as call centers. Other systems    ’  p  v      y w       sp c       ch   s   b  ck 

customers) such as regular residential or business phone systems. For the purpose of this study 

we assume the telecom system has multiple servers and no waiting queue is provided (blocking 

system). 

 According to this analogy, the system can be divided into three major components: the 

arrival process, the service time process, and the server(s). Analyzing such system involves 
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studying statistical queuing techniques based on theoretical distributions and simulations. In a 

basic telecommunication queuing system, theoretical distributions are used to describe the call 

arrival rate and the call holding time. Figure 7 shows a basic telecommunication system model. 

 

 

 

Call arrival rate and call holding time are not deterministic values. Therefore, the first step in 

analyzing telecom systems is to find the probabilistic models that best approximate these 

processes.  

  If simple models and relations are chosen to approximate the call arrival and call holing 

time distributions, we might be able to use mathematical methods to obtain equations that can be 

used to estimate the system parameters and this is called an analytical model or solution for the 

system. However, if complex models and relations are chosen, an analytical model for the 

Resource 

(Processing Unit) 

Source 

Offered 

Traffic 

Carried 

Traffic 

Queue/delayed 

Blocked traffic 
Retried 

Traffic 

Lost traffic 

Figure 7. Telecommunication system model 
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queuing system might not be feasible and in this case simulations are used to estimate the 

required parameters. Simulation systems utilize computers to evaluate a model and estimate 

parameters numerically. 

  Both analytical modeling and simulations have their own advantages and disadvantages. 

Analytical modeling yields mathematical formulas that can be used to estimate system 

parameters directly. However, it is not always possible to perform analytical modeling in order to 

obtain such formulas. Even if mathematical formulas are obtained, it is also important that these 

formulas can be computed efficiently. It should be noticed that the modeling process that yields 

simple analytical models usually involves a lot of approximations which might yield inaccurate 

results especially in systems with complex traffic patterns. Simulations can be easily modified 

and adapted to any system. Also simulation models require less approximation and could yield 

more accurate results in many cases. Furthermore, simulations can be tuned to achieve arbitrary 

accuracy for the estimated parameters. On the other hand, simulations might take a long time 

depending on the complexity of the system and the required accuracy [13]. Also simulation 

might suffer insufficient level of abstraction which limits the ability of a simulation model to 

explore only a limited portion of the system behavior and characteristics. It is desirable to study 

systems using analytical models whenever such models are available. 

 

3.1.1 Call Arrival Process 

  The goal of studying call arrival process is to determine the behavior and rate of calls 

arriving at the system. In other words we need to know that during the next t seconds k calls will 

arrive at the system with a probability of p(k,t). It is very common to model the call arrival rate 

using a Poisson distribution,   
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where  is the key parameter for the distribution, and it determines the shape and indicates the 

average number of events in the given time interval (rate). Equation (1) is known as Poisson 

Distribution and it is used to model the number of events within a given time interval. Any 

process that can be described by this distribution is called Poisson Process.  

  A Poisson Process has some interesting properties that make it attractive for modeling 

traffic arrival rate in telecommunication systems.  Below is a summary of the most important 

Poisson properties [15]: 

 If X1, X2, …            v    b  s   p  s        h       -occurrence times of a 

Poisson Process, then {Xn, n=1,2,…} are i.i.d (independent and identical 

distributed) and have exponential distribution. 

 Poisson distributions are additive: If two types of Poisson events occur 

independently of each other (say X1 and X2 having the parameter of 1  and 2  

respectively), then the probability that X1 occur before X2 is given by 
21
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 Poisson Processes are additive as well: let Y1(t) and Y2(t) be two Poisson 

processes with parameters 1  and 2  respectively and Y(t) = Y1(t) + Y2(t) for t ≥ 

0.  Hence, Y(t) is also a Poisson process and its probability P is given as: 
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 Relation between Poisson process and uniform distribution: let n Poisson events 

occur at times t1< t2< t3< … <tn in the interval [0, T], then the random variables 

t1, t2, …, tn have the same distribution as the nth-order statistics corresponding to 

the independent random variables U1, U2, …, Un, and they are uniformly 

distributed in the interval [0, T]. 

 

 

 

3.1.2 Call Holding Time 

  The second process that we must study is the service time (call holding time). Likewise, 

we need to be able to estimate the probability of an ongoing call leaving the system (call ends) 

during the next t seconds H(t). In traditional telecommunication systems call holding time is 

usually modeled using a negative exponential distribution: 

 /11)( tt eetH                 (2) 

where   is the call departure rate, and is computed as the reciprocal of the average call hold 

time (


 1 ). Equation (2) is known as the negative exponential distribution. This distribution 

describes the probability of the call remaining time rather than holding time. This is possible 

because both call holding time and call remaining time follow the same exponential distribution. 

Th s p  p   y  f  h   xp           s   b       s c      “memory-less p  p   y” [16] and it states 

that at any time (t), the  remaining time for the ongoing calls follow the same negative 

exponential distribution as the original one (with the same parameter  ) regardless of the 

amount of time each has spent on the system. This property can be proven mathematically as 

follows:  Let P(Zn) be a negative exponential process such that: 
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The probability of call termination after time t is given as: 
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(This is a negative exponential distribution)

 

 

3.2    Traffic Engineering Models 

  The traditional approach for telecommunication systems traffic engineering is based on 

the assumption that the call arrival rate conforms to a Poisson process and call holding time 

follows the negative exponential distribution. Conformance to a Poisson process means that call 

inter-arrival times are described by a negative exponential distribution. Traffic that follows these 

assumptions is said to be random. Traffic randomness means:  

 

1. Random call arrival: The arrival time of each call is independent of the arrival times 

of other calls. The inter arrival time follows a negative exponential distribution.   

2. Random call holding time: The call holding time of each call is independent from 

the holding times of other calls and follows a negative exponential distribution.    

 

3.2.1 Traffic Measurement  

  In circuit-switched networks, the limiting resource is the number of circuits which is also 

known as trunks (N). Traffic load on the network is measured by Traffic Intensity which is 

defined as:   
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Traffic Intensity (A) = Call Rate × Call Holding Time 

where call rate is the number of incoming calls during a certain period of time. Call Rate is 

randomly distributed and assumed to follow the Poisson distribution in the traditional models. 

Call Holding Time is the summation of (a) call duration which is the conversation time, (b) call 

initialization and setup (c) ringing time.  The measurement unit of Traffic Intensity is Erlang 

which is the traffic load of one circuit over one hour. For example if a circuit is observed for 30-

minute of use in a 60-minute interval, the traffic intensity is 30÷60=0.5 Erlang.  

 

 

3.2.2 Erlang-B model 

  The Erlang-B model [17] is the standard to model the network traffic of circuit-switched 

networks.  It is known as the blocked-calls-cleared model, where a blocked call is removed from 

the system (no waiting queue).  In this case, the user will receive an announcement of circuit 

busy. Notice that a busy announcement is not the same as busy signal, which is the case when the 

callee is already on the phone.  From the perspective of the Erlang-B model, not-answered-calls 

and busy calls are all considered successful calls. Traffic randomness is the primary assumption 

in the Erlang-B. In addition to the traffic randomness, the Erlang B model has the following two 

assumptions: 

1. Infinite number of sources (users): The model implies that a large number of users 

who could make a call through the network.  In practice, if the number of potential 

users is much larger than the number of trunks, this assumption is considered valid 
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2. Blocked calls are cleared: When a call is blocked due to insufficient resources 

(trunks), the user will get a recording or a fast busy tone.  The call request is 

discarded (cleared) by the network and the user must hang up.  

 

A mathematical formula for the Erlang-B model is derived as follows: 

Let A: be the random traffic load, N: the number of servers (trunks), k: index of the number of 

arriving calls (rate), and Pj: the probability that an arriving call finds j ongoing calls in the 

system (j ≤ N). Pj: can be expressed as: 
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 for j = 0,1,2,…,N              (1) 

 

The blocking probability is defined as the probability that an arriving call is blocked because all 

(N) trunks are busy. When all trunks are busy no further traffic can be carried by the system and 

the arriving traffic is blocked and cleared off the system. Blocking probability B(N,A) is given 

by: 

                       (   )  

  

  

∑
  

  
 
   

                                                                                                ( ) 

 

Equation (2) is known as E     ’s L ss            E     -B formula. This formula can be used 

even if the offered load is larger than the available servers basically because blocked calls will be 
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cleared off the system. Therefore, it is clear that the telecommunication systems might not carry 

the entire offered load. Recall that A is the offered Load, so the carried load is given as: 

 

         (   )  

And the lost load (blocked and cleared) is the difference between offered load and carried load 

and is given as: 

        (   ) 

Therefore, Grade of Service (GoS) can be written as: 

    
    

 
 

  Under Erlang-B assumptions, the blocking probability and the Grade of Service (GoS) 

are equal.  

The reason for a call being blocked on a typical circuit-switched network is that all trunks are 

busy. A GoS of 0.01 shows that there is 1% probability of getting a busy announcement. GoS is 

a critical factor for calculating the required number of trunks since it represents the trade-off 

between service and cost.  For a local telephone switch, if we set the number of trunks (to the 

tandem office) equal to the number of subscriber lines, then the switch would have GoS=0 

(100% non-blocking) regardless of the traffic load.   Of course, this is a hypothetical example as 

no carriers would have this engineering practice. Different subsystems might have different GoS 

values on the same telecommunication network. The overall GoS for the whole network is the 

highest GoS value of the subsystems. 

  In Erlang-B formula shown in (2) above, if traffic intensity A is small compared to the 

number of trunks N, then A/N is very small and the denominator in (2) reduces to   

      Therefore, equation (2) can be rewritten as:  
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Recall that that Traffic Intensity A = Call Rate × Call Holding Time  

Therefore, the above equation is the same as Poisson equation. In this case the traffic conforms 

to a Poisson distribution. If we take the limit when the number of trunks (N) approaches infinity, 

we get: 

      

  

  
        

Thus, if we have Poisson traffic and infinite number of trunks, the blocking probability tends to 

zero. 

  It should be noted that the assumptions of the Erlang-B model are transparent to the 

underlying networks regardless of whether it is a circuit-switched network carrying traditional 

phone calls, or a packet-switched network carrying VoIP calls. The standard practice is to take a 

conservative approach in measuring traffic intensity on the Busiest Hour of the Busiest 

Week/Season (BSBH) in a year. In other words, one should never engineer the network based on 

the average demand. Instead, it should be based on quasi-peak demand.  

 

 

3.2.3 Erlang-B model Extensions 

Extended Erlang-B model: Erlang-B model is based on the assumption that blocked calls are 

cleared from the system and it does not take retries into account.  Extended Erlang-B model, 

however, takes into consideration the probability that a blocked user will try again immediately. 

This probability depends on the Recall Factor (Rf) which is a new parameter that has been 

introduces to traffic model in the Extended Erlang-B model. The mathematical representation for 
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the Extended Erlang-B is based on using the original Erlang-B formula in an iterative manner. In 

each iteration, the number of retried calls is calculated based on the Recall Factor and the 

resulting number is added to the initial call load. This process is repeated until all call attempts 

are satisfied. For example, if the initial level of traffic is represented by A0 then we use Erlang-B 

model in the following manner:  

Find       (   )  and then calculate the probable number of blocked calls  : 

        and then we calculate the number of recalls R: 

           the new offered load is               

Now we return to the first step and keep iterating until we reach a stable value for    

 

Engest Traffic: Erlang-B formula was developed based on the assumption that the call arrival 

rate is independent of the number of calls in the system. Such assumption can be justified only if 

the number of users (subscribers) is much larger than the number of trunks (infinite number of 

sources (users)). In practice, this assumption might not hold all the time. There are cases when 

the number of subscribers is comparable to the number of trunks. In such cases the arrival rate 

depends on the number of calls in the system. This observation is explained as following: a user 

can be involved in one call at a time only, hence users who are already involved in calls cannot 

initiate new calls, and this means that the expected call arrival rate depends on the number of free 

users who might initiate new calls. Expected call arrival rate is inversely proportional to the 

number of busy users/trunks. In this case the traffic is known as Engest Traffic and the telecom 

model is based on finite population assumption. 
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  The blocking probability of a finite source system is less than that of an infinite source 

system, and the reason is because the arrival rate decreases as the number of busy users/trunks 

increases.  

Blocking probability    for Engast traffic is given as: 

 

Let       = call arrival rate per subscriber 

 k = number of busy users in the system 

 N = total number of subscribers 

 R = number of trunks 

   = mean call holding time 

   = mean call termination rate (
 

  
) 

   
  

 
 

      
  ( 

 
)

∑   ( 
 
) 

   

 

Where ( 
 
) is the binomial coefficient and is given as: 

 

(
 

 
)  

  

  (   ) 
 

Notice that the offered traffic (arrival rate) is a function of the number of busy users in the 

system. When we have k busy users only (N – k) users can generate calls at a rate of    per user. 

Therefore, the offered arrival rate     in case of k busy users can be expressed as: 

   (   )              
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The mean offered traffic C can be given as: 

 

  (    )   

where   is the average number of busy trunks. The offered traffic intensity A is: 

          (    ) 

The system will be in blocking state when all trunks (R) are busy, in other words when      

In this case the offered call rate is (   )    and all arrival calls are lost (blocked). The lost 

traffic can be expressed as: 

     (   )       

Unlike Erlang-B model, under Engest traffic assumptions, GoS is not equal to the blocking 

probability. GoS is given as: 

    
   

    
   

 

 

3.3   Other Research on Traffic Models 

  As indicated in Section 3.2.2, the Erlang-B model is based on the assumptions that call 

holding time follows a negative exponential distribution and call arrival rate follow a Poisson 

Process with a constant rate over a certain block of time. A separate queuing model will be 

provided for each of those time blocks. The exponential approximations are made in order to 

achieve relative simplicity in the corresponding mathematical and analytical models. Under 

exponential call inter-arrival assumption, the observed call arrival process consists of the sum of 

a large number of independent call arrivals. Therefore, we are dealing with memory-less 
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exponentially distributed events for call inter-arrival time and call holding time. The memory-

less property of the process is also referenced as Markov property which is essential for 

providing analytical solution to the queuing model. Hence, the telephone network is easily 

modeled as M/M/c/c queuing system and Erlang models can be used to study the performance of 

the telecommunication system and calculate the required resources. Exponential distribution is 

used for one-parameter approximation of the data. In the case of call holding time, the rate 

parameter for the exponential distribution is based on the mean of call holding times, and in case 

of call inter-arrival time the rate parameter is based on the mean inter-arrival times. On the other 

hand, the lognormal and Erlang distributions can be used for two-parameter approximations.  

Recently, there has been a growing interest in modeling more complex call arrival flows 

and holding times. This interest is driven by the attempts to solve problems associated with the 

inadequacy of the exponential assumptions. Such problems affect the design and performance of 

the system. As we mentioned in the previous section, finding explicit equations for systems with 

complex arrival flows might be very difficult. When the models used to capture call arrival 

process or call holding time lack the Markovian property, the analytical approach for 

performance evaluation is not feasible. Research in this field either tends towards simulations or 

towards analyzing the system under the condition of heavy traffic (many calls in the system) [23] 

and low traffic (the system is mostly idle) [24].   

 

 

 

3.3.1 Modeling Call Arrival Process  

  Erlang model assumes that call arrival occurs as a Poisson process, and it implies calls 

are generated independently by a large number of users [infinite number of user assumption]. In 
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addition, it is assumed that each user generates at most one call in a given period of time. 

Therefore, the arrival time of calls is uniformly distributed over that period and hence the call 

arrival rate is represented by a stationary Poisson process. In practice, the stationary Poisson 

assumption is often violated since call arrival rate is a function of time and not uniformly 

distributed over a long period of time. In addition, some users generate more than one call during 

a certain period of time. Therefore, the results obtained by stationary Poisson-based call arrival 

models are not accurate. In this section we will study the main approaches that have been 

proposed to replace the stationary Poisson call arrivals. 

 

3.3.1.1    Batch (Session) Based Call Arrivals 

It is common that calls arrive in bursts (batches) in which each call starts after the previous call 

ends. This case might be handled by assuming that bursts are of fixed size (x) and burst arrivals 

follow a Poisson process. In this case each burst of size x is treated by Erlang formula as a single 

call that occupies x lines for the period of the call holding time. Also one of the factors that 

v       E     ’s s        y P  ss    ss  p      s  he fact that many users generate multiple calls 

rather than one call during a given period of time. This effect can be minimized by introducing 

the concept of sessions. A session is defined as the sequence of calls generated by a certain user. 

The batch-based approach is similar to the session-based; however, calls arrive in batches 

regardless of the user generating the call.  Using session arrivals instead of call arrivals enables 

us to use Erlang models to engineer the network. 

In [18] Bonald proposed to model call arrival rate by using the concept of Poisson-based 

sessions rather than Poisson-based calls. Sessions are assumed to be independent from one 

another and each session contains a random finite number of calls and idle periods.  Bonald 
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based his work on the observation that although call arrival rate within each session follows a 

non-Poisson process, session arrival rate follows a Poisson process.  As a result, Erlang traffic 

formula can be used, or follows a permanent nature and hence Engest Formula can be used.  

  In [68] and [70] the authors studied call arrivals on an IP based network with resource 

reservation capabilities. They suggest a Batch Poisson call arrival process in which calls arrive in 

batches, and batches arrive randomly following a Poisson distribution. Batches may have 

different sizes. They proposed an application for the Bandwidth Reservation (BR) policy of the 

Erlang Multirate Loss Model (EMLM). The proposed model is named Batched Poisson EMLM 

under Bandwidth Reservation (BR) policy (BP-EMLM/BR). The model is based on partial batch 

blocking, i.e. a part of an arriving batch can be accepted while the rest of it is rejected depending 

on the available link bandwidth [69]. The authors proposed a recursive method to approximate 

the link utilization with two probability functions: Time Congestion (TC) probability and Call 

Congestion probability (CC). The authors also considered the case of finite population and 

Quasi-random traffic. In such case the Engset Multirate Loss Model (EnMLM) can be used 

instead of the EMLM model. 

  Session-based model have been used on systems other than IP networks. For example, 

Hess and Cohn [19] studied the voice traffic behavior in mobile radio systems. They followed a 

session-based approach and concluded that session inter-arrival time follows an exponential 

distribution. They suggested a model for peak load estimation and used Erlang-C formula to 

calculate the required resources for the network.  

The advantage of the session approach is that call arrivals within each session can have 

any arbitrary distribution. In addition, it provides more accurate results than the traditional 

Poisson call arrival approach. On the other hand, we still have to assume that sessions are 
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independent from each other and follow a Poisson process. Basically, if the number of users is 

relatively low, then the session arrival process depends on the number of on-going calls and 

therefore the Poisson session arrival assumption is violated.  

 

3.3.1.2    Traditional Stationary Poisson Arrival Rate 

This is the traditional approach used by Erlang-B model. Call arrivals are assumed to follow a 

Poisson distribution with fixed rate. We have covered this approach in more details in Section 

3.1.1. However, we mention it here since we still find some modern research that depends on this 

approach. Zvezdan et al. [20] provided a bandwidth calculation method for VoIP networks based 

on Poisson call arrival rate. Erlang-B and Extended Erlang-B models were used to calculate the 

required network resources. The authors are aware of the well-known limitations of Poisson 

approximation. Therefore, they based their calculations on the assumption that the Busy Hour 

Traffic (BHT) is approximately 17% of the whole traffic for that day.  The calculation method 

takes into consideration factors such as Voice Activity Detection, RTP header compression, and 

the used codec. The results of the proposed method are validated my Matlab simulation. 

Duncan et al. [28] investigated busy period voice traffic for a trunked mobile radio 

system. They used data aggregated of multiple talk group traffic. The analysis indicated that call 

inter-arrival time follows an exponential distribution and exhibit certain degree of long-range 

dependency. 

3.3.1.3    Erlang-jk  

Erlang-jk is sometimes considered to model call inter-arrival time distributions. It is composed of 

a mixture of two Erlang distributions with different proportions.  In [25], Barceló and Bueno 
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studied call inter-arrival time for mobile telecommunication networks, and they used two 

different methods to estimate call inter arrivals.  The first applies a filtering process and assumes 

that in the filtering process all and only calls that have been rejected are eliminated. Therefore, 

analyzing the inter-arrival time of the samples remaining after filtering, we get the coefficient of 

variation of the inter-arrival time to the system. The second proposed method for inter-arrival 

estimation is based on the delay probability estimation which is sensitive to call inter-arrival time 

[26]. Barceló and Bueno concluded that channel idle time is best modeled by an Erlang-jk 

distribution. The same model can be used to represent call inter-arrival time after filtering 

unsuccessful call attempts. This approach has the disadvantage that it does not accommodate for 

attempt calls and it ignores calls with short duration (bound of the filtering process).   

Call inter-arrival time for cellular networks was studied by Sánchez et. al [29]. They 

based their research on real traffic samples and concluded that call inter-arrival time is far from 

being exponential Also they concluded that call arrival rate cannot be represented by a Poisson 

process. Multiple models were examined, and the Kolmogorov-Smirnov (K-S) goodness of fit 

results indicate that call inter-arrival time is best modeled as Erlang-j-k with j=3.  

 

3.3.1.4    BCMP 

A BCMP network (named after the authors of the paper who first described this network) is a 

heterogeneous queuing network with multiple classes of customers having different distributions.  A 

product form of equilibrium distribution exists for the BCMP network. It is considered an extension 

to a Jackson network allowing several customer classes and service time distributions. In a recent study 

for call processing in Intelligent Networks (IN), Irina et al [21] modeled the SS7 signaling traffic 

as exponential BCMP queuing network. The study provides a method of analyzing the post-
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selection delay in the SS7 channel and IN nodes as part of the call setup process. Analytical as 

well as empirical studies are provided. Signaling arrival rate is modeled as a Poisson Process 

with fixed rate ( ). The study proposes a mathematical model that can be used to calculate the 

post-selection delay assuming an exponential service time. However, In the case of general 

service time distribution in BMCP network nodes, calculating the delay can be achieved using 

simulations only. 

 

3.3.1.5    Non-homogeneous Poisson Process 

Unlike the stationary Poisson process, the non-homogeneous (non-stationary) Poisson process 

has a rate that is a function of time. In a study of a telephone call center, Lawrence Brown et al. 

[27] modeled the call arrivals as a time-inhomogeneous Poisson process with piecewise constant 

rates. Under the proposed model, the duration of the day is divided into short time intervals and 

during each interval the arrival rate is assumed to be constant. It is not necessary to make all the 

intervals with equal time lengths. Brown et al studied different types of traffic, and they used a 

different fixed-length time block for each traffic type. Their decision on the block length was 

based on the arrival rate. They used smaller blocks (6 minutes) for traffic with high arrival rate 

and larger blocks (up to 60 minutes) for traffic with low arrival rates. The general rule is to have 

intervals short enough so that the arrival rate can be assumed constant within each interval. 

Lawrence Brown used Kolmogorov-Smirnov statistic test to accept the hypothesis that call 

arrival rate is a non-homogeneous Poisson process. Furthermore, Brown provided empirical 

evidence that the call holding time of a call center follows a distribution close to lognormal 

rather than exponential. Although the lognormality hypothesis was rejected by Kolmogorov-
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Smirnov test, Brown adopted this distribution based on empirical observations and the used the 

large sample size for justification. 

 

3.3.1.6    Packet-level Arrival Modeling 

Another approach for VoIP traffic engineering is based on the packet level rather than the call 

level. In this approach mathematical and statistical models are provided for packet arrivals.  

Bowei et al. [67] provided a packet-level VoIP modeling study in which they collected 332,018 

call records from a live network and then they used the empirical data to develop and validate the 

traffic models. They used the developed models to build a simulator for QoS studies on the IP 

network. The authors proposed two models for packet inter-arrival times: 

(i) Semi-empirical model in which the empirical data is used to construct the model. 

(ii) Mathematical model that consists of parametric statistical model. For each call, a 

call duration is generated (a random variable obtained from a proposed piece-wise 

Weibull distribution), then periods of transmission and silence are generated. 

Packet arrivals are inserted every 20ms during the transmission periods, and every 

2 seconds during the silence periods.   

The authors provide a parametric model for the periods of transmission and silence for systems 

with silence suppression capabilities. They found that the square-root gamma distribution 

provides a good and flexible fit for the data. Although Bowei et al. focus on modeling packet 

arrival process; however, this process is directly related to call arrival process. They consider the 

call arrival process as a non-homogenous Poisson process for the tow proposed models. 

  Another result of this research confirms our previous observation of the symmetrical 

nature of VoIP traffic on the packet level. The authors observed similar traffic patterns from 
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caller to callee as from callee to caller. The only observed differences are for FAX calls where 

the transmission is mainly from the sender to the receiver and during the ringing period of 

regular calls where more packets are sent from callee to caller than in the opposite direction. 

These effects are minor and can be ignored especially in the large-scale networks.       

In another packet-level study, Jiang and Schulzrinne provided analysis for the talk-spurt and 

silence gap distributions produced by some modern silence detectors. They concluded that the 

inter-arrival times of talk spurts and the gaps do not follow the traditionally-assumed exponential 

distribution. Instead, the study suggests heavier tails for both talk and gap distributions. The 

authors propose a simulation system based on using the real Cumulative Distribution Function 

for the talk-spurts or gap arrivals. Using CDF is a completely empirical approach, where no 

model is assumed. Instead, real traffic data is fed to the simulator which in turn computes the 

CDF and uses it as the call arrival distribution.   

 

 

3.3.2 Modeling Call Holding Time 

  It has been recognized that the exponential approximation for call hold time seriously 

underestimates the long calls [22], and the reason is because the exponential distribution lacks a 

heavy tail that can accommodate for long-duration calls. The need to fit call hold time into a 

heavy-tailed distribution is mainly to capture calls with long hold times. It is possible to achieve 

good fit using a longnormal mixture basically when we truncate the very long hold times 

“s    s  c           s”  A  h   h  h s     c      p     s        f  ,       h            ss  f 

significant fraction of calls. On the other hand, leaving all the calls including the few extremely 
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long duration ones leads to infinite variance/mean distribution [16]. In this section we summarize 

the major approaches for modeling call holding time. 

 

3.3.2.1    Traditional Exponential Call Holding Time 

This approach is covered in details in Section 3.1.2, and it is the model assumed by Erlang 

formulas.  We briefly look at some of the recent traffic modeling approaches that adapted this 

model.   The finite population with Quasi-random traffic pattern was also considered in [71]. The 

authors provided analytical and as well as a simulation for calculating Call Blocking Probability 

(CBP) under this condition. They considered exponential holding time for both the simulation 

and the analytical model. They concluded that the accuracy of the calculation was satisfactory 

compared to the simulation.  

 In [82], Pareto, exponential, multimodal, and deterministic distributions were compared 

for call holding times.  The study provided simulation comparison for the effect of these 

distributions on call routing and QoS. The authors concluded that the choice of call holding time 

model has only a slight impact on the efficiency of QoS routing. The study states that the 

traditional exponential holding time can be considered as a reasonable approximation because 

the QoS and call losses are insensitive to the used distribution. As a result, the call holding time 

is determined by the mean value of the call durations. 

 

3.3.2.2    Lognormal Model 

Lognormal distribution provides a heavier tail than the exponential. It is a 2-parameter 

distribution: location and scale (or geometric mean and geometric standard deviation). Therefore, 

this distribution attracted researchers to use it for call holding times. In their study of traffic for a 
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trunked mobile radio system, Duncan et al. [28] concluded that call holding time follows a 

lognormal distribution and hence suggested that using Erlang models for such traffic may not 

lead to reliable results.  

Jedrzychy and Leung [33] provided another research in which they confirmed that the 

negative exponential assumption for channel holding time is not correct and that a lognormal 

model approximation provides a better fit for data. The study was based on real traffic data, and 

maximum likelihood estimation method was used for model estimation.  After model 

estimations, the authors used chi-square to test the goodness of fit. Duncan et al. [28] also 

concluded in their research that the call holding time has a lognormal distribution and exhibit no 

significant correlation structure. They used Kolmogorov–Smirnov test to examine several 

distributions: exponential, lognormal, gamma, and Erlang, and found that lognormal yield the 

best fit. 

 

3.3.2.3    Mixture of Lognormals 

A mixture of lognormals allows more flexibility to fit calls with more variability in the duration.  

V. Bolotin (1994) [30], provided an empirical study in which he concluded that call hold time 

can be best modeled as a lognormal or a mixture of lognormals. The author used Kolmogorov-

Smirnov goodness-of-fit test to fit his empirically-obtained sample. In a later work, Chlebus [31] 

used the more reliable Anderson-Darling test to prove that call holding time for mobile telephony 

follows the same lognormal patterns obtained by Bolotin for fixed telephony.   

Barcelo and Jordan [34] have studded channel holding time for a public cellular 

telephony network. They made a series of experiments and concluding that the negative 
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exponential distribution is not a good approximation of the channel holding time. They suggested 

that the probability distribution that better fits the empirical data was a sum (mixture) of 

lognormal distributions.  This suggestion was supported by Kolmogorov-Smirnov goodness-of-

fit test results. It is worth mentioning that channel holding time equals call holding time if the 

user remains within the same cell. 

Barcelóa (1999) [34] provided a field study for the channel occupancy in cellular 

networks. He concluded that the exponential distribution is far from capturing the empirical data.  

Finally, the author landed on using a mixture of lognormal distributions similar to those found by 

Bolotin and Chlebus for call holding time.  

 

3.3.2.4    Phase Type Distributions 

Phase-type distribution is composed of one or more Poisson processes. These processes are 

related and occur in a certain sequence (phases).  In general, if a system is modeled using 

exponential distribution and an explicit mathematical solution is found, we can replace the 

exponential with a phase-type distribution (in order to accommodate for the variability in the 

data) and still be able to derive mathematical solutions [73].   

V. Ramaswami, et al (2003) [35] studied the effect of long holding time for dial-up 

connections on the call holding time distribution. The study is based on a sample of 4.5 million 

calls. The collected data showed that the median was only 48 seconds while the mean was 297 

seconds. This data failed to fit into an exponential distribution. The authors used the Expectation-

Maximization (EM) algorithm to fit the data into a phase type distribution. They concluded that 

the call holding time is best modeled as a 4-component phase type distribution. 
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Hyper-Exponential and Hyper-Erlang distributions belong to the phase-type distribution 

family. Hyper-Exponential distribution provides a mixture density so that it can accommodate 

for more than one type of calls, such as calls with long duration and calls with short durations. 

Also Hyper-Erlang distribution is used for mixed type traffic data with heavy tails. Both 

distributions preserve the Markovian property of the queuing system and hence analytical 

solutions can be derived [72].   

Fang et al (1998) [36] studied call holding time for complete and incomplete calls in PCS 

networks. They used a general distribution to model and derive general formulas for call holding 

time for both complete and incomplete calls. They provided analytical study for each of the 

following distributions: Gamma, (staged) Erlang, hyperexponential and hyper-Erlang.  

In another study [16], Fang applied two new distributions to model call holding time. The 

first is called Sum of Hyper-exponential (SOHYP) model which was previously used to model 

channel holding time for cellular networks, and the second model is called the Hyper-Erlang 

model (AKA mixed-Erlang) which was previously used to model the cell residence time for PCS 

networks. The interesting feature of the Hyper-Erlang and SOHYP models is that they preserve 

the Markov property which is required for performing theoretical queue analysis. Fang provided 

a unifying analytical approach to analyze the performance of the resulting queuing system under 

the assumption that cell residence times are independent and identically distributed (i.i.d.). He 

provided analytical formulas for handoff probability, handoff rate, call dropping probability, and 

the actual call holding times for both complete and incomplete calls. 

In their study of channel holding time in cellular communication networks, Thomas et. al. 

[74] based their study on the assumption that call holding times and cell residence times follow 
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phased-type distributions. The authors derive channel holding time from the phase-type call 

holding time and cell resident time distributions, and the result is another phase-type distribution 

for channel holding time. They considered both hyper-Erlang and SOHYP distributions for call 

holding time. In a similar study of channel holding time, Orlik and Rappaport [75] reached 

similar conclusion, and they derived channel holding time distribution from the assumed SOHYP 

call holding time.  

 

3.3.2.5    Weibull and Piecewise Weibull Distributions 

Weibull distribution exhibits a heavy tail property when the positive shape parameter is less than 

one. When the shape parameter equals to one the Weibull distribution becomes exponential. 

Therefore, Weibull has multiple applications in telecommunication modeling. For example, 

Weibull distribution has been used to model caller patience factor in call centers [78], and call 

holding time for internet dial-up connections and World Wide Web sessions [77].  Piecewise 

Weibull distribution has been used to model a mixture data (data set belonging to multiple 

categories or classes). Each piece of the distribution corresponds to a category of the data set.  

In their VoIP traffic modeling study, Bowei et al. modeled call durations as a mixture of 

piecewise Weibull distributions. The work is based on 138,770 call information.  They fitted the 

empirical data to a 6-piece Weibull distribution. These different pieces result from the mixture of 

different types of calls (for example: machine-to-  ch   , v  c  c   , f x …   c)   An interesting 

point of this study is that it investigates the validity of i.i.d (independent and identical 

distributed) assumption for call durations. i.i.d assumption is sometimes  violated since users 

tend to use some applications more often during a certain time of the day. The authors provide 

analysis for the relation between call duration and the time of the day. They found minor effect 
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of the time of the day on the call duration, and this effect is mainly due to the decrease in the 

frequency of short calls between 10 PM and 6 AM. They concluded that this effect is minor and 

can be ignored, and hence the iid assumption holds.  

In addition, Weibull distribution has been used to model call holding time in wireless 

cellular networks [76]. The authors derive a call completion probability function based on 

Weibull call holding time and cell dwell time. In [79] the authors provide a review of several 

research papers that employed Weibull distributions to model the call holding time of integrated 

voice and multimedia packet data services.  

 

3.3.2.6    Pareto Distribution 

The Pareto Distribution was first proposed as a model for the distribution of wealth in society. It 

is a 2-parameter skewed and heavy-tailed distribution.  These properties of Pareto distribution 

attracted some telecommunication traffic researchers to use it for service time modeling.  In [80], 

the authors used Pareto distribution to model cell dwell time. The choice of Pareto was made 

because of its heavy tail feature.  They provided channel holding time statistics based on the 

Pareto assumption. In the same work, the authors also considered Weibull, and Lognormal 

distributions for cell dwell time. However, mathematical models were provided for the case of 

Pareto only.   

 In [81], the authors considered Pareto distribution for call holding times in their 

performance analysis for wireless cellular networks. Similarly, in [83] Pareto distribution was 

considered for call holding times. The authors presented a formula for the probability mass 

function (pmf) of the number of handovers based on renewal theory arguments and a Pareto 

distributed call holding time (CHT). The study provides comparison of the system performance 
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between the Pareto CHT case with cases of Erlang_K and hyperexponential distributions. The 

study concludes that call holding time is best modeled as Pareto distribution. A major 

disadvantage of using Pareto distribution is that it is known for being prone to errors and 

statistical inaccuracies in simulations [81]. 

 

 

3.4    Summary  

  Many researchers have demonstrated that the traditional traffic engineering models are 

inadequate for modern telecommunication systems such as wireless, and VoIP. The Poisson call 

arrival rate and the negative exponential call holding time involve high degree of approximations 

which will result in systems that are not properly engineered.  

   The majority of the recent research in this field focuses on modeling either the call 

holding time or the arrival rate without providing a complete traffic engineering model. An 

example model is found in [44] where Baynat et al. derived an Erlang-like formula for 

dimensioning radio resources in GSM/GPRS/EDGE networks. The proposed formula takes into 

account both the voice and data traffic. According to the authors, the advantage of the proposed 

Erlang-like model is that it has an analytical solution for the formula, and therefore avoiding the 

computational complications of the simulations. The model was validated against a simulator 

and results show close match with the advantage of short computing time for the formula 

compared to longer time for the simulation.  

Table 5 below provides a summary of the major approaches for modeling call arrival process: 



78 
 

Table 5. Call arrival process modeling approaches 

Approach Advantages Disadvantages 

Poisson call arrivals 

(exponential inter-arrivals) 

 Simplicity  

 Analytical solution 

 

 Inaccurate 

 Inadequate for modern 

systems 

Session (batched) based 

arrivals 

 Poisson-based session 

 analytical solutions 

 Erlang Formulas can be applied 

 i.i.d assumption might be 

difficult to hold 

 not accurate 

Erlang-jk  More flexible call inter-

arrival time 

 two Erlangs means more 

parameters 

 Added complexity 

BCMP  Mixed queuing network 

 Poisson arrivals 

 Complex 

 suffers Poisson limitations 

Non-homogeneous Poisson  Flexible 

 Accurate  

 Accuracy of results depends 

on the time function 

 No exact analytical solution 

Packet-level arrivals  Takes into consideration 

VoIP features such as 

silent detection and codec. 

 Could provide accurate 

results, depending on the 

selected models 

 More complex 

 Obtaining packet 

information is more 

difficult than obtaining call 

information 

 In case of using one codec 

and if silent detection is not 

used, then the relation 

between call arrival and 

packet arrival might be too 

simple so that the added 

complexity is not justified.  

 Difficult what-if analysis 

Table 6 summarizes the major approaches used for modeling call holding times 
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Table 6. Call holding time modeling approaches  

Approach Advantages Disadvantages 

Traditional Exponential  Easy analytical solution 

 Simple calculations (one 

parameter distribution) 

 Not accurate 

 Ignores heavy tailed data 

 One call type (not mixed) 

lognormal  Accommodates for some 

heavy-tailed data 

 The tail is not heavy enough 

 The tail decays 

exponentially 

Mixture of lognormals  flexible  Not general enough to 

capture wide mixture 

 Complexity of having a 

distribution of multiple 

pieces 

 More parameters 

 The tail decays 

exponentially 

Phase-type distribution  General family that contains 

multiple distribution for 

different cases 

 Preserve Markovian 

property for analytical 

solution  

 

 Might be complex 

 Multiple parameters for 

multiple phases. 

Weibull and piecewise Wibull  Heavy-tail 

 Piecewise Weibull provide 

flexibility to model a 

mixture of multiple types 

of calls 

 Wiebull converges to 

exponential under special 

case 

 For Piecewise Wiebull, we 

need to have 2 parameters 

per piece 

 Complexity of having 

multiple pieces 

  

Pareto distribution  Heavy-tailed distribution 

that can capture long calls. 

 Only 2 parameters 

 Statistical inaccuracy for 

simulations 
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In addition, we do not find studies targeting large-scale VoIP networks, such as Tandem 

networks. The main characteristics of such network are that it carries huge amount of traffic, and 

the traffic usually is composed of a mixture of residential, wireless, and business calls. In this 

research we plan to bridge the gap by providing a deep study for traffic patterns obtained from 

actual large-scale tandem network. We will provide a frame work for modeling call arrival rate 

and call holding time, and then we will use the provided frame work to find distribution 

functions that capture some sample traffic data. A complete traffic engineering simulation model 

will be provided in order to optimize resource usage on VoIP networks. 
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CHAPTER 4 

 

 

4    Research Methodology 
 

In this chapter we discuss the methodology we followed throughout this research. We explain the 

data collection process and environment, and then we describe the simulation model. Also we 

cover the mathematical and statistical methods used in to develop the models in this research.  

 

4.1    VoIP Traffic Data from IP Tandem Network 

  One of the unique features of this study is the quality and quantity of call information 

from which the proposed models have been developed and validated. This study has been 

sponsored by one of the major VoIP Tandem carriers in the United States. Therefore, we were 

given access to billions of call information records in order to develop and validate our models. 

Traffic carried on tandem networks is composed of wide mixtures of residential, business, and 

wireless traffic. Using large mixture of traffic enhances the robustness, correctness and usability 

of the models.  
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4.1.1 IP Tandem Network 

  Tandem networks play the backbone roles in the telecommunications hierarchy. They 

interconnect different central offices together by means of tandem switches. Central offices 

might belong to the same carrier or to different carriers. In the later case the tandem service 

provides interconnectivity and switching between different carriers (inter-carrier switching). 

Therefore, tandem networks are expected to carry large amount of traffic and should be designed 

for high capacity, high availability, high scalability, and cost efficiency. An IP-Based Tandem 

service utilizes IP core network instead of the legacy TDM as a transport for the voice traffic. 

The IP core network could be dedicated for voice only or could be shared between voice and 

data. Using a converged IP network for data and voice provides substantial cost saving for 

network design and management. Figure 8 illustrates a typical IP tandem network. 

 

 

Figure 8. Typical IP-based tandem network 
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The legacy PSTN is connected through TDM trunks. VoIP customers are connected via 

IP links. The network has an IP core which is used to interconnect different sites. The limiting 

resources on the network can be the IP backbone connections between different tandem offices, 

the IP connections to the VoIP customers, or the TDM connection to the legacy PSTN. The 

scope of our research is to optimize the first two IP-based resources.    

 

 

4.1.2 Data Collection and Processing 

  During this study we have collected several billions of c             c   s  CDR’s) f    

the IP tandem network under study. We developed a library of scripts and tools in order to 

collect the raw data from the different sources and then filter, aggregate, process and visualize 

the data according to the study needs. Figure 9 shows the number of CDR’s collected over three 

years.  

 

Figure 9. Number of collected Call Detail Records 
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During the first year of the study, we collected more data because our collection criteria were 

wide open in order to explore more traffic samples covering more markets and customers. 

During the second and third years, we narrowed our collection to cover samples of markets with 

different sizes and different customer base (Business, residential, wireless, VoIP and landline).  

A Call Detail Record (CDR) is kept for every call on a local Billing Server (Network File 

System) located at each tandem office. We installed a CDR Extraction Script (CDR ES) on each 

of the remote NFS servers.  The purpose of the CDR ES is to access the local NFS and extract 

the CDR fields that we are interested in. Our centralized data collection server executes the CDR 

ES every day after midnight via SSH and stores the collected data onto a centralized attached 

storage.   Figure 10 illustrates the data collection process.  

 

Figure 10. Data collection process 
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Once we get our CDR copy we divide the traffic into three categories:  

 Wireless traffic 

  landline traffic 

 VoIP traffic.  

This categorization is based on the origin of the call. It should be noted that  all calls leaving the 

tandem office to another tandem office are converted into VoIP so they can be transported on the 

IP backbone. Calls leaving the office to carrier networks (customers) will be converted to VoIP 

only if the carrier is connected to the office by means of IP circuits. The wireless traffic is 

usually delivered over TDM links.   Figure 11 shows a comparison between the three traffic 

categories in a typical tandem office. The figure shows that traffic coming to the tandem office 

from the carrier networks over IP links is only 15% of the overall traffic; however, it is important 

to notice that all other traffic (wireless and landline) will be converted into VoIP to be transferred 

to other offices. In addition, all the traffic coming over the backbone from other offices is VoIP. 

In other words, all the incoming traffic [over the backbone as well as over the carrier links] is 

   h   V IP    “p        ” V IP  The remaining TDM connections to wireless and landline 

carriers are being converted into IP connections. It is expected that within the next few years all 

TDM links between the carriers will be replaced by IP connections. After traffic is categorized, 

we extract traffic information of interest. We keep the raw Time of Arrival (ToA) for each call. 

We also generate aggregated forms of the call data by dividing the day into time blocks and 

finding the mean of the call arrivals over each time block. We generate 1, 10, 100, 1200, 3600 

seconds aggregated data files. For call holding time study, each data point consists of the call 

time of arrival (ToA) and the call duration. 



87 
 

We make sure to select different samples of data so that each sample is taken from a 

different city. Some of these samples are collected from big cities with more than 10 million 

calls per day, and other samples are collected from small cities with less than 1 million calls per 

day. This variation in the samples helps finding robust models that can fit wide range of call 

patterns.  

 

  
Figure 11. Tandem traffic categories 

 

 

Our modeling results are identical for all traffic aggregations which indicate the goodness and 

significance of the proposed models and hence the correctness and robustness of the proposed 

engineering framework. 
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4.2   Mathematical and Statistical Modeling and Analysis 

  We used various mathematical and statistical techniques to fit identify and distributions 

to empirical data and then to validate the fitted models and estimate the parameters. In this 

section we briefly describe the major mathematical and statistical methods we used. 

Maximum Likelihood estimation (MLE): we used MLE to fit the proposed model function to 

the actual call arrival data and to estimate the model parameters. MLE is a well-known 

estimation method that involves a systematic search over different population values. Eventually, 

MLE selects the estimates that most likely to be true based on the given empirical data sample 

[45].   MLE is widely used for linear and generalized linear models which we use in our 

research. The ML estimators are obtained by taking the partial derivatives of the log-likelihood 

function of the model with respect to each of the model parameters.  

Fisher scoring method: It is a mathematical estimation method that is specialized in 

maximizing the log-likelihood function [46]. We used this method to solve the maximum 

likelihood equations numerically and hence estimate the parameter values of the generalized 

linear model fitted to call arrival rate under the non-homogeneous Poisson process.  

Wald’s significant test: we used this test to test the significance of each parameter in the 

p  p s   c        v   f  c      W   ’s   s   s   w   -known hypothesis test and it requires 

estimation of the unrestricted model (the model without the imposition of null hypothesis 

restrictions) [47] [48].  

Likelihood ratio test: we used this test in modeling call arrival rate as non-homogeneous 

Poisson process. The test was used to confirm the model and parameter significance results 
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 b       by W   ’s   s    I   s b s       v          h    ff    c  b  w     h    k   h    s atistics 

of two models given that one model is a special case of the other [50]. The Poisson process is a 

special case of the non-homogeneous Poisson process. Therefore, we used this method to test 

whether the call arrival rate function is generated by a Poisson process (special case) or by a non- 

homogeneous Poisson process (general case). The null distribution of the resulting test statistic is 

a Chi square whose number of degrees of freedom equals the number of model parameters minus 

one [51]. 

Survival analysis: Survival analysis techniques are used to analyze time to event problems. 

They are widely used in medical, biological, engineering, economics, demography, public health, 

and epidemiological studies [52]. A common feature of the data sets that motivates this approach 

is that it represents a set of random event durations that can be looked at as time-to-event 

durations. In our case, the event of interest is call termination and we represent call duration by 

looking at the time needed for the call to end. Therefore, we used this approach to model call 

holding time. 

Statistical graphical methods: we used graphical methods in the call holding time modeling 

process. The tools were used based on the empirical estimators and their log transformations. 

The purpose is to identify the underlying true distribution that fits the empirical data. For 

example, let Fn(t) be the empirical estimator of the distribution function which is defined as 

  ( )     ∑  (    ) 
   , where t1, …,  n are the observed call durations and 1(A)=1 when A is 

true and 0 otherwise.  Then, the plots of log(1-Fn(t)) and log(-log(1-Fn(t))) versus t should both 

yield  straight lines when the call duration have an exponential or an extreme value distribution. 

While the plots of log(-log(1-Fn(t))),    (  ( )) and log(Fn(t)/(1-Fn(t))) versus log(t) would 

indicate, respectively a Weibull, Log Normal, and Log-logistic random variables, when the 
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curves are linear. We used SAS software in order to plot the functions and their transformation 

mentioned above. 

Gauss-Newton numerical method: Gauss-Newton optimization method is a non-linear least 

square modification of Newton method. It is used to minimize the sum of squared values of the 

function [55]. It is a fast method and it is recommended whenever the problem can be expressed 

as a non-linear least square format [54]. We used this numerical method to compute the non-

linear maximum likelihood estimator for the call cease rate function fitted to call holding times.  

Cox-Snell residuals analysis: It is an efficient technique used to compute the departure of the 

data from the proposed model [58].  We used this technique as a goodness of fit assessment 

method in order to detect the deviation of the empirical data from the proposed call holding time 

model. If empirical data has been fit to the correct model, then Cox-Snell residuals will have a 

unit exponential distribution with a hazard ratio of one. Cox-Snell residuals are given as [57]:             

      (   ̂(  ))             

                            

where is  ̂( )is the estimated probability distribution function based on the fitted model 

If the Cox-Snell residuals follow a unit exponential distribution with a hazard ratio of one, then 

the plot of estimate of the integrated hazard rate of Cox-Snell residuals against Cox-Snell 

residuals themselves is a straight line with a slope of one [56].  

Akaike Information Criteria (AIC) and Bayes Information Criteria (BIC) test:  AIC is a 

variant of the likelihood ratio test and is used to measure model fitting accuracy [59]. BIC is 

useful for model selection by comparing different models. The likelihood can be increased by 

adding more parameters to the model. BIC adds a penalty term with each model parameter in 
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order to prevent over-fitting by introducing many parameters [60]. We used AIC and BIC tests in 

order to compare between a set of candidate models for Call Cease Rate function and then select 

the best model that fits the sample data.     

Least-Squares (LS) method: we used least-square model to estimate the parameters of the 

model fitted to call arrival rate under the Gaussian approximation condition. LS method is 

basically about minimizing the sum of the squares of errors between the sample data and the 

fitted model or estimated parameter [62]. The major advantage of LS estimation method is that it 

does not require knowledge of the underlying distribution of the error component (t). When the 

model is linear, it delive s  xp  c    xp  ss   s f    h  p        s’  s      s  I           wh    

𝜖(t)   is  assumed  to  have  a  Gaussian  distribution,  it  is  possible  to  make  inferences about  

 h   p        s’  s    f c  c         b      h        ’s v      y        s f  ness.  Therefore, we 

can use the model to make predictions about future observations [61]. 

Normality tests: we used normality tests to prove that call arrival rate can be approximated as a 

normal (Gaussian) distribution under heavy traffic condition. The assumption of normality is a 

statistical procedure that requires some robust testing in order to confirm whether or not the 

assumption holds [63]. In order to verify the validation of our normality assumption, we used 

three different tests: Anderson-Darling test, (ii) Kolmogorov-Smirnov, and (iii) Shapiro-Wilks 

R-Language: we used R-Language for the majority of data fitting, modeling and validation 

throughout this research. R is a language for statistical data analysis and graphics. It is open 

source and runs on Linux, windows and Macintosh. It has good graphical capabilities and 

excellent online-help support. The R-Language has powerful syntax with many built-in 

functions. It also supports used defined function for further flexibility and extendibility [64]. 
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4.3  Simulation 

  The call holding time and call arrival rate models proposed in this study are non-

Markovian and hence providing an analytical performance study for the traffic engineering 

model is not feasible. Therefore, we built a simulation-based system in order to study the 

performance of the VoIP networks based on the proposed models (VSIM).   

 VSIM simulation consists of a parametric G/G/c/c simulation based on the NHPP model, and a 

non-parametric simulation based on the captured call information. According to Kendall's 

notation the G/G/c/c is a queuing system where calls are assumed to arrive according to a general 

distribution (G) and have a service time that follows another general distribution (G), the system 

has a limited number of servers/channels (c) and no waiting queue (maximum number of calls in 

the system equals the number of servers c). Therefore, VSIM simulator engine can be used to 

simulate and complex queuing system.  

  VSIM simulation is built using Java programming language and based on the CSIM for 

Java API [105]. CSIM API is an advanced simulation kit for building large-scale and complex 

simulation models. It provides a library of routines for building process-oriented discrete-event 

simulations. Below are the major highlights of the CSIM program structure. 

Process: CSIM API models a customer or call entering a queue as a process that starts by 

creating an active entity. CSIM processes run under the control of CSIM execution supervisor 

which coordinates the execution and timing of the processes. CSIM processes can be in one of 

the following states: 

 C  p     :  c  v  y c  p       s     h  h s    ch   ’s CPU 
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 Ready: ready to enter the computing state 

 Holding: allowing simulated time to pass 

 Waiting: waiting for an event to happen or facility to become available. 

  A CSIM process can suspend its execution (leave the Computing state) and then resume 

execution later (enters the Ready state and then reenter the Computing state) for unlimited 

number of times and in no predictable pattern; the CSIM execution supervisor manages all of 

these activities. In addition, there can be several simultaneously active instances of the same 

process (entities).  Each of these instances appears to be executing in parallel to each other (in 

simulated time) even though they are in fact executing sequentially on a single processor on the 

host machine.  The CSIM runtime system guarantees that each instance of every process (entity) 

has its own runtime environment. 

Inter-process communication: CSIM library provides two structures to enable and control 

communications and interactions between different processes. These structures are: 

 events  

 mailboxes  

A process can wait for a certain event to occur while another process can set an event; causing it 

to be placed in the OCCURRED state and allowing all of the waiting processes to resume (enter 

the Ready state). A mailbox is a place where processes can exchange messages. One process can 

send a message to a mailbox. Another process can attempt to receive a message from the 

mailbox; if the message is already in the mailbox, the receiving process gets that message and 

continues computing. However, if there are no messages in the mailbox, all receiving process 

must wait until a message is sent to that mailbox.  
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Resources: In queuing simulation, an object/process needs to occupy some simulated system 

resources for a certain period of time. CSIM offers two kinds of resources: facilities and 

storages. VSIM was built using facilities to model the system/network capacity.  

Facility: a facility is usually used to model system resources. A simple facility consists of a 

single server and a single queue (for processes waiting to gain access to the single server).  Only 

one process at a time can be using the server.  A multi-server server facility contains a single 

waiting queue and multiple servers.  All of the waiting processes are placed in the queue until 

one of the servers becomes available. Facilities are used to represent simulated system resources 

where entities (processes) occupy servers in a one-at-a-time fashion. A process can apply one of 

the following operations on a facility:   

 reserve : wait for and then gain access (occupy) to a "free" server  

 hold: occupy the facility/server for a certain period of time 

 release: release a reserved server  

 use:  a combination of a reserve, hold, and release operations  

 reset: reset statistics and counters associated with a given facility 

In addition to the queue and server(s), a facility also has provisions for collecting performance 

data on the delays associated with gaining access to a server (queue waiting) and on using the 

servers (hold). This data collection can be provided by CSIM automatically for each facility; a 

report summarizing the collected performance data can be produced at any time during the 

execution of the model. 
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Storage: a storage consists of a queue and a pool of storage units (sometimes called tokens). A 

process can allocate one or more storage units; if there is not sufficient number of tokens that can 

satisfy an allocation request, the process is suspended and placed in the waiting queue. When 

other processes have deallocated their storage tokens, queued processes are given units to satisfy 

their resource requests. As with facilities, performance data is collected to summarize the 

queuing delays and holding times for these storage units. The main difference between a storage 

and facility is that the storage is divided into smaller tokens; therefore it can be partially 

allocated to a requesting process. Storage resource is not suitable for our research since an 

incoming call requires a free IP trunk or channel and that is not divisible. 
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CHAPTER 5 

 

 

 

5   Traffic Engineering 

Modeling Results and 

Analysis 
 

In this chapter we review the work we have done during this research. Also we highlight the 

major results, findings, and contributions. 

 

 

5.1    Modeling Call Holding Time for VoIP Tandem 

Networks 

  We present a new approach for modeling call holding time on VoIP tandem networks. 

This research is based on millions of call information obtained from a tandem network. The 

collected data is a mixture of residential, wireless as well as business call data. The tandem 

network topology as well as the research methodology is described in Section 4.1.  

Call holding time is a key variable of traffic engineering models. The traditional Erlang-B 

model uses a negative exponential function to model call holding time.  Our study of large 
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number of telephone calls shows that the exponential assumption is not valid for modern large-

scale VoIP networks. We propose to use time-to-event analysis which consists of fitting a 

parametric model to the call cease rate.  Then we study several probability distribution functions 

and compare their capability to model the VoIP call departure rate. We find that both the log-

logistic and the generalized gamma distributions provide a good fit for the data. Our statistical 

analysis shows that the approach of modeling call cease rate provides more accurate results than 

the traditional exponential and log-normal holding time models. 

 

5.1.1 Data Exploration 

  We base our analysis on wide variety of samples. Some samples are collected from big 

cities (8 to 10 million calls per day) and other samples are collected from smaller cities (0.5 to 1 

million calls per day). This variation in the samples helps finding a robust model that fits wide 

range of call patterns. Each collected data point consists of the call Time of Arrival (ToA) and 

the call duration. Because of its nature, this type of data can only be modeled using a positive 

random variable. 

The collected data yields a histogram with a very heavy tail. The call service times (in 

seconds) occur within an extreme range (0.6 – 169,6245) for a small city sample and (0.3 – 

235,000) for the big city sample. The mean of each set is much larger than median and the 

skewness coefficient is 75 and kurtosis is 16,509 (compared to 2 and 9 for the exponential 

function).  It is clear in Figure 12 that many observations occur way beyond the range of values 

assumed by the exponential and this makes the exponential distribution far from capturing this 

traffic pattern.  
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Figure 12. Exponential distribution against truncated data 

 

 

In cases like this, mixtures of lognormal distributions have been proposed to fit the data whose 

distributions have tails that are higher than those of the exponential. For this purpose we look at 

the histogram of the logarithms of the service times and try to fit a mixture of lognormals to the 

data. Once again, as shown in Figure 13,  h  h s      ’s       v  f  q   c  s  f  h      s     

much larger than the tail values of the proposed density. Therefore, a mixture of lognormal fails 

to capture the heavy-tailed data and hence it is not an appropriate model. 
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Figure 13. Fitting call duration data to a Mixture of Lognormals 

 

 

 

5.1.2 Introducing the Call Cease Rate Function 

  Based on the conclusions of the previous data exploration, it seems that there is a need to 

use a distribution with heavier tail than the exponential or lognormal to fit the data. In general, 

modeling a set of random event durations differs significantly from the classical methodology 

used when the data is generated by location-scale distributions such as the Gaussian. In the 

classical approach, the functions of interest to the analyst are the probability distribution and 

density functions. The data at hand falls in the first category. Therefore, we opted to introduce a 

function that provides a better interpretation of time-related phenomena such as the one under 
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investigation. This function represents the instantaneous probability that the call will end at time 

t and is defined as: 

 ( )     
    

  (                                                     )

  
            ( ) 

 

 ( ) is called the Hazard Function by survival analysts, Failure Rate function by reliability 

engineers or  Force of Mortality by demographists. Since we are observing the call cease events 

which does not have a connotation of risk or failure, we chose to call our  ( ) as the Call Cease 

Rate function. 

Since time is continuous, the probability that the call will end at exactly time t is 0. 

Hence, we introduce the concept that the call duration is between t and (t+Δt) and we make this 

probability implicitly conditional on the call lasting to time t. In light of this, the above Call 

Cease Rate function can be written as: 

 

 ( )     
    

  (         |   )

  
                                                                                     ( ) 

 

where T is the call duration. 

The relationship between the conditional, the joint, and the marginal distributions of T leads to: 
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where F(t) and f(t) are respectively the probability distribution and density functions. 

The relationship between f(t) and F(t) implies that  ( ) can be written as: 

 

 ( )   
 

  
(   ( ))

   ( )
  

 

  
   (   ( ))                                                                                        ( )                              

 

solving the above equation leads to: 

 

 

   ( )     ( ∫  ( )  
 

 

)                                                                                                   ( ) 

 

 

 ( )   ( )    ( ∫  ( )  
 

 

)                                                                                                     ( ) 

 

From 7, we notice that density functions defined through their  ( )  form a generalization of the 

exponential distribution in the sense that, at a given moment to, the call duration has an 

instantaneous exponential distribution with rate λ(to). There is a one-to-one relationship between 

 ( ) and F(t), so defining a family of  distributions can be done through the call cease rate 

function  ( )    Table 7 shows some distributions along with their hazard and density functions. 
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Table 7. Hazard and Density functions 
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Notice that the exponential distribution is a special case of the Weibull distribution (with    ). 

The Weibull and log-normal distributions on the other hand are special cases of a larger family 

of distributions called the generalized gamma, which contains also the classical Gamma 

distribution.  

We can use the collected data to obtain empirical estimate of the call cease rate function 

 ( ) and of the distribution F(t). We used graphical tools based on these empirical estimates and 

their log transforms in order to identify the underlying true distribution of the data. With this in 

mind we consider Fn(t) , the empirical estimator of the distribution function defined as   ( )  

   ∑  (    ) 
   , where t1, …,  n are the observed call durations and 1(A)=1 when A is true and 

0 otherwise.  Then, the plots of log(1-Fn(t)) and log(-log(1-Fn(t))) versus t should yield 
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respectively,  straight lines when the call duration have an exponential or an extreme value 

distribution (Figure 14). While the plots of log(-log(1-Fn(t))),    (  ( )) and log(Fn(t)/(1-Fn(t))) 

versus log(t) would indicate, respectively a Weibull (Figure 15), Log Normal (Figure 16) and 

Log-logistic (Figure 17) random variables, when the curves are linear. Notice that the 

identification step has to be completely data-based and hence no assumptions are made 

throughout it. 

 

Figure 14. Exponential and extreme value distribution test 

 

 

Figure 15. Weibull distribution test 
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Figure 16. Log Normal distribution test 

 
Figure 17. Log-logistic distribution test 

 

Figure 14 and  Figure 15 deviate significantly from a straight line; therefore, we can be sure that 

our call holding data does not follow an exponential or a Weibull distribution. The curves in 

Figure 16 and Figure 17 seem to be quite close to a straight line, which suggest that the data 

might follow either a log-normal or a log-logistic distribution. Next, we present the estimation 

process of the parameters for the call cease rate model. 
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5.1.3 Model Estimation  

We use maximum likelihood estimation (MLE) since it yields parameter estimators that 

are consistent and whose sampling distributions are known. The sampling distributions are useful 

in testing the significance of the parameters and hence provide robust model validation. Other 

advantages of such method of estimation are the information criterion which can be used for 

model comparison and the Cox-S       s     s wh ch c   b   s      ch ck  h       ’s v      y   

Th    k   h     s   f  c      f        ’s p     ters and is defined to be equal to the joint 

density of all observations. Since the calls durations do not depend on each other, we can write 

the likelihood function as: 

    ( )    ∏  (      )    [ ∫  (   )  
  
 

] 
             (8) 

Where θ is a vector of parameters.  

Since the logarithm is a convex increasing function, maximizing the likelihood is equivalent to 

maximizing the log-likelihood, which can be written as:

             

 

                             ( )  ∑   ( (    ))  ∑∫  (   )  

  

 

 

   

                                                ( )

 

   

 

Now we will apply MLE to estimate parameters for each of Log-logistic, Log-Normal, and 

Generalized gamma. We will compare the result and decide on the model that best first our Call 

Cease Rate function. 

 

A. Log-logistic distribution 

Since the call cease rate function of a log-logistic is: 

    (     )       (     )                                       (10) 
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Then its primitive function is:  

                                              

∫ (     )      (     )
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Therefore, the log-likelihood becomes: 
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Taking the derivatives with respect to the parameters leads to the following score functions: 
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At the maximum, the score functions are equal to zero and the maximum likelihood estimators 

are obtained by solving the equations in (13). The nonlinearity of the equations necessitates the 

use of numerical optimization methods such as Gauss-Newton to find the MLE of the 
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parameters. Shown below are the parameters estimates along with their standard errors and 

confidence intervals: 

Parameter:           α         β       

Estimate   63.257   1.546 

Std. Error          0.0791   0.0014 

95% Conf.  limits     63.257±0.155           1.546±0.003 

 

B. Log-Normal distribution 

Estimating the parameters of the log normal distribution is much easier, and estimates are 

obtained by solving a system of linear equations. The likelihood function based on the log-

transformed of the call durations is then: 
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This means that the log-likelihood function is: 
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Taking the derivatives with respect to the parameters leads to the following score functions: 
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Wh    h  sc    f  c    s      q       z   , w   b      h   xp  c   f     f  h  MLE’s: 

 

Parameter:      μ     σ  

Estimate    4.222  1.171 

Standard Error   0.0013  0.0009 

95% Conf. limits                4.222±0.003     1.171±0.002 

 

C.    Generalized gamma distribution 

We also fit a generalized gamma distribution to the data. This model has 3 parameters which 

makes it the most flexible model for a positive random variable like the call duration. As 

discussed previously, several models are special cases of the generalized gamma. Due to the lack 

of page space, we skip showing the complex likelihood related calculations. We obtain a table 

with the parameters estimates, their standard errors and confidence intervals: 

 

Parameter:    Intercept         Scale             shape 

Estimate        3.948            1.100            -0.480 

Standard Error       0.002    0.0009           0.0024 

95% conf. limits     3.95±0.004    1.1±0.002     -0.48±0.005 

 

Notice that the shape and scale parameters are not equal and hence the model is not a 

standard gamma. Also, the exponential distribution is a special case of the generalized 

gamma (scale and shape parameters both equal to 1). 
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5.1.4 Goodness of Fit and Model Validation 

The Cox-Snell residuals are considered to be the most efficient at detecting the departure 

of the data from the proposed models (Allison [57]), and Collett [58]). They are defined as: 

  ˆlog 1i ie F t 
                                                      (17) 

Where is  ̂( )is the estimated probability distribution function based on the fitted model. Unlike 

the usual residual from a classical linear model, the Cox-Snell residuals are always positive and 

when the fitted model is correct, they have an approximately exponential distribution with rate 

equals to 1. Therefore, we can use the plot -log(1-Fn(t)) vs. t described in section 5.1.2 to 

evaluate the exponentiality of ei’s  S  c   h        s 1,  h  p    sh        k   k    s     h       

with intercept 0 and slope 1. The graph shown in Figure 18 below shows Cox-Snell residuals 

plots for each of the models fitted in section 5.1.3; log-logistic, log-normal and generalized 

gamma. 

 
Figure 18. Cox-Snell residuals for Log-logistic, Log-normal, and Generalized gamma 
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All the graphs seem to display a linear curve running through the origin; however, the log normal 

graph has a slope that is significantly different from 1. Both log-logistic and generalized gamma 

provide a slope close to 1 and hence are both valid models for this data, with slight advantage for 

the generalized gamma. This confirms our early conjecture that the generalized gamma would be 

a better fit since it is the most flexible. 

To compare the 3 different models, the most commonly used criteria (Lindgren,Berger) 

are the Akaike Information Criteria (AIC) and Bayes Information Criteria (BIC)  [38]: 

         ( ̂)        (18) 

         ( ̂)      ( )   (19) 

 

Where  ( ̂) is the log-likelihood of the estimated model, p is the number of parameters in the 

model and n is the number of observations in the model. A smaller information criterion 

indicates a better model. 

Below is a table of the criteria for each of the models considered in section 5.1.3 

 

Distribution            AIC                       BIC         

Log-normal  2558481    2558504 

Log-logistic      2541143    2541167 

Gen. gamma         2519514       2519549 

 

 

Both criteria agree that the generalized gamma model is noticeably better than its competitors 

with the log-logistic distribution behaving better than the log-normal. Besides information 

criteria, the choice between generalized gamma and Log-logistic can be affected by other factors 

such as model flexibility, which would favor the generalized gamma, or model parsimony, which 
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would favor the log-logistic distribution. Equations 20 and 21 show the call cease rate functions 

corresponding to the two generalized gamma and Log-Logistic models respectively. Figure 19 

shows their plots truncated at 1000 seconds for clarity.  
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Figure 19. Call Cease Rate function (t <1000) 

 

Notice that both rate functions decay at an algebraic rate. Moreover, we can show through series 

expansions of the two rate functions, that their tails are assymptotically proportional to t 
-1

. This 

implies that the tail of the density function is asymptotically proportional to t 
–(1+a)

 which 
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explains the large number of extremely long call durations that cannot be fit with a density that 

decays exponentially. 

 

5.1.5 Final Model 

Based on the model validation and comparison presented in sections 5.1.3 and 5.1.4, we 

decide that the generalized gamma distribution is the best model.  Since our data contains a large 

number of extreme observations, we opted to zoom the call cease rate function plotted in Figure 

20 to the range between 0 and 300 seconds. It is noteworthy that the call durations are not 

exponentially distributed since  t  is not a constant. Also notice that short calls of duration less 

than 28 seconds have an increasing call cease rate which means that at a given time t<28 such 

calls are more likely to end than continue.  On the other hand, calls of duration longer than 28 

seconds have a decreasing call cease rate which means that at any time t>28, such calls are 

unlikely to end in the next few seconds and will tend to continue for some time. This is an 

insightful result especially that the durations of more than 20% of the calls are less than 30 

seconds.  The significant number of short calls is a direct result to the small-business credit card 

transaction and processing systems as well as the automated voice applications such as voice 

mail and Interactive Voice Response (IVR) systems where many callers tend to leave very short 

messages or hang up. These systems and behavior result in generating large number of calls with 

call duration that does not exceed a few seconds.     
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Figure 20. Call Cease Rate function (t <300) 

 

5.1.6    Summary 

In this study we used a time-to-event analysis to model call holding time in modern large-

scale VoIP networks. This approach consists of estimating the parameters of a hazard rate 

function which corresponds in our case to the Call Cease Rate function. This methodology is 

effective in    studying phenomena described by random time variables such as call durations. 

 We were able to obtain mathematical models that can accurately capture important characteristic 

features of modern telecommunication systems, mainly the skewness and heavy-tailedness of the 

call duration distribution. We used maximum likelihood estimation for model fitting, Cox-Snell 

residuals plots for model validation, and Akaike and Bayes information criteria for model 

comparison. We conclude that the log-logistic and generalized gamma distributions provide good 

fits for the data with a slight advantage for the generalized gamma. 
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5.2    Modeling Call Arrival Rate as NHPP 

  Erlang-B model is traditionally used to estimate the telecom network resource 

requirements. This model is based on the Poisson arrival distribution where the rate (  ) is 

constant and is measured based on the Busy Season Busy Hour (BSBH). BSBH is the busiest 

hour in the busiest week during the year. Networks are designed to handle traffic offered during 

this hour. Using a constant call arrival rate fails to adapt to the variation of traffic with respect to 

time such as time of day, day of week, and day of year. 

      Under the BSBH approach, a considerable portion of network resources will remain idle 

for the majority of the year which results in poor resource utilization. Such problems can be 

justified in the PSTN world because of the difficulties associated with allocating and revoking 

network resources. For example, the typical limiting resource of a PSTN network is the number 

of trunks connecting central offices. Increasing or decreasing this number is a complicated and 

expensive process that involves the interaction of multiple parties. In the IP world resource 

allocation is more flexible.  Allocating more or less bandwidth for voice applications is a 

relatively simple process. Dynamic resource allocation for VoIP traffic can be useful especially 

for converged networks where voice and data share the same physical facilities. More bandwidth 

can be allocated to voice traffic during busy days while providing non-used bandwidth for data 

applications during the remainder of the year. 

In this research we propose a new approach to traffic engineering by applying a Non-

Homogeneous Poisson Process (NHPP) for call arrival rate.  Then we apply a generalized linear 

function to model call arrivals as a function of time.  The proposed model supports dynamic 

allocation of network bandwidth based on predicted traffic.  Modern network management 
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systems can easily support this dynamic bandwidth allocation procedure. Furthermore, a 

dynamic resource allocation system can adopt a de-allocation scheme which can significantly 

minimize call blocking probability and maximize the bandwidth utilization. 

 

5.2.1 Call Arrival Patterns 

  The models developed in this research are based call information collected from an IP 

tandem network as described in Section 4.1. During the initial data exploration we noticed that 

the minimum call load occurs near 4 AM of each day. Based on this finding we redefine the day 

from a traffic engineering perspective as the period between 4 AM and 4 AM of the next day. 

Furthermore, we notice that different days have different patterns. For example the difference 

between the call load on Fridays and that on Sundays is noticeable and should not be ignored. 

Figure 21 shows call arrival patterns for a typical week. We notice call arrival difference of 70% 

between Friday and Sunday. Our proposed model takes the daily effect into consideration.  

 

 

Figure 21. Call arrival pattern for a typical week 



116 
 

5.2.2 Model Formulation and Validation 

  Given our data, we are inspired to construct a model that describes the variation of call 

arrival rates during a week. It is common in statistical analysis to model the logarithm of λ(t) 

instead of λ(t) itself for count data  [39]. Such transformation would guarantee that the estimate 

of the intensity function is always non-negative. Our model takes into consideration the daily 

arrival patterns and has the time-dependent intensity function of: 

 

     ( )     ∑       (    )        (    )  
  

   
 

  ∑    ( )

 

   

                                                                                                     ( ) 

 

where:    ( ) is a function of time (t). 

  ( ) is day Indicator function where j is the day of the week. The value of   ( )  is 1 if the time 

   j and 0 otherwise. Ko is the number of harmonics in the model.   represents the model central 

tendency without daily effects.    is the effect of day j and represents the difference between   

and the mean number of calls for day j.             are the contribution of the ith harmonic to the 

model. 

  We use Maximum likelihood estimation to fit our proposed λ(t)  to the actual call arrivals. 

As explained in section 4.1.2, the processed call arrival data is aggregated into non-overlapping 

time intervals ( ) of 10, 100, 1200, and 3600 seconds. Thus we will use the total number of calls 

within time intervals rather than the exact call time of arrival.  
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Let                  denote the number of calls arrived at the system in non-overlapping 

intervals (       (         (            (           Therefore, the likelihood function L is 

given as: 
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and the log-likelihood, apart from a given constant, is given as: 

 

   ∑     ∫  ( )    
    

  

  

 

   

 ∑∫  ( )  
    

  

   

 

   

                                                                      ( ) 

 

where m is the number of intervals within each day.  

Given that   is the aggregation time interval, we can say that: 

                 and             

The value of δ is very small compared to the whole study duration. So practically, the integrals in 

(2) and (3) can be evaluated using the following approximation: 

 

∫  ( )  
    

  

   (  ) 

where ti = (       )/2. The approximation error is of order  (  ). Hence, Equation (3) 

becomes: 
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Substituting the function  ( ) given in (2) into the log-likelihood function and excluding the 

constants that does not depend on the parameters, equation (4) becomes: 
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Equation 5 can be rewritten as: 
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Notice that Fj is the total number of calls on day j. The terms Si and Ci do not depend on the 

parameters while the terms Gk are exponential terms.  

      The ML estimators are obtained by taking the partial derivatives of the log-likelihood 

with respect to the model parameters:                          . Hence, we obtain the following 

score equations: 
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The ML estimators are obtained by solving:  
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An implicit form of the solution to the first equation can be obtained easily as follows: 
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where: 
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The other score equations cannot be solved analytically. Therefore, we used Fisher scoring 

method to estimate the parameters.  

Furthermore, we studied the significance of the proposed model using the covariance 

matrix of the estimators. ML estimation theory states that when the sample size is sufficiently 

large, as is the case of our call arrival data, the covariance matrix is equal to I
-1 

[40], where I is 

the information matrix obtained by evaluating the negative expectation of the Hessian matrix of 

the log-likelihood function. The diagonal elements of the information matrix are: 
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where the operator E(.) denotes the expectation of a random variable. The off-diagonal terms are 

computed by taking mixed partial derivatives of order 2. 

 

We evaluated the variance terms for each parameter and then we used them to conduct 

W   ’s s    f c  c    s  so that Ho: θ = 0 against H1: θ ≠ 0 where θ is any parameter of interest 

(         and  ). Table 8 shows the values of the estimated parameters, their standard errors and 

p-v    s  f W   ’s   s . 

 

Table 8. Estimated parameters for λ(t) 

 Parameter Estimated 

value 

Std. Error p-value 

  12.4851183 0.0002360 < 2e-16 

   0.6244975 0.0002387 < 2e-16 

   0.3730669 0.0002675 < 2e-16 

   0.1122494 0.0002224 < 2e-16 

   -1.2787258 0.0003443 < 2e-16 

   -0.4221888 0.0002767 < 2e-16 

   -0.1487193 0.0002205 < 2e-16 

    -0.2266414 0.0003971 < 2e-16 

    -0.5476155 0.0004534 < 2e-16 

    0.0833744 0.0003486 < 2e-16 
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Th  s                f  h  p        s’ p-values confirms that the considered parameters are 

significant. Parameters with p-values larger than 0.05 were removed since their presence would 

be a nuisance to the model and might contribute to variance inflation. The significance of the 

     ’s p   meters reflect the significance of the model itself and that it explains the variability 

in the data as can be seen in the plot in Figure 22.   

 

 
Figure 22. Fitting actual call arrivals to the suggested model 

 

The model significance can also be evaluated by conducting the likelihood ratio test where the 

test statistic used here is evaluated as the ratio of the likelihood function for the restricted model 

(call arrivals follow a homogenous Poisson process) and of likelihood of the full model (call 

arrivals follow a NHPP with λ(t)). The null distribution of the test statistic is a chi square whose 

number of degrees of freedom equals the number of parameters minus 1. For our model and 

sample data, this value is equal to 34,676,131 with 8 degrees of freedom corresponding to a p-
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value that is practically 0. Such very small p-value confirms our earlier results that the 

considered model is a very good fit to the data. 

 

5.2.3 Traffic Prediction 

   The importance of using a significant model lies in the capability of such model to 

predict future data. In this section we use our proposed framework to construct a model and 

estimate its parameters based on data collected in week 1 and then we use the model to predict 

data for other weeks. We compare the predicted data to the actual data that we already have for 

these weeks.  Figure 23 shows a plot of the predicted data against the actual data of two random 

weeks. The figure shows clearly that the actual observations fall very close to the curve of the 

estimated model.  

 

 

Figure 23. Predicted against actual call arrivals for two random weeks 
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5.2.4 Summary 

  The empirical data shows that the traditional Poisson process is not appropriate to model 

the VoIP traffic, while a non-homogeneous Poisson Process is able to capture the traffic 

behavior.   A major contribution of this research is modeling the call arrival rate as a function of 

calendar time under the non-homogenous Poison Process framework. We validated the model 

behavior with real traffic data over several months.  The statistical analysis of predicted data and 

actual data shows strong model validity and goodness-of-fit. This traffic engineering model 

could support network management systems to develop a dynamic resource allocation procedure.  

During the peak time of voice traffic, more network resources are allocated to the voice 

application. When voice traffic is low, more network resources are allocated for data services.  

 

 

5.3    Normality Approximation of Call Arrivals under 

Heavy Traffic Condition 

  After presenting the frame work for modeling call arrival rate as a NHPP, we went one 

further step and proposed a new model for call arrival process under heavy traffic conditions. We 

use empirical and analytical evidences to prove that such call arrivals can be approximated as 

linear Gaussian processes. We show that this approach can provide an intuitive and accurate 

representation for different traffic patterns. In addition, the Gaussian approximation allows 

finding explicit mathematical equations for the model parameters and also provides easy model 

validation and significance testing. The model is illustrated by using large number of call records 

collected from the tandem network described in Section 4.1. We used least-square estimation 



125 
 

method to build the model and conduct goodness-of-fit tests to validate it. We achieved a 

coefficient of determination, R
2
, of 0.9973. This means that 99.73% of the variability in the data 

is explained by the proposed model. The significance of the proposed model is confirmed 

empirically by its accurate prediction of future traffic. 

  Ideally engineers would like to use a model that can be easily fit to the data, and  is 

directly related to the systems factors and variables and whose parameters have a physical 

meaning. Generalized linear models, such as the Poisson, which are used to fit discrete stochastic 

processes such as the number of calls, lack these simplistic characteristics. Gaussian linear 

models on the other hand benefit greatly from such properties.  

Let N(t) denote the number of calls that arrive between time t and (t-1) then we can write the 

model as:  

  ( )   ( )   ( )𝜖( )                                       ( ) 
 

where  ( ) and  ( ) are the expected number of  calls between t and (t-1) and their variance, 

𝜖( ) is the sampling error at time t which represents the random component of the number of 

calls and is assumed to follow the standard Gaussian distribution. 

 

  Advantages of using a Gaussian model are many. For instance, tests of significance for 

both the parameters and the model can be easily constructed and assumptions related to model 

building can be easily checked and validated. Also we can build confidence intervals for future 

observations that allow us to predict the system behavior.  

 The validity of such model resides in the fact that Poisson Process behaves like a Gaussian 

process when its expected value is large [41] as is the case in the tandem network which   
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operates under heavy traffic condition.  The accuracy of such approximation is a direct 

consequence of the Berry-Esseen Theorem which puts a bound on the discrepancy between 

certain distributions and the Gaussian distribution. In the case of the call arrival process, the 

difference between the Poisson distribution and its Gaussian approximation at time t is inversely 

proportional to the square root of the expected number of calls at that time. This relation is 

shown in the Berry-Esseen equation below [42]:  

        |        (    )           (    )|    
      

√  
                                                               (1) 

For example, if the phone system receives 100 calls during a time interval, then the 

approximation error is less than 0.072 which is a quite tolerable bound. Each one of the tandem 

offices from which the data was collected receives millions of calls every day making the 

Gaussian approximation more applicable. 

 

5.3.1 Model Building   

  As we did in the NHPP section, we build a model for call arrivals that takes into 

consideration the daily arrival patterns and has the time-dependent mean function of: 
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The sine and cosine functions are used to build the periodic variation into the model. For a 

function with period T, there are T/2 possible cycles since harmonics with higher frequencies 

(i>T/2) are aliased to frequencies between 0 and 0.5. 

The function   ( )   is the Day Indicator where       with 1 corresponding to 

Saturday, 2 to Sunday, 3 to Monday, 4 to Tuesday, 5 to Thursday, and 6 to Friday.   ( )  assumes 

the value 1 if    the day represented by j and 0 otherwise. The indicator function corresponding 

to the seventh day is intentionally removed to avoid having a model with linearly dependent 

variables.  The coefficients     and     are parameters that represent the effect of the interactions 

between the indicator function   ( ) and the harmonics    (    ) and    (    ) respectively. 

Adding these interaction terms allows us to investigate the relationship between a given 

harmonic term and the number of calls in a given day. The effects of the interactions coefficients  

    and     are different from those of    and    which represent the effects of harmonic terms 

on the call numbers throughout the week. 

  Since the empirical data does not exhibit non-constant variability due to sampling error, 

we can safely assume that the model is homoscedastic and that the variance function      ( )    

is constant over time. When that is not the case, we apply certain transformations to stabilize the 

data or use weighted least squares to estimate the parameters [43]. Examples of efficient 

transformations for count-type data include the logarithm, square root and quadratic root. 

 

5.3.2 Parameter Estimation 

  We used the least-squares (LS) method [43] to estimate the parameters in the proposed 

model of  ( ). The advantages of least-squares estimation are that it does not require knowledge 
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of the underlying distribution of the error component 𝜖( )  and when the model is linear it 

delivers explicit expressions for  h  p        s’  s      s. In addition when 𝜖( ) is assumed to 

h v       ss      s   b     ,     s p ss b        k    f    c s  b     h  p        s’ s    f c  c  

and about the mode ’s v      y      s f    ss       wh ch, w  c    s   h             k  

predictions about future observations. 

As explained in [84], we processed call arrival data by aggregating arrivals into non-overlapping 

time intervals of length     1 second, or 1 minute or 1 hour. Thus we will use the total number 

of calls within time intervals rather than the exact call time arrival.  

Let                  denote the number of calls arrived at the system in non-overlapping time 

intervals (       (         (        , such that tk=tk-1+   . Thus, least-squares estimators are 

obtained by minimizing the loss function in (3), which is expressed as sum of squared deviations 

between the observed and expected numbers of calls: 

                                  ∑     (  ) 
 

 

   

                               ( ) 

 

replacing  (  )  by its expression in (2), we obtain: 
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The LS estimators are obtained when minimizing SS, with respect to each of the model 

parameters                        . This is done through taking partial derivatives of SS with 

respect to the parameters which leads to the following system of linear equations:  

∑     (  ) 

 

   

   

∑    (     )     (  ) 

 

   

               

∑    (     )     (  ) 

 

   

              

∑   (  )     (  )              

 

   

     

∑    (     )  (  )     (  )            
 

 
           

 

   

 

∑    (     )  (  )     (  )            
 

 
          

 

   

 

 

Define the m-dimensional vectors n=[n1,…, m],                               and the 

coefficient vectors                               ,              and               

where the prime sign is used to denote the transpose of a matrix or vector. Therefore,   is the 

vector that contains all the coefficients in the linear model. Also, define the (mxT/2) matrices, M1 

and M2 whose (k,i)
th 

entries are respectively,    (     ) and    (     );  (mx6) matrix, M3 
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whose (k,j)
th 

entry is   (  ); and  (mx(6T/2)) matrices, M4 and M5 whose (k,(j-1)T/2+i)
th 

entries 

are respectively    (     )   (  ) and     (     )   (  ). If we define the (mx(7T+6)) matrix 

X=[   M1, M2, M3, M4, M5], then the above system of 7(1+T) equations can be written as: 

   
 (  –    ) = 0 

  
 (  –    ) = 0 

  
 (  –    ) = 0 

  
 (  –    ) = 0 

  
 (  –    ) = 0 

  
 (  –    ) = 0 

 

This set of equations can be further summarized as: 

                                     (  –    ) =                                           ( ) 

which is equivalent to the equation: 

                                                (   )  =                                                  ( ) 

If the size of the data, m, was larger than the number of parameters 7(1+T), the design matrix X 

would have a full rank, i.e., its columns would be linearly independent, so       would be 

nonsingular and the solution to the linear system of equations (4) would be:  

                                  ̂  (   )                                                ( ) 
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However, this might not always be the case, and the solution to (6) might involve a generalized 

inverse of the matrix    , which we denote by (   )  and the solution is: 

                                ̂  (   )                                                  ( ) 

The vector  ̂ contains the LS estimates of the parameters in model (2).  

By combining equations (1) and (4), we can show that the covariance of  ̂ is  ̂(   )   or 

 ̂(   )  depending on the rank of X, where  ̂  ∑      (  ) 
 
   

 
 (  (    )).  

The standard errors of the parameters are the diagonal of the covariance matrix and they will 

come in handy when we conduct inferences about the parameters. Notice that in order to obtain 

these estimators; we do not need to make any assumptions about the distribution of the number 

of calls. The Gaussian assumption becomes of outmost importance when we test the significance 

of the parameters and their real contribution to model. The assumption is also crucial to test the 

usefulness of the model as a whole in explaining the behavior of the call arrival data.  

To conduct the test of significance about a parameter:      Ho: θi = 0 against H1: θi ≠ 0, we 

 s  W   ’s   s  s    s  c,   ̂      ( ̂ ), the ratio of the estimate of θi and its standard error as 

shown in Table 9. This statistic has a Student t-distribution with   (    )  degrees of 

freedom. Since the number of observations is very large, the test statistic has an asymptotic 

Gaussian distribution.  A parameter is significantly different from zero at 5%   v    f   s W   ’s 

test statistic is larger than 1.96 in absolute value. When applied to each parameter in the model, 

the test of significance allows us to remove all non-significant parameters and keep only the 

variables and factors that seem to affect the behavior of the call arrival numbers.  
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Table 9. Parameters' estimation and std. errors 

Parameter Estimate Std. 

Error 

t value Pr(>|t|) 

αo 401200 1377 291.359 < 2e-16 

α1 203157 1947 104.324 < 2e-16 

β1 -325874 1947 -167.341 < 2e-16 

α2 23597 1742 13.547 < 2e-16 

β2 -25652 1947 -13.173 < 2e-16 

α3 -27364 1590 -17.210 < 2e-16 

β3 -36522 1742 -20.968 < 2e-16 

α4 -28370 1485 -19.110 < 2e-16 

γ1 -83936 3152 -26.631 < 2e-16 

γ2 -169175 3079 -54.944   < 2e-16 

γ6 34884 3079 11.329 < 2e-16 

φ1,1 85330 4530 18.837   < 2e-16 

ρ1,1 -91083 4384 -20.777   < 2e-16 

φ2,1 -47459    4461 -10.639   < 2e-16 

ρ2,1 -26264 4368 -6.012 1.47e-08 

φ3,1 41411 4301 9.628   < 2e-16 

ρ3,1 -12106 4384 -2.762 0.006512   

φ1,2 136490 4354 31.345   < 2e-16 

ρ1,2 -141163      4354 -32.418   < 2e-16 

φ2,2 -12283 4354 -2.821 0.005477   

ρ2,2 53830 4266 12.617 < 2e-16 

φ1,6 -10486 4354 -2.408 0.017318 

ρ1,6 -11654 4354 -2.676 0.008320   

φ2,6 -15842 4354 -3.638 0.000384 

ρ2,6 -11968 4266 -2.805 0.005737 
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The significance of the model is investigated in the ANOVA Table 10 below: 

Table 10. ANOVA model significance 

 

Source 

d.f. Sum of 

squares 

Mean 

Squares 

F-

Statistic 

p-value 

Model 25 1.12 e+13 4.47 e+11 2478.71 <2e-16 

Error 141 2.55 e+10 1.81 e+8   

Total 166 1.12 e+13    

 

The very small p-value indicates that the proposed model is highly significant and explains the 

different patterns and the general behavior of the call arrival data. This is confirmed by the large 

value of coefficient of determination (adjusted for the number of variables) R
2
= 0.9973. This 

means that 99.73% of the variability in the data is explained by the proposed model.  

Figure 24 illustrates the proposed Gaussian model fitted to actual data.  

 

Figure 24   itted  aussian model μ  (t)against collected data 
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5.3.3 Model Validation 

The estimation and significance testing operations rely heavily on the validity of the 

assumptions we make. The analysis conducted in the previous sections is based on the following 

assumptions:  

 The number of calls per time unit follows a Gaussian process  

 The proposed model in (2) is unbiased and the variance of the observed number of 

calls is constant.  

Checking these assumptions is through the analysis of the residuals defined as the difference 

between observed number of calls nk and the estimate of the expected number of calls  ̂(  ) 

(also known as the predicted values), we denote by:  

 (  )      ̂(  )        . 

When the numbers of calls follow a Gaussian process, the residuals themselves follow a standard 

Gaussian (Normal) distribution. The results of normality tests are presented in Table 11 below: 

 

Table 11. Normality test results 

Normality Test p-value 

Anderson-Darling  0.2708 

Kolmogorov-Smirnov 0.8346 

Shapiro-Wilks 0.4129 
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The null hypothesis is the normality of the residuals distribution. We can see in Table 11 that the 

p-values are large. Therefore, we conclude that the normality assumption holds and that the call 

arrival rate follows a Gaussian distribution. 

The unbiasedness of the model is verified by plotting the residuals against time. Such 

graphs exhibit some sort of nonrandom pattern when the considered model is biased. The graph 

shown in Figure 25  bellow shows a completely random behavior of the residuals against time. 

This confirms the accuracy of our proposed model. The graph also shows that there is no reason 

   b    v   h    h    s     s’ v     c  ch    s  v    ime. 

 

 

Figure 25. Residuals against time 
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Furthermore, the stability of the process is checked by plotting the residuals against the 

predicted values as shown in Figure 26. The range over which the residuals vary does not change 

with the predicted values which confirms the homoscedasticity (constant variance) of the 

process. This conclusion is also reached through homoscedasticity tests of hypothesis such as the 

c   b      E    ’s L        multiplier [85] and Li-McLeod [86] tests. These tests are used to 

detect heteroscedasticity, or non-constant variance, when the explanatory variable is time. In his 

award winning work [87], Engle explained that non-constant variance is generated by an 

autoregressive conditional heteroscedasticity (ARCH) effect of the errors. This effect can be 

detected by testing the significance of autocorrelation coefficients of squared residuals at 

different lags. This class of tests is successfully used by financial engineers, econometricians and 

time series analysts to investigate the non-stationary behavior of stocks, futures and bond interest 

rates [88].    

 

Figure 26. Residuals against the predicted values 
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5.3.4 Prediction and Model Comparison 

The usefulness of model lies in its ability to explain the behavior of the system under study 

and in predicting the future state of the system [89]. In section 5.2.3 we proved that our proposed 

NHPP model can be used to predict future traffic behavior. Hence, our Gaussian approximation 

can be useful only if we can use it in a similar way for prediction. In this section, we use the 

proposed methodology to construct a model based on data collected in week 1 and then use the 

model to predict data for following two weeks. In Figure 27, we compare the predicted call 

   b  s b s      w  k 1’s       w  h  h   bs  v     c    ) c       b  s  h   w  c    c       

weeks 2 and 3 on the same tandem switch. The figure shows that the actual observations are very 

close to the curve of model prediction. 

 

Figure 27. Predicted against actual call arrivals for two random weeks 
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The Gaussian model for call arrival rate allows us to build different time-dependent models 

based on the specific engineering requirements. For example, one might consider the 

variation of call arrivals from one week to another, or from one month to another, etc.  It is 

also possible to use our methodology to consider the variation of calls from one hour to 

another.  Holidays, and special days can be effectively modeled by giving them indicator 

functions.     

As demonstrated in Section 5.3, the Berry-Esseen ensures that the Gaussian approximation to 

Poisson processes model is accurate when the arrival rates are large. This is confirmed by the 

plots in Figure 28, which represents Gaussian and Poisson fits to the call arrival data. The 

difference between the two models is insignificant, which justifies the proposed approximate 

model.   

 

Figure 28. Comparison between the Poisson and Gaussian Models 
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5.3.5 Summary 

  In this section we fit a linear Gaussian model to call arrivals under heavy traffic 

conditions instead of traditional Poisson models.  The choice of such model is motivated by the 

simplicity of Gaussian process and by its adequacy to fit high traffic call arrivals. The benefits of 

using Gaussian models are: (1) The model is intuitive and easily interpretable (2) The parameters 

are easily estimated and (3) The model is easily validated. We provide mathematical details to 

justify the Gaussian assumption, and to assess the performance of the proposed model through 

the ANOVA significance test. Then we check the model adequacy through goodness-of-fit tests 

and split-sample validation. 
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CHAPTER 6 

 

 

6    VSIM Description and 

System Design  
 

  After the traffic analysis and modeling, we implemented the resulting models to engineer 

the VoIP network. The system is designed to integrate the proposed Call Arrival Rate and the 

Call Holding Time models. In addition, the system provides an alternate non-parametric engine 

for increased accuracy and reliability.  The traffic engineering model provides (a) prediction of 

future traffic, (b) resource requirements estimation, (c) traffic graph generation, and (d) service 

quality reports and analysis.    The mathematical models that we studied for the traffic are 

complex and hence a queuing analytical solution is not feasible. Therefore, we used the 

stochastic approach and developed a simulation system for VoIP traffic engineering. The 

proposed system is called the VoIP traffic engineering Simulator (VSIM).  In this chapter we 

will describe the VSIM and its capabilities, specifications, design and development environment. 
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6.1    Development Approach 

  Because of the complexity of the Call Arrival and the Call Holding Time models, an 

analytical solution with mathematical formula is too complex, if not impossible. We conclude 

that a solution like the Erlang-B formula for modern VoIP traffic engineering is not feasible. 

Therefore, we will use simulations to study the relationships between model parameters and to 

estimate system performance under various traffic loads.  

Our approach combines both statistical analysis and stochastic modeling where we collect live 

traffic information from a telecommunications network. The traffic data is used to build the Call 

Arrival model and the Call Holding Time model as discussed in Chapter 5.  These models are 

then be used to predict the future traffic intensity. In our preliminary work, we used the data of 

previous week to predict traffic behavior of the next two weeks. In addition to traffic prediction, 

VSIM provides an intensive simulation environment that facilitates network resource and quality 

studies. The integration of the Call Arrival Rate and Call-Holding Time is traffic intensity, also 

known as Erlang.  Unlike the Erlang-B model, traffic intensity in this study is a function of time 

rather than a constant number. As a result, our proposed system can be adopted in a resource 

allocation algorithm to dynamically allocate resources (example: bandwidth) to meet the traffic 

demand.  The final output of the Traffic Engineering simulation model is the service quality 

report and it is measured by the call blocking probability or the required resources..  The 

functional modules of the simulation system are given in Figure 29. 
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6.2    VSIM Design 

  VSIM is a modular traffic engineering suite composed of multiple tools performing 

different functions. The core of VSIM is a Java-based simulator that implements both parametric 

and non-parametric simulation engines. VSIM includes a traffic collection module which is 

connected to a production VoIP network for near real-time traffic data collection. The collected 

data is processed and then it is passed to the various VSIM modules for traffic prediction, 

resource optimization, and quality of service calculations.  Figure 30 shows a high level design 

of the proposed traffic engineering system. 

Live Traffic Data Collection (CDR) 

1. Call Arrival  

2. Service Time 

Statistical Analysis: 

Building the Call Arrival Model 

Statistical Analysis: 

Building the Call Holding Time Model 

Prediction of Call Arrival  

(one-week forwarding) 

Prediction of Call Holding Time 

(one-week forwarding) 

Resource Allocation 

Algorithm 
Stochastic Modeling 

(Traffic Intensity) 

Service Quality 

Report 

Figure 29. Functional Modules of VSIM 
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Figure 30. VSIM high level design 

  

The major components of VSIM are: 

6.2.1 Traffic Data Collector: 

  This is a Linux machine connected to the internal management network of the VoIP 

carrier. The server has access to all the distributed Call Detail Record (CDR) servers in all the 

remote switch sites. Data collection is performed as described in Section 4.1.2. The network 

under study processes over 400 million minutes of traffic every day. Because of these huge 

amounts of traffic information, we will take samples of traffic for different central offices. Also 
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we filter out non-essential fields of each CDR before transferring the data to the collector. Traffic 

collection and filtering process is achieved by a combination of Perl and Linux shell scripts. 

Traffic information is stored on an external storage for portability and extendibility. Figure 31 

shows a sample of the collected raw call data. Each raw carries information for one call (CDR). 

The CDR Fields that we collect are (respectively):  

 Record type (STOP means a completed call, ATTEMPT means a call attempt that 

was not completed)  

 Switch name 

  Start date  

 Start time 

  End date  

 End time 

 Call duration in 100s of seconds. 

 Trunk group name (used to categorize traffic into landline, wireless, or VoIP) 

N   c   h   f   ATTEMPT   c   s w     ’  h v                        b c  s   h  c            

get through for some reason. 
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Figure 31. Sample collected call data 

 

6.2.2 Traffic Processing and Aggregation Engine 

   This is a comprehensive library of Perl and Linux shell scripts that we developed in 

order to process and aggregate the raw traffic information into a format that is suitable for VSIM 

modeling and simulation engines. A highlight of the processing and aggregation process is given 

in Section 4.1.2. This engine has two major outputs: (a) call holding time information in the form 

of TOA (time of arrival) against call duration and (b) call arrival rate aggregation in the form of 

the number of calls that arrived within a certain time interval. The aggregation engine provides 1, 

10, 100, 1200, and 3600 seconds aggregated call arrival information. Aggregation interval is a 

parameter that can be entered to the aggregation process and it is used to determine the accuracy 

and confidence interval of the modeling and prediction. 
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6.2.3 Model Generation engine 

 This is a critical module for VSIM. The input for this model is: 

o  Processed traffic data coming from traffic processing and aggregation engine.  

o Modeling generation variable such as the required number of harmonics for call 

arrival linear model. 

The output of this model is: 

a. Estimated NHPP generalized linear model for call arrival rate. 

The NHPP is constructed and estimated using R-language as explained in section.5.2. 

Figure 32 shows an example of the NHPP generalized model estimation output. The 

output shows the used generalized model, its estimated parameters, standard error and p-

value for each parameter. The example shows that we are 4 harmonics for the 

generalized linear model.     
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Figure 32. Sample modeling output (NHPP model estimation) 

 

The model generation engine also produces a graph that shows the actual input traffic data 

against the generated model. An example is shown in Figure 33. 
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Figure 33. Sample modeling output (NHPP model graph) 

 

The NHPP model generation engine generates multiple statistical values and graphs that show 

the accuracy of the model and its estimated parameters. For example Figure 34 shows a plot of 

residuals VS time. The random output means that chosen model is significant.   
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Figure 34. Residuals Vs Time 

 

b. Generalized Gamma model for call holding time. 

We used R language and SAS software in order to implement methodology and statistical 

process described in section 5.1. The choice for using SAS for this problem was based on the 

difficulties we faced in implementing and estimating the generalized Gamma model using R-

Language.  The modeling process starts by showing a histogram of the input data, and then 

the data is fit to a Generalized Gamma model. An example of the histogram data is shown in 

Figure 35. 
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Figure 35. Histogram of call holding time 

 

Generalized Gamma model parameters are estimated, and a graph is generated for the 

model as shown in Figure 36.

 

Figure 36. Call holding time modeling 
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6.2.4 VSIM Graph Generator: 

  The graph generator utilizes gnuplot and R-language in order to generate graphs for call 

holding time as well as call arrival rate and. The graphs will provide different time aggregations 

and scales for various engineering and business needs.  In this research, we used VSIM to 

generate many graphs for analysis and validation of the model.  Some samples of the graphs are 

presented in this thesis.   

6.2.5 VSIM Traffic Prediction Engine:  

  This is a utility that takes traffic data for a certain period of time as input, constructs a 

model based on this data, and then uses this model to predict future traffic patterns. Prediction 

can be done using NHPP modeling and the normal approximation modeling. Figure 37 shows an 

example of the traffic prediction using NHPP model, and compares it with the actual data.  Note 

that traffic data of week-1 is used to predict the incoming traffic of week-2 and week-3.

 

Figure 37. Prediction using NHPP model 
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Figure 38 shows an example of traffic prediction using the normal approximation model. 

 

Figure 38. Traffic prediction using the Gaussian/normal model approximation 

 

From Figure 37 and Figure 38, we can see that both NHPP and the normal/Gaussian 

approximation models yield accurate prediction results. It is easier to build the Gaussian model 

and estimate its parameters, and  traffic prediction using Gaussian approximation is easier to 

perform and requires less statistical and mathematical analysis than that of NHPP model. 

However, the normal approximation assumes heavy traffic condition (high call arrival rate) as we 

explained in section 5.3. Hence, NHPP-based prediction is suitable for all traffic scenarios but it 

is more complex. In case of heavy traffic, we can use the simpler Gaussian-based prediction and 

still achieve comparable results. 
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6.2.6 VSIM simulation Engine 

  This is the core of the VSIM system. This engine is a discrete event simulator [65] in 

which the VoIP network is modeled as chronological sequence of call arrivals and terminations. 

VSIM is a Java-based simulator and its input is traffic models taken from the model generation 

engine. The next chapter provides the design, development, validation and verification of VSIM 

simulation. 
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CHAPTER 7 

 

7    VSIM Simulation 

Implementation and 

Experiments 
 

 It has become clear that it is necessary to find modern traffic engineering models that can 

help design cost-efficient systems and study their performance under various conditions. In this 

chapter we provide a new VoIP simulation suite that consists of a parametric simulator based on 

Non-homogeneous Poisson Process (NHPP) call arrival model, and a non-parametric simulator 

based on real traffic data. Our simulators are validated against real call data obtained from 

multiple offices of a production VoIP carrier network. The purpose of the simulator is to provide 

a stochastic solution for the traffic problem given the modern traffic models developed in this 

research. The goal is to build a simulation system that can provide resource optimization and 

quality of service reports for VoIP networks. This data can be used by engineers in order to 

optimize network design, and build cost-efficient systems. A dynamic resource allocation 

scheme can be developed based on the resource and performance reports generated by our 

simulator. Such scheme, can dynamically allocate network resources according to the traffic 

demand which can be more useful for converged networks where the same network is shared 
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between voice and data, more bandwidth can be dynamically allocated for voice during the busy 

hours, and after the busy hours more bandwidth can be given to the data applications. 

 

7.1    Introduction   

The majority of the previous work in VoIP traffic engineering and modeling is based on 

the exponential approximations for call arrival rate and call holding time [90] [91] [92] [93] . 

The exponential approximation allows finding analytical solution for the traffic queuing model 

but the approximation might be too aggressive that it will result in poorly engineered systems. 

The Erlang B model was introduced several decades ago to solve the phone system traffic 

queuing problem. This model is based on the traffic intensity of the busiest hour in the busiest 

week of the year (Busy Season Busy Hour: BSBH). BSBH traffic is assumed constant 

throughout the entire year and its arrival rate is modeled as a Poisson/exponential distribution.  

This assumption makes traffic calculations easier but using a constant call arrival rate for the 

entire year causes inefficient resource utilization. 

In our call arrival process analysis and modeling work [84] we proposed using a Non-

homogeneous Poisson Process (NHPP) for the call arrival rate. In NHPP modeling call arrival 

rate is a non-constant function of time. Whereas in the legacy Erlang B approach calls are 

assumed to arrive according to a Poisson process with a constant arrival rate. Therefore, using 

NHPP helps avoid the approximation and assumption errors associated with a constant arrival 

rate over the whole engineering period. Our NHPP model development was based on real call 

data extracted from a production VoIP carrier network. Examining the arrival data, we 

constructed a model that describes the variation of call arrival rates during a week since traffic 

patterns were observed to be repeated weekly. It is common in statistical analysis to model the 
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       h   f λ  )   s      f λ  )   s  f f   count data. Such transformation would guarantee that 

the estimate of the intensity function is always non-negative. Our model takes into consideration 

the daily arrival patterns and has the time-dependent intensity function of: 

     ( )     ∑       (    )        (    )  
  

   
   ∑    ( )

 

   

        ( ) 

where:    ( ) is a function of time (t). 

  ( ) is day Indicator function where j is the day of the week. The value of   ( )  is 1 if the 

time    j and 0 otherwise. ko is the number of harmonics in the model.   represents the model 

central tendency without daily effects.    is the effect of day j and represents the difference 

between   and the mean number of calls for day j.             are the contribution of the ith 

harmonic to the model. 

We used Maximum likelihood estimation to fit the proposed λ  )     the actual call arrivals. In 

        , w   s     k   h            s      W   ’s   s              v   fy  h  s    f c  c   f  h  

model and its parameters. All the statistical test results verify that call arrivals is best fit by a 

NHPP rather than a constant Poisson process. We provide the detailed statistical analysis in 

section 5.2. In this chapter, we introduce a comprehensive VoIP simulation suite (VSIM). 

VSIM consists of a G/G/c/c simulation model based on NHPP call arrival rate and also a non-

parametric simulator based on real traffic data.  The simulation models are validated against 

traffic data collected from an operational VoIP carrier network.  
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7.2    Telecommunication System Simulation 

In telecommunication traffic engineering, it is always preferable to find analytical solutions 

for the queuing and traffic problems.  However, the analytical solution might involve too many 

approximations in order to fit the data into exponential or other probability distribution functions. 

Such approximations will result in inaccurate engineering results. Simulation approach offers 

accurate and flexible model construction and validation, and can be used whenever analytical 

solutions are not practical [94]. 

Simulation models can be discrete or continuous. Discrete event simulations are suitable for 

problems where variables change in discrete time fashion. On the other hand, continuous 

simulations are suitable for problems in which the variables might change continuously [95]. 

Discrete event simulations are suitable for telecommunication network queuing problems since 

the events happen on discrete times [96]. Using discrete event simulators has been attracting 

       s   ch  s’       ion during the past few years because such simulations can help solving 

sophisticated problems which are impossible to solve using analytical approaches  [94] [97]. In 

addition, the availability of low-cost powerful computers and capable simulation packages makes 

the simulation-based solutions more accurate, capable, reliable, and easier to implement.  

With the rapid increase of VoIP residential, enterprise, and carrier deployments, researchers 

realized the need for modern traffic simulation models that can be used in studying and 

designing reliable and cost-efficient VoIP networks. In [98] VoIP traffic sources were modeled 

as on-off sources with exponentially distributed of on-and-off times. In [99] and [100] the 

authors used Markov Modulated Poisson Process (MMPP) traffic model to analyze VoIP 

performance for wired and wireless networks. In [101] [102] [103] [104]  the authors provide 
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VoIP traffic performance and evaluation simulation tools that focus on the packet performance 

without taking into consideration the distribution of calls arriving at the system which will have 

significant impact on the packet performance and QoS design. In this work we go a further step 

by providing two VoIP traffic simulators based on modeling the calls arriving at the system. The 

first one is a parametric model and uses a NHPP to represent the time-dependent call arrival rate, 

and the second one is non-parametric and uses the real traffic data to simulate the system 

behavior.  

      

7.3    VSIM simulation engines   

  VSIM simulation model is part of a larger traffic engineering system that starts by 

collecting call data from a production network. The collected data is processed and then fed into 

the NHPP parameter estimation model. NHPP model parameters are passed to VSIM to be used 

in G/G/c/c engine. For non-parametric simulation we skip NHPP model estimation process and 

feed the processed call arrival and call holding time data directly into VSIM.   The simulators we 

created during this research are built using traffic models developed based on real traffic data of 

a large production VoIP carrier network. We followed the framework described in section 5.2 in 

order to generate the NHPP model and estimate its parameters.  

  A closer look at the raw traffic pattern we notice large variation in the arrival rate. For 

example, at one second we might receive 10 calls and at the next second we might receive no 

calls. This variation is smoothed if we average the traffic data over longer time intervals.  Figure 

39 below shows the raw traffic data for 1s, 10s, 3600s averages, and the generated NHPP model.  

The figure illustrates the accuracy and significance of the generated model. This accuracy has 
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been established through the extensive mathematical and statistical analysis we provided in 

section 5.2. The accuracy of the input NHPP model will result in accurate simulation results as 

proven in section 7.5. 

 

Figure 39. Call arrival data analysis and modeling 
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 The VoIP simulation model (VSIM) estimates:  

a)  GoS (blocking probability): this scenario is used in sensitivity analysis for system 

design. In this case we vary the number of IP trunks and observe the effect on GoS 

(blocking probability for a certain traffic pattern.  Figure 40 shows a sample of VSIM 

output for this case. 

 

 

Figure 40. VSIM output: effect of the number of IP trunks on GoS 

 

b) Resource requirements (IP trunk size): In this case we have a target GoS and a given 

traffic pattern and we need the estimate the number of IP trunks needed to achieve this 
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GoS. VSIM is used in an iterative manner to compute the required number of IP trunk 

groups.  

 

VSIM is a flexible Java-based tool developed using CSIM for Java library [4], and therefore 

it can be easily ported to different computing platforms.  VSIM can be used to estimate the 

trunk group size, generate GoS reports, and perform what-if analysis for VoIP networks.   

 VSIM is composed of two different simulation engines; the first is a parametric G/G/c/c 

simulator and the second is a non-parametric simulator. Both are discrete event simulators in 

which the VoIP system is modeled as chronological sequence of call arrivals and 

terminations. In the G/G/c/c engine we model the call arrival rate using the time-dependent 

function shown in (1), model parameters are estimated based on the collected data sample. 

This call arrival function is used to generate random variables for call inter-arrival times. 

Once a call is generated, the simulation code polls a random call holding time from a list of 

real holding times. The simulation engine allocates a trunk for the duration of simulated call 

holding time. A separate thread is created for each call so that we can collect statistics for 

each individual call and trunk. Once the simulated call time is over, the completed calls 

counter is incremented by one and the trunk will be released back to the trunk pool. The same 

procedure is repeated for the next calls until the pool of trunks is depleted. Once all trunks 

are busy we increment the blocked calls counter for each call that arrives while no trunks are 

available.  Figure 41 illustrates the internal VSIM simulation algorithm.  
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Figure 41. VSIM simulation algorithm 

 

The non-parametric simulator follows the same algorithm with the exception that we poll the 

inter-arrival time variable from a real data file rather than using a NHPP function to generate it. 
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7.3.1 Parametric VSIM G/G/c/c simulator 

 Parametric simulation is done by collecting traffic data and then developing statistical models 

that best approximate the collected data. Model parameters are estimated based on the data 

sample and then these parameters are used in the simulation.  We developed a G/G/c/c 

simulation model for VoIP traffic engineering. The model consists of a loss multi-server queuing 

system with waiting queue length equal to zero (blocked calls are cleared from the system). The 

implementation of general call arrival rate and general call holding time in the simulator allows 

for arbitrary distributions and that increases the flexibility and usability of our simulation model.   

The examples given in this thesis focus on modeling call arrival rate as NHPP using a 

generalized linear model that captures the variability in call arrival rate with respect to time. 

NHPP model parameters are estimated based on the real traffic data extracted from the 

production VoIP network under study. 

 

7.3.2 Non-parametric VSIM simulator 

 In addition to the parametric G/G/c/c simulation engine implemented in VSIM, we also 

provide another non-parametric simulation engine. Non-parametric simulation is achieved 

throughout replaying the real traffic data without generating statistical models or estimating 

parameters. In other words, we use actual observations in the simulation rather than generating 

random variables from a statistical distribution. Therefore, non-parametric simulation would 

yield more accurate results since no approximation or data fitting are involved. This type of 

simulation is preferred when we have large amount of data. Another advantage of non-
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parametric simulation is that developing statistical distributions is not necessary and hence the 

simulation process becomes easier. 

 We use the non-parametric simulator in this paper in order to verify the correctness of our 

G/G/c/c model and to validate its results. The input of our non-parametric simulator is real call 

information that consists of call inter-arrival time and call holding time. The simulator will 

regenerate the calls based on the given data, and we can study the system and compute the 

required resources and GoS. 

 

7.4    VSIM model verification 

 It is important to verify the correctness of any simulation model before applying it to real-life 

problems. Simulation verification should cover the simulation engine algorithms as well as the 

random variables generated from the simulator statistical models. Therefore, we split VSIM 

model verification into two steps; the first is discussed in section 7.4.1 and aims to verify the 

correctness of the NHPP random variables generated and used by the simulator.   The second 

step is discussed in section 7.4.2 and aims to verify the correctness of the simulation algorithms, 

timers and procedures. 

 

7.4.1 Internal simulation random variables 

 We instrumented VSIM and obtained the call arrival rate generated by the model based on 

the implemented NHPP linear model. This call rate is used as an internal input to the G/G/c/c 
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simulation algorithm. Figure 42 shows the internally generated NHPP call rate variable along 

with the actual traffic data. 

 

Figure 42. Simulated call arrival rate 

 

As illustrated in Figure 42, the results of this verification process indicate that the NHPP model 

function used to generate call arrival random variables is correct and accurate. For the non-

p       c s                , w     ’        h s v   f c         ph s  c  w           s      y 

model to generate random variable for the simulation; instead, the actual data is passed to the 

simulation process.  
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7.4.2 VSIM simulation engine algorithms 

 A common approach to verify the correctness of a new simulation model is by comparing it 

to other well-established simulators. Unfortunately, we could not obtain any G/G/c/c model 

against which we could verify our work; therefore, we used the exponential M/M/c/c special case 

of our model and compared the simulated result to the calculated results based on the Erlang B 

model. Our M/M/c/c utilizes the same simulation algorithms as our G/G/c/c and the only 

difference is that we use exponential distributions for both call arrival rate and call holding time. 

The goal is to verify the correctness of our simulation clock, event handling and algorithms. The 

validation of simulation results will be discussed in the next section against real traffic data.  

 In this process we used different data samples each one consists of one week of traffic; an 

example of the results is shown below: 

Mean call holding time = 185 second 

Busy Hour Traffic (BHT) = 12.6 call/ second 

Using the Erlang B calculator we need around 2520 trunks in order to carry this traffic without 

blocking (Blocking probability nearing zero). 

Using the M/M/c/c simulator with the same traffic parameters we found the required number of 

trunks to be 2515 for the same blocking probability. We ran multiple simulation runs for 

different data sets and comparable results were obtained for all the samples under test. These 

results verify the correctness of our VSIM simulation code and algorithms. In another example, 

we used VSIM to study the effect of available resources on GoS for a given traffic load, then we 
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computed the same GoS using Erlang-B calculator, the results are shown in Figure 43 and the 

match between VSIM simulated results and the calculated results is very high.   

 

Figure 43. Simulated Vs Estimated GoS (Exponential special case) 
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7.5 VSIM Simulation Model Validation 

 The most important aspect of any simulator is that it should produce valid, correct and 

dependable results. The best approach to establish the validity of a simulator results is by 

comparison to real data. Therefore, we obtained the real resource utilization (number of 

simultaneous calls) from the production system for the period of time corresponding to the call 

arrival and holding time data used to develop the models. We used this data to validate VSIM 

simulation results. Different traffic samples and different simulation runs were used and all 

results agree with data obtained from the real network. In addition, we also used our 

nonparametric VSIM simulator to replay the same data samples and the results agree with those 

obtained from the system and those obtained from G/G/c/c simulation.  

 Table 12 shows an example of the actual used trunks obtained from the system compared to 

VSIM simulated output at GoS nearing zero. Figure 44 shows a comparison of VSIM results 

against actual system resources for the whole week at 10-minute intervals.  

 

Table 12. Simulated Vs actual IP trunk requirements 

 Maximum Call load 

(Pr[B] ≈ 0) 

Actual (Observed) 1807 

G/G/c/c  (simulated) 1936 

Non-Parametric 

(Simulated) 

1810 
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It can be seen from Table 12 that both simulation models yield satisfactory results although the 

non-p        c        s          b       Th     s    s b c  s  w     ’  h v    y             

estimation approximations for the non-parametric case. We used multiple data samples and 

executed multiple simulation runs and all the results are similar and indicate high accuracy of our 

VSIM for both G/G/c/c and non-parametric while the latter shows a little better results.  

 VSIM G/G/c/c simulator is based on using a function of time to model call arrival rate, and 

therefore VSIM can provide the resource requirements as a function of time as well. This 

function is important for system design, analysis and requirement studies, especially for 

converged networks where voice and data ride the same IP infra-structure. This function is also 

available for VSIM non-parametric simulator because we have real call information that depends 

on the time.   Figure 44 illustrates sample resource functions (number of required IP trunks Vs. 

Time) generated by VSIM along with the corresponding simultaneous calls observed in the 

actual system at 10-minute intervals (real data validation). The figure shows the effectiveness of 

VSIM as demonstrated by its ability to compute the required system resources (IP trunks) as a 

function of time accurately. The resource time function provided by VSIM can be utilized for 

dynamic resource allocation scheme in which resources are allocated for different applications 

based on the actual or expected demand. Such scheme helps achieve better resource utilization 

and hence better engineering and cost reduction. 
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Figure 44. Number of IP trunks as a function of time (resource time function) 

 

7.6    Simulation results and Analysis 

 It is important to notice that Erlang B and M/M/c/c models suggest a linear relation between 

blocking probability and system capacity (maximum number of simultaneous calls). However, 

our VSIM G/G/c/c and non-parametric simulators suggest a non-linear relation as seen in Figure 

45.  The figure shows identical match between the results obtained from the calculated Erlang B 



171 
 

and the simulated M/M/c/c. In order to use Erlang B and M/M/c/c we need to compute the 

average call arrival rate of the busiest hour and the average call holding time. For the results 

shown in Figure 45 and based on the data sample, we used 10.6 call/second for the arrival rate 

and 183.01 seconds for call holding time Also the figure shows close match between the G/G/c/c 

and non-parametric simulator. These results verify the correctness and validity of our procedure 

and modeling process. The deviation between the straight line calculated by the traditional 

Erlang B model and the curve generated by VSIM is significant and can affect the design and 

engineering decisions for the system. For example, if we want to build a switching system with 

1600 maximum simultaneous calls (system capacity), the Erlang B approach suggests that the 

blocking probability will be 0.19 (P.19) while the VSIM G/G/c/c model results in a blocking 

probability of 0.02 (P.02). The difference between these two approaches is significant in the 

telecom world.  VSIM nonparametric approach for the same data sample results in a blocking 

probability of 0.006 (P.006). Using the same example, we found that in order to achieve blocking 

probability of 0.01 (P.01),  we will provision  1665 IP trunks using VSIM G/G/c/c model, or  

provision 1550 IP trunks using the VSIM non-parametric simulator. On the other hand we will 

provision 1991 trunks if we engineer the system using the Erlang B model. Therefore, we can see 

that using the VSIM model can save 28% of the resources over Erlang B at the P.01 blocking 

probability. Furthermore, Figure 45 shows that we can achieve better than 28% resource saving 

if higher blocking probabilities is desired. 
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Figure 45. Blocking probability Vs system capacity (switch A) 

 

We conducted many simulation runs using different data samples collected from different switch 

offices located in different cities. Similar results were obtained throughout this study.  Figure 46 

shows another example where the data is collected from a different office with more traffic load. 

The graph shows almost identical relation between the blocking probability and system 

resources. For the results shown in this figure and based on the data sample, we used 14.0125 

call/second as the arrival rate and 204.186 seconds as call holding time for Erlang-B calculations 
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and M/M/c/c simulations. The graph indicates that we need 2500 IP trunks in order to carry the 

offered traffic load at blocking probability of 1%. On the other hand using the Erlang B model 

we will need 2885 IP trunks in order to achieve the same GoS.  This sample shows that VSIM 

model could yield a saving of 15% of network resources. 

 

Figure 46. Blocking probability Vs system capacity (switch B)  

 

Figure 47 shows a third example for a switch with larger capacity. The example shows that in 

order to achieve 1% blocking probability we need 4000 IP trunks if we design the system using 

VSIM simulation. On the other hand we will need 4660 if we design the system using Erlang-B 
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model. Therefore, for this traffic sample using VSIM can save 16.5% of the resources. In this 

example Erlang-B calculation is based on call arrival rate of 23.678 call/second and 196.33 s call 

holding time, the total number of calls generated during the week is 6.15 million calls.  

 

Figure 47. Blocking probability Vs system capacity (switch C) 

 

It takes VSIM simulation engine about 5 minutes in order to run a simulation time of a complete 

week for the switch shown in Figure 46 (3.62 million calls per week). Similarly, VSIM needs 13 
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minutes to simulate a week worth of traffic for the example shown in Figure 47 (6.15 million 

calls per week).  The performance of the G/G/c/c and the non-Parametric is comparable. The 

reasons for this performance are: 

 We are running VSIM on a simple lab machine that has a single CPU and only 4G of 

memory. 

 We are using Java for building VSIM. Java is not the best programming language for 

performance; however,   CSIM API is available only for Java under the Demo license.  

 

7.7    Summary 

  The advantage of using complex statistical models to capture traffic patterns is that these 

models provide accurate representation of the actual data. On the other hand the disadvantage of 

using complex models such as NHPP is that an analytical solution is not feasible. The 

availability of powerful computer systems makes the simulation approach feasible and effective, 

and hence we can obtain accurate results. We provided two simulators: the first is based on 

NHPP call arrival rate and the second is based on non-parametric data. VSIM is capable of 

solving the traffic modeling problem for modern VoIP systems accurately using arbitrary and 

complex traffic models or by using the raw traffic information without estimation of parameters. 

Our results are validated against real data collected from multiple offices of a production VoIP 

carrier network. We observed that the non-parametric simulator results are more accurate. Real 

traffic data proves that using VSIM could save from 15% up to 28% of the resources over the 

Erlang B model or other exponential-based models. 
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CHAPTER 8 

 

8    Conclusions and Future 

Work 
 

  We provided an in-depth study for VoIP resource requirements, and we concluded that 

the traditional method of calculating resource requirements based on bandwidth alone is not 

enough. We proposed to use packet throughput in addition to bit throughput (bandwidth) in 

calculating VoIP network resource requirements. Also we introduced a new metric (Max Call 

Load) for VoIP network capacity.  Call admission Control (CAC) systems can adopt the 

Maximum Call Load Metric and decide whether to accept or reject a call. This approach allows 

for using traffic engineering models in order to engineer VoIP network in a manner similar to 

PSTN networks. 

  The legacy traffic engineering models such as Erlang B are based on the assumption that 

calls arrive according to a Poisson distribution with fixed rate, and last for a call holding time 

that follows a negative exponential distribution. These assumptions make it easy to find 

analytical solutions for the traffic problem; however they include huge amount of approximation 

errors especially for modern VoIP systems. Instead of using Poisson process with fixed rate, we 

proved that using a Non-Homogeneous Poisson Process (NHPP) with call rate that varies as a 
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function of time provides more accurate representation for the call arrival process. We based our 

work on hundreds of millions of call data collected from a production VoIP carrier network over 

3 years. The data shows that our NHPP approach provides strong model validity and goodness-

of-fit. This model could support network management systems to develop a dynamic resource 

allocation procedure that helps optimize converged networks.  During the peak time of voice 

traffic, more network resources are allocated to the voice application. When voice traffic is low, 

more network resources are allocated for data services. 

  We introduced the normality (Gaussian) approximation of call arrival rate for networks 

that operates under heavy traffic loads. We based this conclusion on the fact that Poisson Process 

behaves like a Gaussian process when its expected value is large (heavy traffic condition) as is 

the case in the tandem network under study.  The accuracy of this approximation is based on 

Berry-Esseen Theorem which puts a bound on the discrepancy between certain distributions and 

the Gaussian distribution. We conclude that the normal distribution can provide an intuitive and 

accurate representation for call arrival rate on large-scale networks. The Gaussian approximation 

allows finding explicit mathematical equations for the model parameters and also provides easy 

model validation and significance testing. For a sample of data under study, we achieved a 

coefficient of determination, R
2
, of 0.9973 which means that 99.73 of the variations in the 

empirical data are captured by the proposed Gaussian model. 

  We concluded that the exponential approximation of call holding time implemented by 

Erlang B model falls short from capturing the variation in call durations for modern VoIP 

systems. Therefore, we introduced a new methodology to modeling call holding time using time-

to-event analysis. We introduced Call Cease Rate Function and found that both the log-logistic 

and the generalized gamma distributions provide a good fit for the data. Our statistical analysis 
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shows that the approach of modeling call cease rate provides more accurate results than the 

traditional exponential and log-normal holding time models. 

  The available Erlang B model has been used for traffic engineering for several decades. 

This model was developed long time ago where powerful computers did not exist; therefore, the 

Erlang model opted to do a lot of approximations in order to fit the traffic in simple exponential 

models so that an easy analytical solution could be obtained.  The empirical data proved that this 

model is not suitable for modern traffic patterns. The availability of powerful low-cost computers 

encouraged us to opt for more complex models that can accurately capture the traffic. The 

complex models provide accurate data representation but cannot yield to the derivation of a 

simple analytical solution. Therefore, we opted to build a simulator that implements these 

complex models. We introduced VSIM as a VoIP traffic engineering simulator. We performed 

large number of simulation runs and validated the results against data obtained from a VoIP 

carrier network, and we conclude that VSIM can provide better results and can help to better 

optimize the network resource utilization. In addition, we built a second non-parametric 

simulation engine that can be used to perform traffic engineering studies using the empirical data 

without building any models. The results of the non-parametric simulation are more accurate 

compared to the parametric simulation and the reason is that we eliminate any modeling or 

estimation errors in the case of non-parametric simulation.    

   

Our future work plan will focus on: 
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 Implementing the generalized gamma distribution for call holding time in VSIM since 

currently VSIM focuses on implementing NHPP for call arrival rate and we use the 

empirical data for the service time. 

 Adding multiservice concept to VSIM. Currently, VSIM considered one class of service 

only, and we plan to extend its capabilities to include multiple classes of services,  each 

with different resource requirements and traffic characteristics. 

 Building a new dynamic resource allocation scheme that depends on VSIM output and 

that can be integrated with live networks and change the resource allocation. 

 The increasing popularity of Internet-based multimedia applications demands finding 

more efficient mechanisms for controlling and managing this kind of time-sensitive 

traffic. The models and approach employed in this research can be easily extended to 

support multimedia traffic engineering. Therefore, we are planning to expand the models 

and simulations provided in this study to cover the multimedia traffic over the Internet.    

 We understand Java performance limitations, and  we are planning to rewrite VSIM 

using C or C++.  
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